
UNIVERSITY OF SOUTHAMPTON

Distance phrase reordering for MOSES

User Manual and Code Guide

by

Yizhao Ni, Mahesan Niranjan, Craig Saunders and Sandor

Szedmak

Technical Report

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

April 30, 2010

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

by Yizhao Ni, Mahesan Niranjan, Craig Saunders and Sandor Szedmak

We describe the implementation of a novel distance phrase reordering (DPR) model for
a public domain statistical machine translation (SMT) system - MOSES1. The model
mainly focuses on the application of machine learning (ML) techniques to a specific
problem in machine translation: learning the grammatical rules and content dependent
changes, which are simplified as phrase reorderings. This document serves two purposes:
a user manual for the functions of the DPR model and a code guide for developers.

1http://www.statmt.org/moses/

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
http://www.statmt.org/moses/

Contents

Acknowledgements vii

1 Introduction 1
1.1 Distance phrase reordering . 1
1.2 Copyright announcement . 1

2 User manual 3
2.1 Source code . 3
2.2 Compilation . 4
2.3 How to use . 4

2.3.1 Training a MOSES system . 4
2.3.2 Prerequisite . 4
2.3.3 Generating a parameter configuration file 5
2.3.4 Generating training samples for the DPR model 7
2.3.5 Training the DPR model and generating DPR probabilities 8
2.3.6 Integrating the DPR model into MOSES 8
2.3.7 Minimal error-rating training (MERT) 9
2.3.8 Decoding . 9

2.4 Trouble shooting . 10

3 Preliminary results 11

4 Code guide 13
4.1 The main processes . 16
4.2 Processing a sentence . 18
4.3 Constructing and processing a sample (phrase pair) pool 20
4.4 Constructing a DPR model . 25
4.5 Generating DPR probabilities . 28
4.6 The configuration process . 33
4.7 Other modifications on MOSES . 33

Bibliography 37

v

Acknowledgements

The work was supported by the PASCAL Network, School of Electronics and Com-
puter Science, University of Southampton, and the European Commission under the
IST Project SMART (FP6-033917). Moreover, particularly thanks are owing to As-
sistant Prof. Philipp Koehn and Dr. Hieu Hoang from University of Edinburgh, who
provided valuable suggestions during this circuitous process.

vii

Chapter 1

Introduction

1.1 Distance phrase reordering

The distance phrase reordering (DPR) model mainly focuses on the application of ma-
chine learning (ML) techniques to a specific problem in machine translation: learning
the grammatical rules and content dependent changes, which are simplified as phrase re-
orderings. It models the problem with a classification framework and aims at improving
the fluency of machine translation. Different from the lexicalized reordering model used
in MOSES (Koehn et al., 2005), this model considers the sentence context as well as
the relationships between phrase movements, by means of a newly emerging structured
learning paradigm. As observed by the authors, the DPR model works well on some
language pairs that contain many differences in word ordering (e.g. Chinese-to-English).

This document does not describe in depth the underlying framework and the readers
are referred to (Ni et al., 2009) for more details about the model.

1.2 Copyright announcement

Copyright (c) 2010, Yizhao Ni. All rights reserved.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CON-
TRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE

1

2 Chapter 1 Introduction

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CON-
SEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

• Redistributions of source code for commercial purposes should contact the copy-
right holder.

If you use this software in your scientific work, please cite the work (Ni et al., 2009).

Chapter 2

User manual

The purpose of this chapter is to offer a step-by-step example of downloading, com-
piling, and constructing a DPR model and its related integrating framework (i.e. the
MOSES decoder (Koehn et al., 2007) and the minimal error-rating training (MERT)
(Och, 2003)).

2.1 Source code

The DPR model is integrated into MOSES as a feature function. Therefore, you also
need a MOSES software package to run the program. A MOSES package including
the DPR model is available at the following location (the additional metadata named
DPR MOSES.zip):

http://eprints.ecs.soton.ac.uk/20939/

Alternatively, the source code is also available via Subversion from Sourceforge, by
executing the following commands

mkdir MOSES tools
svn co https://mosesdecoder.svn.sourceforge.net/svnroot/mosesdecoder

/branches/DPR_MOSES MOSES tools

This will copy all source code (MOSES with DPR) to your local machine (in the directory
/MOSES tools/).

