
Reliability Analysis of On-Chip Communication Architectures:

An MPEG-2 Video Decoder Case Study

Rishad A. Shafik

Electronics Systems and Devices Group,
School of Electronics and Computer Science,

University of Southampton, SO17 1BJ, UK

Bashir M. Al-Hashimi

Electronics Systems and Devices Group,
School of Electronics and Computer Science,
University of Southampton, SO17 1BJ, UK

Abstract

In this paper, we present reliability analysis and comparison between on-chip communication ar-

chitectures: dominant shared-bus AMBA and emerging network-on-chip (NoC); in the presence

of single-event upsets (SEUs) using MPEG-2 video decoder as a case study. Employing SystemC-

based fault simulations, reliability of the decoders is studied in terms of SEUs experienced in

the computation cores and communication interconnects. We show that for a given soft error

rate (SER), NoC-based decoder experiences lower SEUs than AMBA-based decoder. Using peak

signal-to-noise ratio (PSNR) and frame error ratio (FER) metrics to evaluate the impact of SEUs

at application-level, we show that NoC-based decoder gives up to 4dB higher PSNR, while AMBA

experiences up to 3% lower FER. Furthermore, we investigate the impact of routing, application

task mapping (distribution of tasks among computation cores) and architecture allocation (choice

of number of computation cores) on the reliability of the decoders in the presence of SEUs.

Keywords: On-chip communication architecture, network-on-chip, soft error, reliability

1. Introduction

On-chip communication architecture is a key issue in the design of multiprocessor system-

on-chip (MPSoC), since the chosen architecture influences the system performance and power

Email addresses: ras06r@zepler.net (Rishad A. Shafik), bmah@ecs.soton.ac.uk (Bashir M. Al-Hashimi)

Preprint submitted to Embedded Hardware Design (MICPRO) July 24, 2010

consumption [1, 2, 3]. Shared-bus, such as advanced microprocessor bus architecture (AMBA),

is a dominant, industry standard on-chip communication architecture [4]. To address the perfor-

mance and scalability issues in the design of future MPSoCs, network-on-chip (NoC) has evolved

as an emerging on-chip communication architecture [5]. Over the years researchers have proposed

a number of flexible NoC architectures with efficient communication techniques. For example,

ÆTHEREAL NoC architecture has been proposed by [6] with guaranteed communication services

and NOSTRUM NoC architecture with layered communication approach has been presented in [7].

Among other developments, recently a mesh-based Intel 80-core NoC architecture with clock fre-

quency higher than 4GHz has been proposed in [8].

An emerging challenge in MPSoC design is reliability in the presence of different faults. These

faults can generally be classified in two types: permanent and transient. Permanent faults are

related to irreversible physical defects in the circuit, which are produced during manufacturing

process. Transient faults, also known as soft errors, take place when a single ionising radiation

event produces a burst of hole-electron pairs in a transistor that is large enough to cause the cir-

cuit to change state. Single-event upset (SEU) is the most popular transient fault model used in the

study of reliability [9], which is exacerbated by scaling and low power design techniques [10, 11].

To mitigate the impact of soft errors a number of studies have shown different fault tolerant

on-chip communication architectures and techniques for MPSoCs. For example, in [10] an investi-

gation into reliability of different NoC architectures has been reported. Based on the investigation,

effective fault tolerance techniques have been proposed for different NoC configurations to operate

in the presence of soft errors. Another reliability analysis of on-chip communication architectures

from performance, reliability and energy perspective has been carried out in [12]. Using such

analysis an array of different fault tolerance techniques have been introduced at architectural-

and algorithmic-level to tackle the reliability issues of communication components. In [13] a fault

tolerant design of interconnects in on-chip communication architectures has been considered ex-

plaining conflicting design trade-offs between reliability and performance. The impact of power

minimization on reliability has been examined in [14] showing effective power-aware fault toler-

ance design techniques for on-chip communication architectures. Several other techniques, such

as stochastic communication [15] and routing [16], have also been proposed to incorporate fault

tolerance in on-chip communication architectures. Although good progress has been made in the

2

development of fault tolerant architectures and techniques, currently there is a lack of analysis of

how on-chip communication architecture affects the reliability of MPSoCs in the presence of soft

errors. For the NoC methodology to gain further maturity, such insightful analysis of reliability

need to be performed highlighting comparison between dominant shared-bus AMBA and NoC,

which is the main aim of this paper. To the best of our knowledge, no such study has yet been

reported. In this paper, using cycle-accurate SystemC-based simulations we investigate the number

of SEUs experienced in computation cores and communication interconnects in shared-bus AMBA

and NoC employing real application traffic of MPEG-2 video decoder. We evaluate the number

of SEUs experienced for a given soft error rate (SER) and show the impact of SEUs experienced

at application-level. Furthermore, we investigate the impact of routing, application task mapping

(distribution of application tasks among processing cores) and architecture allocation (choice of

number of processing cores) on the reliability of the AMBA- and NoC-based decoders. The rest of

the paper is organized as follows. Section 2 describes application, architecture and fault injection

model used in this work. Section 3 compares between AMBA- and NoC-based decoders in terms of

SEUs experienced in computation cores and communication interconnects, and evaluates the im-

pact of SEUs at application-level. Section 4 demonstrates the impact of application task mapping

and architecture allocation on the reliability of decoders. Finally, Section 6 concludes the paper.

2. System Model

In this section, MPEG-2 video decoder-based application model and MPSoC architectures

employing the decoder cores (with AMBA and NoC on-chip communication) are described. Also,

the fault injection model used to evaluate reliability of the MPSoC decoders in the presence of soft

errors is explained.

2.1. Application Model: MPEG-2 Video Decoder

MPEG-2 video decoder constitues a major component of MPSoC applications and is chosen as

an application case study. Figure 1(a) shows block diagram of the MPEG-2 video decoder with

four processing cores used in this work. SystemC behavioural modelling is used to design the

decoder cores, while partitioning and allocation of application are performed arbitrarily to reflect

MPSoC. The variable length decoder (VLD) core decompresses the input bitstream and defines

the header sequence with different parameters and video sequence with coded video blocks. The

3

(a)
 (b)

Memory

(256 kbits)

Processing

Element (PE)

Memroy

Controller

Output

Input

busy_out

req_in

32

1

32

req_out

busy_in

1
1

1

variable length

decoder (VLD)

inv. scanner

and quantizer

(ISQ)

motion

compensator

(MC)

Inv. discrete

cosine

transformer

(IDCT)

1

2

4

3

Figure 1: (a) Block diagram of MPEG-2 video decoder with four processing cores, and (b) block diagram of the

processing core used in MPEG-2 video decoder

video sequence is then inverse scanned and quantized by the inverse scanner and quantizer (ISQ)

core, while part of the header sequence is sent to motion compensator (MC) core. The scanned

and quantized video blocks are transformed into time-domain picture-ready video blocks by the

inverse discrete cosine transformer (IDCT) core. Using these picture-ready video blocks MC core

forms inter- and intra-frame predictions and stores or displays the decoded frames (Figure 1(a)).

Figure 1(b) shows block diagram of a processing core used in Figure 1(a). Each core consists

of a processing element (PE) for computation and a private memory (of 256 kbits) interfaced by a

memory access controller. The memory size is chosen to give high availability for data processing

and storage within processing cores. The processing core also lays out 32-bit input and output

interfaces for transfer of data transaction units (DTUs: the unit of data transfer for an on-chip

communication architecture, e.g. 32-bit payload packets in NoC or 32-bit data bus in AMBA)

and handshake signals (busy in, busy out, request in and request out) for enabling communication

to/from the processing core (Figure 1(b)). MPEG-2 video decoder is capable of decoding video

bitstreams with different rates and sizes. Table 1 shows four video bitstreams1 with different

resolutions and sizes, which are used for comparisons in Section 3.