3

http://eprints.ecs.soton.ac.uk/20939/
https://mosesdecoder.svn.sourceforge.net/svnroot/mosesdecoder
/branches/DPR_MOSES

4 Chapter 2 User manual

2.2 Compilation

To compile the MOSES system, the readers are referred to the MOSES user guide (Koehn
and Hoang, 2009). Note that the directory created in this report (i.e. /MOSES tools/)
is equivalent to the directory /tools/moses/ mentioned in (Koehn and Hoang, 2009)1.

To compile the DPR model, you need to go to the directory /MOSES tools/DPR model/
and execute the following command

./makeFile

If the program is compiled successfully, it will generate three executables

• smt mainProcess configuration

• smt mainProcess construct phraseDB

• smt mainProcess generatePhraseOption

2.3 How to use

The DPR package consists of two modules: a sample extraction module (smt mainProcess
construct phraseDB) and a DPR probability generation module (smt mainProcess generatePhraseOption).
The former is used to extract all samples (phrase pairs) for training a DPR model, while
the latter is then used to generate the DPR probabilities for different phrase pairs.

2.3.1 Training a MOSES system

Since the DPR model requires some outputs from MOSES, you need to train a MOSES
system before training a DPR model. The MOSES user guide will help you to complete
this step.

2.3.2 Prerequisite

The DPR model requires the following outputs from a MOSES system

• The source/target word-class dictionary. After training a MOSES system,
two files, named fr.vcb.classes and en.vcb.classes, are located in a local directory
/root directory/corpus/ 2. Alternatively, you can use mkcls to train more accurate

1Read the paragraph under Section “Get the Latest Moses Version” in (Koehn and Hoang, 2009).
2The root directory is the directory defined by the option -root-dir when training a MOSES system.

Chapter 2 User manual 5

word-class dictionaries (e.g. by increasing training rounds, using different number
of word classes, etc).

• The word alignment file. A file named aligned.grow-diag-final-and,which is in
the directory /root directory/model/.

• The phrase table generated by MOSES. A file named phrase-table.gz is lo-
cated in the directory /root directory/model/ and you need to unzip it before using
it. Alternatively, to facilitate the processing time of DPR it is highly recommended
to use a filtered phrase table. That is, use the MOSES script filter-model-given-
input.pl3 to filter the phrase table and use the filtered table instead.

2.3.3 Generating a parameter configuration file

To construct a DPR model, the first step is to generate a parameter configuration file
by calling

./smt mainProcess configuration myConfigurationFile

A file named myConfigurationFile will then be created, which contains all the informa-
tion needed for the rest of the process. You need to fill in all items listed below4:

General part:

1. SourceCorpusFile - the source corpus for the training (each line is a sentence).

2. TargetCorpusFile - the target corpus for the training (each line is a sentence).

3. SourceWordClassFile - the source word-class dictionary from MOSES or mkcls
(i.e. fr.vcb.classes).

4. TargetWordClassFile - the target word-class dictionary from MOSES or mkcls
(i.e. en.vcb.classes).

For extracting samples (phrase pairs) for the DPR model:

5. alignmentFile - the word alignment file generated by MOSES (e.g. aligned.grow-
diag-final-and).

6. (output) phraseTableFile - the file containing all samples (phrase pairs) for the
DPR model.

3See Part V “Filtering Test Data” in (Koehn and Hoang, 2009)
4Note that certain items have been assigned default values

6 Chapter 2 User manual

7. TestFileName - only source phrases appearing in this file will be extracted from
the training corpus and form the sample pool. In order to facilitate the training
process, it is highly recommended to define this file as the combination of the
develop and the test sets (i.e. a text that containing all source sentences from the
develop and the test sets).

For generating the DPR probabilities:

8. PhraseTranslationTable - the phrase table generated by MOSES (i.e. unzipped
phrase-table.gz). It is highly recommended to use the filtered phrase table.

9. maxTranslations - the maximum number of translations for a source phrase
(default 100).

10. tableFilterLabel - 0: the MOSES phrase table has not been filtered; 1 (default):
the MOSES phrase table has been filtered.

11. (output) weightMatrixFile - the filename of the DPR model.

12. weightMatrixTrainLabel - 0: if you do not need to train a DPR model (e.g.
you have trained it before); 1 (default): train a DPR model.

13. (output) phraseOptionFile - a file stores the phrase options (phrase pairs) with
their DPR probabilities for each sentence in TestFile. Line i contains the phrase
options for sentence i. This file will then be used by a MOSES decoder.