2.2. Shared-bus AMBA

Shared-bus AMBA employs a central multiplexor scheme, called a bus, which controls the access

and direction of on-chip communication. Using such scheme all masters (e.g. processing elements)

in an MPSoC are required to be granted mutually exclusive access to the bus by an arbiter to

1Source: ftp://ftp.tek.com/tv/test/streams/Element/

4

Video Frames Bitrate Frame Size (pixels)

test1.m2v (tennis) 67 4 Mbps 176x120 (QCIF,NTSC)

test2.m2v (flower) 55 5.2 Mbps 352x288 (CIF,PAL)

test3.m2v (tennis) 49 7 Mbps 352x576 (2CIF,PAL)

test4.m2v (flower) 43 7 Mbps 704x480 (4CIF,NTSC)

Table 1: Video bitstreams used for comparisons in this work

be able to initiate data transfer. The slaves (e.g. memory), selected by a central decoder, cannot

initiate any data transfer but can serve requested services (read or write) from master. Depending

on performance and connectivity of masters or slaves, different bus architectures are defined within

AMBA specification [17]. Advanced high-performance bus (AHB) is used as shared-bus AMBA

in this work due to its high performance [4]. A single-layer central multiplexor configuration with

A

r
b

i
t
e

r

D

e

c
o

d

e

r

VLD

PE

M

a

s
t

e
r

S

l
a

v
e

Private

Memory

ISQ

PE

M

a

s
t

e
r

S

l
a

v
e

Private

Memory

MC

PE

M

a

s
t

e
r

S

l
a

v
e

Private

Memory

IDCT

PE

M

a

s
t

e
r

S

l
a

v
e

Private

Memory

AHB

Figure 2: Shared-bus AMBA-based decoder used in this work

pipelined single-burst transfer and no waiting states are used to maximize throughput. MPEG-2

video decoder cores (Figure 1(b)) are configured by using the 32-bit input port as slave port (for

memory interface) and 32-bit output port as master port (for PE interface) as shown in Figure 2.

As a result each core can process data from internal memory and initiate write operation through its

master interface when access to bus is available and write data to slave interface that is connected

to the next communicating core. The cores share bus access in the sequence of cores VLD, ISQ and

IDCT (Figure 2) with each core holding the interconnect access until the current macroblock (the

basic unit in video decoding with 16 × 16 pixels of a video frame) is processed and stored in the

memory of the next core. To facilitate AMBA-based cycle-accurate simulations, we use Synposys

5

Designware SystemC libraries2.

2.3. Network-on-Chip

Network-on-Chip (NoC) incorporates packet-based on-chip communication with links laid out

in different directions, while packet routing and communication is controlled by a switch. NoC

gives large design space with different routing techniques, switch architectures and network topolo-

gies [10]. In this work, we use a mesh-based NoC topology with deterministic XY routing and

single-flit-packet wormhole communication due to simplicity of switch design, performance and

scalability [18]. The impact of using different routing algorithms in switch is investigated in Sec-

S

VLD

S

MC

S

ISQ

S

IDCT

N
I
 N
I

N
I

N
I

S
 Switch

NI
 Network Interface

Inbound/Outbound Link

(a)

Tile

(b)

Virtual ch.

Southbound

W

 e
 s
 t
b
 o
 u
 n
 d

router

Northbound

E

a

s
t

b

o

u
n

d

N
I

Figure 3: (a) Mesh-based (2×2) NoC employing MPEG-2 decoder cores, (b) 5-port NoC switch used in this work

tion 3. Figure 3(a) shows block diagram of a (2×2) NoC-based MPEG-2 decoder architecture

with shortest path floor mapping between connecting cores. As can be seen, NoC architecture is

made up of basic networking unit, called a tile, consisting of a processing core for computation,

switch for communication and network interface (NI) for packets-based interface. Each packet in

NoC-based communication contains 32-bit data payload and 46-bit headers as shown in Table 2.

As can be seen the packet header consists of packet ID, source and destination ID, routing and

virtual channel information and credit signals. The payload contains the actual computation data.

For such packet structure the size of each NoC packet is (32+46)=78 bits.

Figure 3(b) shows a block diagram of switch architecture used in the NoC architecture (Fig-

ure 3(a)) with five inbound and outbound ports. Four ports connect with other switches with

2www.synopsys.com/Tools/SLD/VirtualPlatforms/Pages/SLLibrary.aspx

6

Type Size, bits

Packet/Flit ID 20

Packet/Flit type 2

Routing type 4

Routing header 8

Source ID 4

Destination ID 4

Virtual channel ID 4

Packet/Flit payload 32

Table 2: NoC packet overheads for single-flit-packet wormhole routing

buffer for eight packets on channels and one port is laid out between PE and NI with buffer for

four packets. Virtual channel (VC) provides buffering for eight incoming packets and router selects

output port based on routing technique used (Figure 3(b)). The size of different buffers are chosen

to give high bandwidth and less congestion on communication ports and channel. The MPEG-2

decoder cores (Figure 1(b)) are configured by connecting the 32-bit input port with network inter-

face (NI) data input port and 32-bit output port with the NI data output port. To facilitate NoC

simulations, we use SystemC-based cycle-accurate simulator NIRGAM [19].

2.4. Fault Injection Model

In this work, fault injection is carried out using SEU-based fault model employing the technique

proposed in [20]. The injection of SEUs using this simulator is initiated through replacement of

variable or signal types in the original design specification to equivalent fault injection enabler

types. To demonstrate how such type replacements are made Figure 4(a) shows part of the origi-

nal SystemC description of IDCT processing core, while Figure 4(b) shows the modified SystemC

description with fault injection enabler types. As can be seen, the fault injection enabler types

are incorporated into the design description through inclusion of header file FIReg.h. The original

int , short and sc int types (Figure 4(a)) are replaced by equivalent Reg<short>, Reg<short> and

RegInt<..> types Figure 4(b). Such type replacement (Figure 4(b)) enables the formation of a fault

locations database, which contains the target registers for SEU injection. The simulator injects

SEUs based on the specified soft error rates and probability distribution to identify fault locations

within the fault locations database. Figure 5 shows the fault injection setup employing the fault

injection simulator used for the MPEG-2 decoder with four processing cores (Figure 1). Using type

7

..

//Other header files

//global variables/constants

..

int x0, x1, x2, x4, x5;

short *blk;

..

x0 = (blk[0]<<11) + 128;

..

sc_int<4> row, column;

..

if(row == 0){..}

..

#include
"fim/FIReg.h"

//Other header files

//global variables/constants

..

Reg<int>
 x0, x1, x2, x4, x5;

Reg<short>
 *blk;

..

x0 = (blk[0]<<11) + 128;

..

RegInt<4>
 row, column;

..

if(row == 0){..}

..

(a)
 (b)

Figure 4: Example usage of fault injection enabler types to initiate fault injection

replacements for variable/signal in the original design specification, the simulator enables formation

of five fault locations databases: one for each of the four processing cores and a centralized fault

locations database for the interconnects. For a given soft error rate (SER, in number of SEUs per

bit per cycle), the number of SEUs to be injected within each fault locations database is found and

their locations are determined by Poisson distribution. The system clock is connected to the fault

injection simulator to enable timing information for fault injection (Figure 5). Using simulation-

specific monitor modules, total register usage and number of faults injected can be found. More

details regarding fault injection can be found in [20].

3. Comparative Reliability Analysis

Reliability of an application against SEUs is related to the total number of SEUs experienced

over a given time [21]. Our aim in this work is to analyze how the reliability of MPEG-2 video

decoder is affected by the choice of on-chip communication architectures: AMBA and NoC. To this

end, the following investigations are carried out:

• evaluate the number of SEUs experienced during computation, Fcomp, to show how MPEG-2

decoder computation is affected,

• evaluate the number of SEUs experienced during communication, Fcomm, in the MPEG-2

decoder to show how on-chip communication is affected, and

• evaluate the impact of total SEUs experienced, F = Fcomp + Fcomm, at application-level to

demonstrate how decoder reliability is affected.

8

SER

Core

VLD

with fault injection

enabler types

SER

S

y

s
t

e
m

C

F

a
u

l
t

I

n

j
e

c
t

i
o

n

S

I
m

u

l
a

t
o

r

I
n

t
e

r
c

o

n

n

e
c

t

with fault injection

enabler types

SYSTEM CLOCK

Fault

locations

database-1

Inject faults

Fault

locations

database-5
 Inject faults

with fault injection

enabler types

with fault injection

enabler types

with fault injection

enabler types

Core

ISQ

Core

IDCT

Core

MC

SER

Fault

locations

database-1

Inject faults

SER

Fault

locations

database-1

Inject faults

SER

Fault

locations

database-1

Inject faults

Figure 5: Fault injection setup for processing cores of an MPSoC

In the following (Sections 3.1 and 3.2), Fcomp and Fcomm of AMBA- and NoC-based decoders are

evaluated and compared. Later (in Section 3.3), the impact of F is evaluated at application-level.

3.1. SEUs Experienced During Computation

The SEUs affect computation of a processing core through perturbation of the registers. Fig-

ure 6 shows how SEUs manifest themselves in registers of the processing cores during computation.

As can be seen, SEUs extending between two IDLE cycles (instance 3) do not affect computation

BUSY CYCLE - processing / computation in PE
 IDLE CYCLE - no processing in PE

IDLE
 BUSY
 BUSY
 BUSY
 IDLE
 IDLE

SEU

IDLE

SEU
 SEU

BUSY

SEU

1

IDLE

2
 3
 4

Figure 6: Manifestation of SEUs during computation cycles of a processing core

process as no computation takes place in these cycles. On the other hand, SEUs that are injected

between BUSY cycles (instance 2) or between BUSY and IDLE cycles (instances 1 and 4) are likely

to affect computation process. Hence, for a given soft error rate (SER), the effective number of

9

SEUs experienced during computation (Fcomp) can be given as the number of SEUs experienced

by the computation cycles (in instances 1, 2 and 4) during execution of a processing core. The

Fcomp of an MPSoC decoder with C processing cores can be given as

Fcomp =

C
∑

i=1

(

Ti − T I−I
i

)

Riλ , (1)

where λ is the SER (in SEUs per bit per cycle), Ti is the execution time (in clock cycles), T I−I
i

is the number of idle-to-idle transitions within Ti (in clock cycles) and Ri is the register usage (in

bits per cycle), all for i-th processing core. The Ri gives a measure of per core register usage by

the application, since SEUs in other registers have no impact [21]. The Ri is given by [20] as

Ri =
1

Ti

Ti
∑

t=1

Ri,t . (2)

where Ri,t is the instantaneous number of registers (in bits) used by MPEG computation process

at t-th clock cycle in i-th processing core. Table 3 shows execution time, Ti, idle-idle transition

cycles, T I−I
i , and register usage, Ri, of each processing core in AMBA- (Figure 2) and NoC-based

decoders (Figure 3(a)) for decoding different video bitstreams (Table 1). The execution times (Ti

and T I−I
i) and the register usage (Ri) of AMBA and NoC-based decoder cores VLD, ISQ, IDCT

and MC are shown in columns 3-6 (Table 3). The Ti and T I−I
i values of AMBA- and NoC-based

decoders are obtained from SystemC cycle-accurate simulations (Sections 2.2 and 2.3) and Ri

values are found through SystemC fault simulations (Section 2.4). As can be seen, AMBA-based

decoder has similar register usage, Ri, as NoC for all four cores while decoding test1.m2v due to

same processing cores between the two decoders (row 2, columns 3-6). However, as the registers

in AMBA-based decoder are also used over idle period during bus arbitration, it has up to 7%

lower register usage (given by (2)) than NoC-based decoder. Due to shared-bus access among

decoder cores, AMBA-based decoder has up to 2.18 times higher execution time for core MC

compared to NoC-based decoder while decoding test1.m2v. Such time sharing of bus access also

causes more idle-idle transition cycles (T I−I
i) in AMBA-based decoder, resulting in up to 6.9 times

higher T I−I
i compared to NoC-based decoder for core MC (row 2, column 6). With increased video

sizes in other video bitstreams (test2.m2v, test3.m2v and test4.m2v), Ti and T I−I
i values increase

but similar trend continues between AMBA- and NoC-based decoders for Ri, Ti and T I−I
i values.

Higher Ti results in higher number of SEUs experienced during computation (Fcomp) in AMBA-

based decoder compared to NoC-based decoder for decoding video different bitstreams (Table 1),

10

Video Arch.
Core VLD Core ISQ Core IDCT Core MC

Ti,
cyc.
(x106)

T
I−I
i ,

cyc.
(x106)

Ri,

kb/c.

Ti,
cyc.
(x106)

T
I−I
i ,

cyc.
(x106)

Ri,

kb/c.

Ti,
cyc.
(x106)

T
I−I
i ,

cyc.
(x106)

Ri,

kb/c.

Ti,
cyc.
(x106)

T
I−I
i ,

cyc.
(x106)

Ri,

kb/c.

test1.m2v
NoC 6.43 0.42 23.0 3.78 0.41 19.3 6.37 0.05 19.4 6.69 0.23 25.2

AMBA 13.4 2.4 22.5 7.48 1.9 19.0 13.7 1.4 19.1 14.6 1.6 24.7

test2.m2v
NoC 18.7 1.2 23.1 14.2 1.6 19.3 18.5 0.14 20.2 19.4 0.68 25.3

AMBA 39.6 7.5 22.7 28.6 7.3 19.0 40.4 4.3 19.7 42.6 5.1 24.7

test3.m2v
NoC 32.3 2.2 23.4 25.0 3.0 19.4 32.0 0.25 20.5 33.6 1.2 25.5

AMBA 69.8 14.0 22.7 51.4 13.0 19.0 70.2 7.5 19.8 74.0 9.2 24.8

test4.m2v
NoC 35.5 2.5 23.9 26.6 3.2 19.5 35.3 0.29 20.7 36.9 1.3 25.7

AMBA 78.1 16.0 23.3 55.3 14.0 19.0 79.3 8.5 19.9 81.7 11.0 25.0

Table 3: Execution times, Ti, idle-idle transition times, T
I−I
i , and average register usages, Ri, of processing cores in

AMBA- and NoC-based decoders

as shown in Figure 7. The Fcomp values are found from simulations using an arbitrary SER of 10−9

SEUs/bit/cycle in simulated fault injection environment (Section 2.4). The approximate Fcomp

values can also be validated through (1) with Ti, T I−I
i and Ri values from Table 3. As expected, the

0E+0

2E+3

4E+3

6E+3

test1.m2v
 test2.m2v
 test3.m2v
 test4.m2v

T
o

ta
l S

E
U

s
ex

p
er

ie
n

ce
d

NoC

AMBA

Figure 7: Comparative Fcomp in AMBA- and NoC-based decoders for an SER of 10−9

AMBA-based decoder experiences approximately 83% higher Fcomp on average compared to NoC

for decoding different video bitstreams. As a result of higher Fcomp, MPEG-2 decoder computation

is expected to be affected more in AMBA-based decoder than NoC-based decoder. In Section 3.3

the impact of SEUs experienced is examined at application-level.

11

3.2. SEUs Experienced During Communication

An important aspect in the reliability of on-chip communication architectures is the number

of SEUs experienced during inter-core data communication as these SEUs perturb the registers

in the interconnects and affect the data transfer [22]. The number of SEUs experienced during

communication, Fcomm, depends on how the DTUs are transferred between communicating cores

in an on-chip communication architecture. For a given SER (in SEUs per bit per cycle), the

total Fcomm of an on-chip communication architecture can be given by the product of per data

transaction unit (DTU: packet for NoC and 32-bit data for AMBA) communication time, total

number of DTUs transferred among cores, the register usage of the communication components

and the SER. Hence Fcomm can be expressed as

Fcomm =
M
∑

j=1

NjLchj
Rcomj

λ , (3)

where M is the number of inter-core communication links in the decoder (M = 4, Figure 1(a)),

Nj is the total number of DTUs between cores, Lchj
is the channel latency (in clock cycles) and

Rcomj
is the average register usage in communication components during transfer of DTUs on j-th

link. The channel latency, Lchj
in (3) gives a measure of communication time of DTUs within the

on-chip communication architecture and is given by the time (in cycles) required for a DTU to be

transferred from the output port of a processing core to an input port of target processing core.