14. TestFile - the file containing the source test sentences. The phrase options with
their DPR probabilities will be generated for these sentences only.

15. batchOutputLabel - 0: collect phrase options for one sentence at a time (use
less memory but very slow); 1 (default and recommended): collect phrase options
for all sentences at a time (use large memory but very fast).

For the DPR parameter settings:

16. maxPhraseLength - the phrase pairs up to length maxPhraseLength (default 7)
will be extracted.

17. classSetup - the class setup of the DPR model, currently, the model only support
3-class setup and 5-class setup. See (Ni et al., 2009) for details.

18. distCut - prune the phrase pairs whose reordering distances are longer than dist-
Cut (default 15). To avoid some alignment errors caused by GIZA++.

19. maxNgramSize - the maximum length of ngrams used in the ngram feature
dictionary (usually choose 3 or 4, default 4).

Chapter 2 User manual 7

20. windowSize - the window size around the source phrases (usually choose 3 or 4,
default 3). See (Ni et al., 2009) for details.

21. minPrune - prune the ngram features that occur less than minPrune times (de-
fault 1). See (Ni et al., 2009) for details.

22. minTrainingExample - prune the source phrases that occur less than minTrain-
ingExample times (default 10), because the discriminative model does not work
well when the training size is too small.

23. maxRound - the maximum number of iterations (default 500). See (Ni et al.,
2009) for details.

24. step - the step size (learning rate) of the DPR model (default 0.05). See (Ni et al.,
2009) for details.

25. eTol - the error tolerance for training the DPR model (default 0.001). See (Ni
et al., 2009) for details.

2.3.4 Generating training samples for the DPR model

After completing the configuration file. Generating training samples for the DPR model
is rather easy, just execute the command

./smt mainProcess construct phraseDB myConfigurationFile

It will generate the following files for training the DPR model:

• SourceCorpusFile.tags - the word-class tags for the source corpus (each line is
a sentence).

• TargetCorpusFile.tags - the word-class tags for the target corpus (each line is
a sentence).

• SourceCorpusFile.ngramDict - the ngram feature dictionary constructed using
the source word corpus.

• TargetCorpusFile.ngramDict - the ngram feature dictionary constructed using
the target word corpus.

• SourceCorpusFile.tagsDict - the ngram word-class dictionary constructed us-
ing the source word-class corpus.

• TargetCorpusFile.tagsDict - the ngram word-class dictionary constructed using
the target word-class corpus.

8 Chapter 2 User manual

• phraseTableFile - the file containing all extracted samples (phrase pairs) for
training the DPR model.

• phraseTableFile.featureRelabel - the relabel dictionary for the ngram features.

2.3.5 Training the DPR model and generating DPR probabilities

The final step is to execute the command

./smt mainProcess generatePhraseOption myConfigurationFile

and the following files will be generated:

• weightMatrixFile - the DPR model.

• weightMatrixFile.startPosition - the start position of each sub-DPR model
(one for each unique source phrase).

• phraseOptionFile - the phrase options (each line is a sentence) for the TestFile

corpus.

• phraseOptionFile.startPosition - the start position of each line in phraseOp-

tionFile.

The phrase option files (i.e. phraseOptionFile and phraseOptionFile.startPosition)
will then be used by the MOSES decoder.

2.3.6 Integrating the DPR model into MOSES

To integrate the DPR model into MOSES, you need to use the MOSES software package
we provided (as some MOSES source code has been modified, see Section 4.7). Mean-
while, the following lines should be added to the file /root directory/model/moses.ini.

[DPR-file]
/your directory to phraseOptionFile/phraseOptionFile
[wDPR]
the weight for the DPR model (e.g. 0.5)
[class-DPR]
the class for the DPR model (choose 3 or 5 depending on the DPR model trained)

This tells the MOSES decoder where the DPR-probability file is and what is the weight
for the DPR model.

Chapter 2 User manual 9

2.3.7 Minimal error-rating training (MERT)

To use MERT, you need to use the MOSES scripts package we provided (as some source
code of the scripts has been modified, see Section 4.7). The scripts package is in the
directory /MOSES tools/scripts/ and the command is

./your directory to scripts/training/mert-moses.pl

./your directory to source/your source file ./your directory to target/your target file

./your directory to moses/moses-cmd/src/moses

./your directory to model/model/moses.