The for a given link, Lch can be expressed as

Lch =
1

N

N
∑

n=1

[

τS
c−in(n) + τS−D

in−in(n) + τD
in−c(n)

]

, (4)

where τS
c−in(n) is the time elapsed for DTU to travel from source output port to source interconnect

port, τS−D
in−in(n) is the time elapsed for DTU to travel from source interconnect port to destination

interconnect port and τD
in−c(n) is the time elapsed for DTU to travel from destination interconnect

port to the destination core memory, all for n-th DTU out of total N DTUs. For AMBA, τS
c−in(n) =

1 clock cycle after bus access is granted and locked. During τS−D
in−in(n) = 1 clock cycle the arbiter in

AMBA does the necessary routing of the data and notifies the slave port. Due to direct memory

interface, τDin−c
(n) = 0 clock cycle. With these delays the minimum channel latency (without

waiting states) per DTU for AMBA is Lch = 2 clock cycles found through (4). Due to symmetric

nature of NoC channels, τD
c−in(n) = τS

in−c(n) = 3 clock cycles involving intermediate NI packetizing

12

and de-packetizing (Figure 3(a)). The delay, τS−D
in−in(n), in (4) involves communication over an array

of switches for each DTU (packet with 32-bit payload) and depends on the number of intermediate

switches travelled. The τS−D
in−in(n) in (4) can be given as

τS−D
in−in(n) =

K−1
∑

k=1

[τ s
ic−r(n) + τ s

r (n) + τ s
r−oc(n) + τ

k−(k+1)
oc−ic (n)]. (5)

Equation (5) is a result of multi-hop NoC packet communication through K intermediate switches

and involves the following delays. The time required for the n-th packet to travel from input

channel to the router of the k-th switch, τk
ic−r(n), is 1 clock cycle for the NoC switch design

(Figure 3(b)). Also, the time required for routing decision on the k-th switch for n-th packet,

τk
r (n), is 1 clock cycle. The n-th packet travels from router to the output channel of the k-th

switch immediately in the NoC implementation and hence τk
r−oc(n) = 0 clock cycle. Finally, the

time required for the n-th packet to travel from output channel of k-th switch to input channel

of the (k + 1)-th switch, τ
k−(k+1)
oc−ic (n), is 1 clock cycle. Using (4) and (5), NoC has a minimum

channel latency (Lch) of 9 clock cycles (with K = 2 for shortest path mapping and XY routing,

Figure 3(a)) compared to only 2 clock cycles in AMBA (Figure 2). Note that Lch for NoC varies

for different floor mapping of processing cores on NoC tiles. This is because floor mapping affects

the number of intermediate switches travelled due to placement of cores on NoC tiles [23]. For

example, Lch increases to 15 and 20 clock cycles for floor mapping with 3 and 4 intermediate

switches (3 intermediate switches correspond to one interleaved core between communicating cores

and 4 intermediates switches mean two interleaved core between connecting cores), respectively.

Similarly, packet routing affects the channel latency since different communication paths result in

varied number of intermediate switches (in (5)) travelled [24].

The average register usage of communication components during transfer of a DTU, Rcomj

in (3), sets up another difference between AMBA- and NoC-based decoders. The Rcomj
can be

given by dividing the total register usage during inter-core transfer of DTUs by the number of

DTUs, i.e.

Rcomj
=

1
(

Lchj
Nj

)

Nj
∑

n=1

Lchj
∑

l=1

Rn,l , (6)

where Rn,l is the instantaneous register usage on j-th link during inter-core communication of

n-th DTU at l-th clock cycle (l=1:Lchj
). For NoC-based decoder, Rn,l in (6) includes registers

13

used in packet overheads and buffers in NI interfaces, channels, VCs, and routers as packet is

communicated between cores. For AMBA-based decoder, Rn,l includes the registers used in address

(HADDR), control signals (RD and WR), decoder and arbiter as DTU is communicated between

cores. Using (6), Rcomj
in NoC-based decoder (Figure 3(a)) obtained from simulation logs is

approximately 212 bits per data transfer cycle (for using XY packet routing) and that in AMBA-

based decoder is approximately 87 bits per transfer cycle. The higher Rcomj
of NoC is expected

as NoC incorporates packet based multi-hop routing and buffering with complex switch structure.

Note that Rcomj
of NoC is dependent on the packet routing algorithm as underlying routing

algorithm determines the switch design complexity and the associated the register usage [24]. For

example, using source-based routing algorithm gives Rcomj
value of 187 bits per cycle, while using

odd-even routing algorithm results in Rcomj
value of 273 bits per cycle as opposed to 212 bits per

cycle for XY routing.

Video N1

(VLD→MC),
×103

N2

(VLD→ISQ),
×103

N3

(ISQ→IDCT),
×103

N4

(IDCT→MC),
×103

test1.m2v 66 78 108 202

test2.m2v 232 273 364 666

test3.m2v 385 454 605 1111

test4.m2v 1598 1884 2503 4580

Table 4: Inter-core data transaction units (DTUs) for decoding different video bitstreams

0.1

1

10

100

test1.m2v
 test2.m2v
 test3.m2v
 test4.m2v

T
o

ta
l S

E
U

s
ex

p
er

ie
n

ce
d

AMBA link
 NoC link (2 int. sw.)

NoC link (3 int. sw.)
 NoC link (4 int. sw.)

Figure 8: Comparative Fcomm in AMBA and NoC links

Table 4 shows the number of DTUs, Ni (N1 for VLD-MC link, N2 for VLD-ISQ link, N3 for

14

ISQ-IDCT link, and N4 for IDCT-MC link, Figure 1(a)), recorded from simulation logs. Note that

N values do not change between AMBA- and NoC-based decoders for a given video bitstream due

to similar architecture for processing cores (Figure 1(a)). For decoding a given video bitstream,

N is the least from core VLD to core ISQ. As the video decoding progresses with other cores, N

between cores increases due to decompression of the original video bitstream. For example, only

N=66 × 103 DTUs are transferred from core VLD to core ISQ, while N=202 × 103 DTUs are

transferred from core IDCT to core MC for decoding test1.m2v (row 2, Table 4). For increased

video sizes, N also increases for a given link. For example, 108 × 103 DTUs are transferred from

core ISQ to core IDCT for decoding test1.m2v compared to 364 × 103 DTUs on the same link

for decoding test2.m2v (column 4, Table 4). Figure 8 shows comparative Fcomm of AMBA- and

NoC-based decoders obtained from simulation logs for an arbitrary SER of 10−9, while decoding

different video bitstreams (Table 1). Approximate Fcomm values of the decoders can be found

by (3) using Ni, Rcommj
and Lch values discussed above. To demonstrate the impact of floor

mapping, Fcomm values of three different NoC configurations are shown with 2, 3 or 4 intermediate

switches between cores. As expected, due to higher register usage (Rcomj
) and channel latency

(Lch), NoC-based decoder links with 2 intermediate switches (Figure 3(a)) suffer from 11 times

higher Fcomm compared to AMBA, which worsens to 18 and 24 times higher Fcomm as number

of intermediate switches increase to 3 and 4, while decoding test1.m2v (Figure 8). Similar trends

between AMBA- and NoC-based decoders in terms of Fcomm are also observed with other video

bitstreams (Figure 8).

To demonstrate the impact of choice of NoC packet routing algorithms on the Fcomm, Figure 9

shows the Fcomm values for different packet routing algorithms: source-based, XY and odd-even

routing algorithm implemented on NIRGAM [19]. The Fcomm values are found with SER of 10−9,

while decoding the video bitstream test4.m2v (Table 1). The approximate values of Fcomm can

be found through (3) using the Lch and Rcomj
values of AMBA- and NoC-based decoders. As

can be seen, using source-based packet routing in NoC switches gives the least SEUs experienced

during communication (Fcomm), while odd-even routing algorithm gives the highest Fcomm. This is

because, due to source initiated routing information inserted in the packets, source-based routing

gives the least register usage of 187 bits per cycle and simpler switch design. On the other hand,

odd-even routing implements adaptive strategy of packet routing with a control mechanism to

15

10

20

30

40

50

60

70

NoC with 2 int.

switches

NoC with 3 int.

switches

NoC with 4 int.

switches

N
u

m
b

er
 o

f
S

E
U

s
E

xp
er

ie
n

ce
d

Source-based Routing

XY Routing

Odd-Even Routing

Figure 9: Impact of choice of routing algorithm on Fcomm in NoC interconnects, while decoding test4.m2v

avoid deadlock and intermediate packet buffering, resulting in complex switch design [24] and

higher register usage of 273 bits per cycle. The XY routing has lower register usage (212 bits

per cycle) than odd-even due to its deterministic nature of choice of routing directions [25]. As

expected, as more number of switches are travelled by NoC packets using these routing algorithms,

the Fcomm values also increase linearly.

Comparing between Fcomm (Figure 7) and Fcomp values (Figure 8) of AMBA- and NoC-based

decoders while decoding a given video bitstream, it can be seen that Fcomm≪Fcomp. Nevertheless,

Fcomm affects the reliability on-chip communication as it leads to faults resulting in misrouting or

loss of DTUs [22]. The loss of DTUs or misrouting causes the decoding process to be terminated

or skip a number of video blocks or frames while decoding [26]. Next, the impact of overall SEUs

experienced (F) is evaluated at application-level.

3.3. Impact of SEUs at Application-Level

In Sections 3.1 and 3.2, the reliability of AMBA- and NoC-based decoders were investigated in

terms of the SEUs experienced during computation (Fcomp) and communication (Fcomm). With

the Fcomp and Fcomm values from (1) and (3), the total number of SEUs experienced, F , is given

as

F = Fcomp + Fcomm ,

=

[

C
∑

i=1

(

Ti − T I−I
i

)

Riλ

]

+





M
∑

j=1

NjLchj
Rcomj

λ



 . (7)

16

In this section, the impact of injected SEUs, F , given by (7), is evaluated at application-level. Such

evaluation has also been used in [21] showing that the faults at architectural-level do not always

lead to faults at application-level enabling low-cost fault tolerance mechanisms. We evaluate the

impact of F on decoder reliability using peak signal-to-noise ratio (PSNR) metric (as also used

by [21]). PSNR is defined as

PSNR = 10 log10

1

PQ

P
∑

p=1

Q
∑

q=1

2552

(xp,q − yp,q)
2 , (8)

where P is the number of frames, each with Q pixels, xp,q and yp,q are the q-th pixels in p-th reference

and decoded frames. Note that in the presence of SEUs, PSNR (given by (8)) is degraded due

to alterations in computation registers containing yp,q values. As a result, the SEUs experienced

during computation (Fcomp) has a direct impact on the PSNR. However, due to normalization with

decoded frames and pixels PSNR does not reflect temporal fidelity in the event of loss of frames [26].

To evaluate fidelity in the event of frame losses, we use frame error ratio (FER) metric, defined as

FER =
x

P
, (9)

where x is the number of lost frames out of P frames. Frame losses during video decoding take

place mostly due to misrouting of DTUs between communicating cores. Hence, SEUs experienced

during communication (Fcomm) have a direct impact on the FER [26]. The SEUs experienced

during computation (Fcomp) has a direct impact on PSNR but an indirect impact on FER as

computation of video parameters are affected by Fcomp.

Figure 10(a) and (b) show the PSNR (in dB) and FER (in %) values of decoded video frames

found through (8) and (9), while decoding video bitstream test4.m2v in AMBA- and NoC-based

decoders. The PSNR and FER values of NoC-based decoder are observed for three different NoC

configurations: with 2, 3 and 4 intermediate switches between communicating cores. An arbitrary

SER of 10−9 SEUs per bit per cycle is used in simulated fault injection environment (Section 2.4).

As expected, NoC-based decoder outperforms AMBA-based decoder with up to 4dB higher PSNR

(Figure 10(a)). This is because NoC-based decoder experiences lower Fcomp than AMBA-based

decoder (Section 3.1). However, since PSNR does not reflect the fidelity of video blocks due

to perturbation of registers by Fcomm (and also since the number of intermediate switches does

not affect Fcomp, given by (1)), NoC-based decoder shows similar PSNRs for all configurations.

Comparing the FER values in Figure 10, it can be seen that AMBA-based decoder gives 3% lower

17

0

2

4

6

8

10

12

AMBA
 NoC - 2 int.

sw.

NoC - 3 int.

sw.

NoC - 4 int.

sw.

F
ra

m
e

E
rr

o
r

R
at

e
(

in
 %

)

88

89

90

91

92

93

94

95

AMBA
 NoC - 2 int.

sw.

NoC - 3 int.

sw.

NoC - 4 int.

sw.

P
ea

k
S

ig
n

al
-t

o
-N

o
is

e
R

at
io

 (
d

B
)

(a)
 (b)

Figure 10: Comparative (a) PSNRs and (b) FERs of AMBA- (Figure 2) and NoC-based decoders (Figure 3(a)) while

decoding test4.m2v

FER compared to NoC-based decoder configuration with 2 intermediate switches due to higher

number of SEUs experienced during communication, Fcomm (Section 3.2). As expected, with

increased number of intermediate switches, NoC-based decoder experiences higher FER due to

increased Fcomm given by (3) (Section 3.2). For example, FER of NoC-based decoder increases

to from 6.5% to 9.5% and 11% as number of intermediate switches increases from 2 to 3 and 4

(Figure 10).

5

6

7

8

9

10

11

12

13

NoC with 2 int.

switches

NoC with 3 int.

switches

NoC with 4 int.

switches

F
ra

m
e

E
rr

o
r

R
at

io
 (

in
 %

)
 Source-based Routing

XY Routing

Odd-Even Routing

Figure 11: Impact of choice of routing algorithm on the FER of NoC-based decoder, while decoding test4.m2v

The FER values of NoC-based decoder in Figure 10(b) are obtained using XY packet routing

algorithm. Figure 11 demonstrates the impact of choice of routing algorithm on the FER of the

NoC-based decoder (Figure 3(a)), while decoding the video bitstream test4.m2v (Table 1). Three

different packet routing algorithms are used: source-based, XY and odd-even. FER values are

18

obtained through (9) from decoded video frames in SystemC fault injection environment with

an SER of 10−9. As expected, using the source-based packet routing algorithm gives the lowest

FER among the routing algorithms due to the lowest Fcomm in NoC-based decoder (Section 3.2).

Employing XY or odd-even routing algorithm gives higher FER in the decoder due to the higher

Fcomm (Section 3.2). It can be seen that with increasing number of intermediate switches between

communicating cores, the FER of the NoC-based decoder increases almost linearly due to increased

Fcomm, given by (3).

4. Impact of Application Task Mapping and Architecture Allocation

The impact of application task mapping and architecture allocation on system performance in

the context of HW/SW co-design has been studied extensively [27]. In this section, the impact of

application task mapping and architecture allocation on the reliability of on-chip communication

architectures is investigated.

Decode

Header

Sequences

Decode

Frame/Slice

Headers

Decode

Macroblock

Sequences

Run-length

Decode Block

Data

Inverse Scan

Blocks

Inverse

Quantize

Blocks

Inverse

Discrete Cos.

By row

Inverse

Discrete Cos.

By column

Motion

Compens.

Blocks

Add Blocks

Store/Display

Frame

1
 2

2

2
3

3

4
 4

2

4

4

t
1
(10)
 t
2
(15)
 t
3
(16)

t
6
(39)
 t
5
(25)
 t
4
(31)

t
7
(63)
 t
8
(61)
 t
9
(48)
 t
10
(41)

t
11
(21)

Figure 12: Task graph of MPEG-2 video decoder

4.1. Application Task Mapping

Application task mapping is a crucial design step of MPSoC applications, which involves distri-

bution of the computation and communication tasks among the processing cores and interconnects

of an MPSoC architecture. Figure 12 shows the MPEG-2 video decoder task graph showing eleven

tasks. Each node represents a computational task weighted by number in parenthesis, indicating

the cost in terms of execution time. The edge between nodes represents the communication task

shown with cost that describes the time required to transfer data between the tasks with shown

19

directions. All costs are multiples of 5.5 × 106 clock cycles and are obtained through SystemC

cycle-accurate simulations assuming 32-bit transfer width. The computational tasks are modelled

as separate task processes, while the communication between tasks is modelled as message passing

queues. The communication time between tasks is found by dividing the size of inter-task queue

by the bandwidth of the channel (in bits per cycle). The effect of mapping the tasks on process-

ing cores on communication costs is not modelled explicitly rather an worst-case approximation is

assumed. Similar assumptions have also been used in [28].

Mapping Core Mapped Tasks

M1 (Figure 1(a))

Core 1 t1, t2, t3, t4

Core 2 t5, t6

Core 3 t7, t8

Core 4 t9, t10, t11

M2 (optimized

for reduced

register usage)

Core 1 t1, t2, t3

Core 2 t4, t5

Core 3 t6, t7, t8, t9, t10

Core 4 t11

M3 (optimized

for parallelism)

Core 1 t1, t2, t3, t4, t9

Core 2 t5, t6, t7

Core 3 t8

Core 4 t10, t11

M4 (optimized for

reduced register

usage &

parallelism)

Core 1 t1, t2, t3, t4, t5, t6

Core 2 t7, t8

Core 3 t9

Core 4 t9, t10, t11

Table 5: Four application task mappings of MPSoC decoder using four processing cores (Figure 1)

Numerous mapping combinations are possible for decoder design using the task graph (Fig-

ure 12). Table 5 shows four different task mappings of the decoder with the mapped tasks on

each processing core. Mapping M1 (row 2) is the mapping employed in Figure 1(a), mapping

M2 (row 3) is optimized for reduced register usage, mapping M3 (row 4) is optimized for high

parallelism and finally, mapping M4 (row 5) is jointly optimized for reduced register usage and

high parallelism. The task mappings M2, M3 and M4 in Table 5 are found through simulated

annealing using group-migration based task movement proposed in [28]. As can be seen, mapping

M2 localizes most of the the tasks (for example, tasks t1-t8 are mapped in core 1) to achieve low

20

overall register usage (R =
∑

i Ri), while mapping M3 distributes the tasks among processing cores

to optimize for high parallelism. Mapping M4 achieves reduced register usage and high parallelism

by carefully distributing the tasks among cores (for example, related tasks t7 and t8, which share

IDCT parameters and video blocks between them, are mapped in core 2). Figure 13(a) and (b)

show the register usages (R) and multiprocessor execution times (TM) obtained from SystemC

cycle-accurate simulations for the AMBA- and NoC-based decoder designs with the tasks map-

pings (Table 5. As expected, mapping M2 gives the lowest R for AMBA- and NoC-based decoders

70

75

80

85

90

95

Mapping M1
 Mapping M2
 Mapping M3
 Mapping M4

R
eg

is
te

r
U

sa
g

e,
 k

b
it

s/
cy

c.

NoC Register Usage
 AMBA Register Usage

0

20

40

60

80

100

120

140

160

180

Mapping M1
 Mapping M2
 Mapping M3
 Mapping M4
M
P

S
o

C
 E

xe
cu

ti
o

n
 T

im
e,

 (
1e

6
cy

cl
es

)

NoC Execution Time
 AMBA Execution Time

(a)
 (b)

Figure 13: Impact of application task mapping on (b) register usage and (b) multiprocessor execution time of AMBA-

and NoC-based decoders, while decoding test4.m2v

due to optimization with reduced register usage (Figure 13(a)). However, low R in mapping M2

is obtained at the expense of the highest TM caused by localization of application tasks (Fig-

ure 13(b)). Mapping M3 gives the lowest TM due to high parallelism among the processing cores

for both decoders. Since such low TM is achieved through distribution of tasks among cores to give

higher parallelism, shared register resources among these tasks are duplicated in processing cores.

As a result, mapping M3 gives the highest R. Mapping M4 offers a good trade-off between R and

TM . It can be seen that AMBA-based decoder has lower R compared to NoC-based decoder due

to contention of registers over idle period during bus arbitration (Section 3.1). As expected, TM

is high for AMBA-based decoder due to shared-access of bus and hence lower concurrency among

processing cores [3] (Figure 13(b)).

To demonstrate the impact of application task mapping on reliability, Table 6 shows the SEUs

experienced during computation (Fcomp) and communication (Fcomm) of AMBA- and NoC-based

decoders (with 2 intermediate switches in NoC-based decoder), while decoding different video

bitstreams (Table 1). The Fcomp and Fcomm values are obtained through SystemC fault simulation

21

(Section 2.4) using an SER of 10−9. Mapping M2, M3 and M4 results are shown in column 3-5

(Table 6) and mapping M1 results are shown in Figure 7. As can be seen, mapping M2 experiences

Video Arch. Mapping M2 Mapping M3 Mapping M4

Fcomp Fcomm Fcomp Fcomm Fcomp Fcomm

test1.m2v NoC 5.21E+02 1 4.44E+02 1 4.12E+02 1

AMBA 9.71E+02 0 8.14E+02 0 7.43E+02 0

test1.m2v NoC 1.83E+03 3 1.51E+03 3 1.40E+03 3

AMBA 3.43E+03 0 2.76E+03 0 2.51E+03 0

test1.m2v NoC 3.15E+03 5 2.67E+03 5 2.50E+03 5

AMBA 5.84E+03 2 4.78E+03 2 4.45E+03 2

test1.m2v NoC 3.85E+04 23 3.76E+03 22 3.71E+03 23

AMBA 7.26E+04 3 6.97E+03 3 6.73E+03 3

Table 6: Impact of application task mapping on the reliability of AMBA- and NoC-based decoders in terms of Fcomp

and Fcomm

the highest Fcomp among all task mappings. For example, mapping M2 experiences 18% and

27% higher Fcomp compared to mappings M3 and M4, while decoding video bitstream test1.m2v.

Similar trend is also observed while decoding other video bitstreams (rows 3-5, Table 6). The

higher Fcomp in mapping M2 is due to reduced register usage (R) through localization of the tasks

on a processing core. Such localization causes high multiprocessor execution time (TM) and leads

to high Fcomp, given by (1). Mapping M3 also experiences higher Fcomp than mapping M4 due

to increased register usage (R) through duplication of shared registers. Due to joint optimization

with reduced register usage (R) and high parallelism, mapping M4 provides the lowest Fcomp. Note

that Fcomm does not vary for different task mappings as the total number of DTUs communicated

among processing cores, N =
∑

i Ni, does not vary significantly while decoding a given video

bitstream. Figure 14 shows the impact of F (given by (7)) at application-level in terms of PSNRs

and FERs of AMBA- and NoC-based decoders, while decoding test4.m2v. The PSNR and FER

values were obtained using (8) and (9) from the decoded videos using SER of 10−9 in SystemC

fault injection environment (Section 2.4). As expected, mapping M2 gives the lowest PSNR (79dB

and 85dB for AMBA- and NoC-based decoders) due to the highest Fcomp (Figure 14(a)). Due

to lower Fcomp, mapping M3 gives up to 7dB higher PSNR compared to mapping M2. Mapping

M4 gives the best PSNR (91dB for AMBA-based decoder and 95dB for NoC-based decoder) when

compared to the other three mappings due to the lowest Fcomp. From Figure 14(b) it can be seen

22

70

75

80

85

90

95

100

Mapping M1
 Mapping M2
 Mapping M3
 Mapping M4
P
ea

k
S

ig
n

al
-t

o
-N

o
is

e
R

at
io

 (
in

 d
B

)

PSNR - NoC
 PSNR - AMBA

0

1

2

3

4

5

6

7

8

Mapping M1
 Mapping M2
 Mapping M3
 Mapping M4

F
ra

m
e

E
rr

o
r

R
at

io
 (

in
 %

)

FER - NoC
 FER - AMBA

(a)
 (b)

Figure 14: Impact of task mapping on decoder reliability in terms of (a) PSNR and (b) FER, while decoding test4.m2v

that, despite similar Fcomp values for different mappings (Table 6), the FER is higher (7.5%) for

mapping M2 due to incorrect computation of video parameters with high Fcomm. With low Fcomm,

mapping M4 gives the least FER (6.2%) among all task mappings.

4.2. Architecture Allocation

Architecture allocation is a system-level design step for MPSoCs that deals with allocation of

processing elements and their interconnects into the architecture [29]. In this section, we refer

to architecture allocation as allocation of number of computation cores in the MPSoC decoder

(Figure 1). To investigate the impact of architecture allocation on reliability, different number

of allocated cores were simulated using mapping M4 (Section 4.1). Table 7 shows the number

of SEUs experienced during computation (Fcomp) and communication (Fcomm) by the AMBA-

and NoC-based decoders for architecture allocations of 2, 3 and 5 cores (simulation results for

architecture allocation of 4 cores are shown in Tables 3 and 4). The number of SEUs experienced

during computation (Fcomp) and the number of SEUs experienced during communication (Fcomm)

for architecture with 2 allocated cores is shown in column 3, while that of 3 and 5 allocated cores

are shown in columns 4 and 5 (Table 7). As expected, NoC-based decoder experiences less number

of SEUs during computation (Fcomp) than AMBA-based decoder, while AMBA-based decoder

experiences less SEUs during communication (Fcomm) for all architecture allocations (Sections 3.1

and 3.2). It can be seen that both AMBA- and NoC-based decoders experience higher Fcomp as

the number of allocated cores increases in the architectures. This is because with higher number

of allocated cores, the overall register usage (R =
∑

i Ri) increases due to duplication of shared

resources, resulting in higher Fcomp given by (1). Also, with increased architecture allocation

23

Video Arch. 2 Cores 3 Cores 5 Cores

Fcomp Fcomm Fcomp Fcomm Fcomp Fcomm

test1.m2v NoC 3.94E+2 1 4.44E+2 1 5.45E+2 1

AMBA 7.02E+2 0 7.97E+2 0 9.78E+2 0

test2.m2v NoC 1.20E+3 3 1.36E+3 4 1.66E+3 4

AMBA 2.16E+3 0 2.43E+3 0 2.93E+3 1

test3.m2v NoC 2.03E+3 5 2.34E+3 6 2.83E+3 8

AMBA 3.65E+3 1 4.28E+3 2 5.19E+3 3

test4.m2v NoC 3.06E+4 22 3.48E+3 25 4.21E+3 31

AMBA 5.51E+3 2 6.24E+3 3 7.44E+3 5

Table 7: Impact of architecture allocation on the reliability in terms of number of SEUs experienced

with more processing cores Fcomm increases as the number of inter-core communication links (M)

increases (due to (3)). For example, NoC-based decoder with 5 processing cores experiences up

to 20% higher Fcomp and 9% higher Fcomm than NoC-based decoder with 3 processing cores for

decoding test4.m2v.

To observe the impact of total number of SEUs experienced at application-level, Figure 15

shows the corresponding PSNRs and FERs of different architecture allocations of AMBA- and

NoC-based decoders for decoding test4.m2v. The PSNR and FER values were found at SER

of 10−9 while decoding the video bitstream test4.m2v in simulated fault injection environment

(Section 2.4). As can be seen, NoC-based decoder gives better PSNR for all architecture allocations

70

75

80

85

90

95

100

105

2 Cores
 3 Cores
 4 Cores
 5 Cores

Architecture Allocation

P
S

N
R

 (
in

 d
B

)

NoC

AMBA

0

2

4

6

8

10

2 Cores
 3 Cores
 4 Cores
 5 Cores

Architecture Allocation

F
ra

m
e

E
rr

o
r

R
at

io
 (

F
E

R
),

 %

NoC

AMBA

(a)
 (b)

Figure 15: (a) Comparative PSNRs of AMBA- and NoC-based decoders for different architecture allocations while

decoding test4.m2v, (b) Comparative FERs of AMBA- and NoC-based decoders for different architecture allocations

while decoding test4.m2v

24

(Figure 15(a)) due to lower number of SEUs experienced during computation, Fcomp (Section 3.1).

Due to increased Fcomp for increasing number of allocated cores, architecture with higher number of

cores give poorer PSNRs for AMBA- and NoC-based decoders. For example, PSNR decreases from

99dB for architecture with 2 cores to 84dB for architecture with 5 cores for AMBA-based decoder

(Figure 15(a)). As expected, decoder architecture with higher number of cores gives higher FER

due to increased Fcomm (Table 7). For example, FER increases from 2% for architecture with 2

cores to 4% in the case of NoC size 2×2 (4 cores) and 4.5% for architecture with 5 cores for AMBA-

based decoder (Figure 15(b)). Note that AMBA-based decoder gives lower FER when compared

with NoC-based decoder due to lower number of SEUs experienced during communication, Fcomm

(Section 3.2).

The comparative analysis carried out so far is based on architecture allocation of 2, 3, 4 and

5 cores. It was observed that architecture allocation affects the analysis parameters: per core ex-

ecution time (Ti), register usage (Ri) and inter-core communication links (N). As a result for

architecture allocation with higher number of allocated cores (for example 4×4 NoC size) the

SEUs experienced during computation (Fcomp, given by (1)) will increase for AMBA- and NoC-

based decoders. Due to higher execution times AMBA-based decoder will experience higher Fcomp

compared to NoC-based decoder. On the other hand the SEUs experienced during communication

(Fcomm, given by (3)) will increase for NoC-based decoder due to increased number of inter-core

links (N). Also, for NoC-based decoder choice of routing algorithm is expected to affect Fcomm

(Section 3.2). The impact of total SEUs experienced during computation and communication

(F = Fcomp + Fcomm) at application-level will be reflected as higher PSNR and FER for NoC-

based decoder compared to AMBA-based decoder as shown in Figures 15(a) and (b).

5. Summary of Comparisons

From the comparative analysis (Sections 3 and 4) the following observations are made:

1. For a given architecture allocation and soft error rate (SER) AMBA-based decoder experi-

ences higher number of SEUs during computation than NoC-based decoder. This is because

AMBA-based decoder has higher execution time than NoC-based decoder due to shared bus

access in AMBA (Section 3.1).

25

2. NoC-based decoder experiences higher SEUs during inter-core communication than AMBA-

based decoder. This is because NoC-based decoder has higher channel latency and register

usage in communication interconnects. The source-based routing with shortest path mapping

between cores (2 intermediate switches between cores) gives the minimum number of SEUs

experienced during communication in NoC-based decoder (Section 3.2).

3. Considering the impact of total number of SEUs experienced at application-level, NoC-based

decoder exhibits higher error resilience in terms of peak signal-to-noise ratio (PSNR) com-

pared to AMBA-based decoder. However, it suffers from higher frame error ratio (FER) due

to higher SEUs experienced during communication (Section 3.3).

4. For a given architecture allocation, application task mapping (the distribution of application

tasks among cores) affects the total number of SEUs experienced by AMBA- and NoC-based

decoders. To minimize the number of SEUs experienced careful choice of application task

mapping is needed (Section 4.1).

5. With increased number of allocated cores in architecture allocation of the decoders, the num-

ber of SEUs experienced during computation and communication increases for AMBA- and

NoC-based decoders (Section 4.2).

6. Conclusions

Using MPEG-2 video decoder as a case study in simulated fault injection environment, we have

presented a comparative reliability analysis between shared-bus AMBA and NoC. We have shown

that AMBA-based decoder experiences higher SEUs during computation than NoC-based decoder

due to higher execution time than NoC-based decoder (Section chap4:results:computation). We

have also shown that NoC-based decoder experiences higher SEUs during inter-core communication

than AMBA-based decoder due to higher channel latency and register usage in communication

interconnects (Section 3.2). Considering the impact of SEUs at application-level, we have shown

that NoC-based decoder is more error resilient (in terms of peak signal-to-noise ratio) compared to

AMBA-based decoder but it suffers from higher frame error ratio due to higher SEUs experienced

during communication (Section 3.3). Furthermore, we have investigated the impact of routing,

application task mapping and architecture allocation on the reliability of the decoders in the

presence of SEUs (Section 4). It is hoped that the findings in this work would contribute towards the

26

current research efforts in identifying appropriate on-chip communication architecture for emerging

multimedia applications.

References

[1] L. Benini, G.D. Micheli, Networks on Chips: A New SoC Paradigm, Computer 35 (1) (2002) 70–78.

[2] H. Lee, N. Chang, U. Ogras, R. Marculescu, On-chip Communication Architecture Exploration: A Quantitative

Evaluation of Point-to-point, Bus, and Network-on-chip Approaches, ACM Transactions on Design Automation

of Electronic Systems 12 (3) (2007) 1–20.

[3] R. Shafik, P. Rosinger, B. Al-Hashimi, MPEG-based Performance Comparison between Network-on-Chip and

AMBA MPSoC, in: Proceedings of Design and Diagnostics of Electronic Circuits and Systems (DDECS), 2008,

pp. 98–103.

[4] D. Flynn, AMBA: Enabling Reusable On-chip Design, IEEE Micro 17 (4) (1997) 20–27.

[5] W. J. Dally, B. Towles, Principles and Practices of Interconnection Networks, Morgan Kaufmann Publishers,

2004, San Francisco, CA, USA.

[6] K. Goossens, J. Dielissen, A. Radulescu, ÆTHEREAL Network on Chip: Concepts, Architectures, and Imple-

mentations, IEEE Design & Test of Computers 22 (5) (2005) 414– 421.

[7] M. Millberg, E. Nilsson, R. Thid, A. Jantsch, Guaranteed Bandwidth Using Looped Containers in Temporally

Disjoint Networks Within the NOSTRUM Network-on-Chip, in: Proceedings of Design, Automation and Testing

in Europe Conference (DATE), IEEE, 2004, pp. 890–895.

[8] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Schanz, D. Finan, P. Iyer, A. Singh, T. Jacob, S. Jairr,

S. Venkataramarr, Y. Hoskote, N. Borkar, An 80 Tile 1.28 TFLOPs Network-on-Chip in 65 nm CMOS, in:

Proceedings of International Solid State Circuit Conference (ISSCC), 2007, pp. 98-100.

[9] A. Ejlali, B. M. Al-Hashimi, P. Rosinger, S. G. Miremadi, Joint Consideration of Fault-Tolerance, Energy-

Efficiency and Performance in On-Chip Network, in: Proceedings of the Conference on Design, Automation and

Test in Europe (DATE), 2007, pp. 1647–1652.

[10] D. Park, C. Nicopoulos, J. Kim, N. Vijaykrishnan, C. R. Das, Exploring Fault-Tolerant Network-on-Chip

Architectures, in: International Conference on Dependable Systems and Networks (DSN), 2006, pp. 94–104.

[11] R. Melhem, D. Mosse, and E. Elnozahy. The interplay of power management and fault recovery in real-time

systems. IEEE Transactions on Computers, 53(2):217–231, February, 2004 2004.

[12] J. Kim, D. Park, C. Nicopoulos, N. Vijaykrishnan, C. R. Das, Design and Analysis of an NoC Architecture from

Performance, Reliability and Energy Perspective, in: Proceedings of the ACM Symposium on Architecture for

Networking and Communications Systems, 2005, pp. 173–182.

[13] R. R. Tamhankar, S. Murali, G. D. Micheli, Performance Driven Reliable Link Design for Networks on Chips,

in: Proceedings of the Conference on Asia South Pacific Design Automation, 2005, pp. 749–754.

[14] K. Mihic, T. Simunic, G.D. Micheli, Reliability and Power Management of Integrated Systems, in: Proceedings

of EUROMICRO Digital System Design (DSD), August, 2004, pp. 5–11.

27

[15] T. Dumitraş, S. Kerner, R. Mărculescu, Towards On-chip Fault-tolerant Communication, in: Proceedings of the

2003 Asia and South Pacific Design Automation Conference (ASPDAC), Kitakyushu, Japan, 2003, pp. 225–232.

[16] A. Hosseini, T. Ragheb, Y. Massoud, A Fault-aware Dynamic Routing Algorithm for On-chip Networks, in:

Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), Washington, USA, 2008, pp.

2653–2656.

[17] AMBA: Advanced Microprocessor Bus Architecture Specification, v2.0, 1999, http://www.arm.com.

[18] S. Kumar, A. Jantsch, M. Millberg, J. Oberg, J. Soininen, M. Forsell, K. Tiensyrja, A. Hemani, A Network on

Chip Architecture and Design Methodology, in: Proceedings of IEEE Computer Society Annual Symposium on

VLSI, 2002, p. 117.

[19] NIRGAM: A Dynamic SystemC Simulator for NoC, http://nirgam.ecs.soton.ac.uk.

[20] R. A. Shafik, P. Rosinger, B. M. Al-Hashimi, SystemC-based Minimum Intrusive Fault Injection Technique

with Improved Fault Representation, in: Proceedings of International On-Line Testing Symposium (IOLTS),

Rhodes, Greece, 2008, pp. 99–104.

[21] X. Li, D. Yeung, Exploiting Application-level Correctness for Low-Cost Fault Tolerance, Journal of Instruction-

level Parallelism 10 (2008) 1–28.

[22] A. Dalirsani, M. Hosseinabady, Z. Navabi, An Analytical Model for Reliability Evaluation of NoC Architectures,

in: IOLTS ’07: Proceedings of the 13th IEEE International On-Line Testing Symposium, IEEE Computer

Society, Washington, DC, USA, 2007, pp. 49–56.

[23] F. Angiolini, P. Meloni, S. M. Carta, L. Raffo, L. Benini, A Layout-aware Analysis of Networks-on-Chip and

Traditional Interconnects for MPSoCs, IEEE Transactions on Computer Aided Design of Integrated Circuits

and Systems 26 (3) (2007) 421–434.

[24] P. Pande, C. Grecu, M. Jones, A. Ivanov, R. Saleh, Performance Evaluation and Design Trade-offs for Network-

on-Chip Interconnect Architectures, Transactions on Computers 54 (8) (2005) 1025–1040.

[25] A. Jalabert, S. Murali, L. Benini, G. D. Micheli, xpipesCompiler: A Tool for Instantiating Application Specific

Networks on Chip, in: Proceedings of Design, Automation and Test in Europe Conference and Exhibition

(DATE’04), Vol. 2, 2004, pp. 884–889.

[26] P. Cherriman, L. Hanzo, Error-Rate-based Power-Controlled Multimode H.263-assisted Videotelephony, IEEE

Transactions on Vehicular Technology 48 (5) (1999) 1726–1738.

[27] A. Mohsen, R. Hofmann, Integrated Circuit and System Design: Power and Timing Modeling, Optimization

and Simulation, Vassilis Paliouras, Johan Vounckx, Diederik Verkest (Ed.s), Birkhuser, 2005, Ch. Power-Aware

Scheduling for Hard Real-Time Embedded Systems using Voltage Scaling Enabled Architectures, pp. 127–136.

[28] H. Orsilla, T. Kangas, E. Salminen, T. Hmlinen, M. Hnnikinen, Automated Memory-aware Application Dis-

tribution for Multi-processor System-on-Chips, Journal of Systems Architecture: the EUROMICRO Journal

53 (11) (2007) 795–815.

[29] M. T. Schmitz, B. M. Al-Hashimi, P. Eles, System-Level Design Techniques for Energy-Efficient Embedded

Systems, Kluwer Academic Publisher, 2004.

28

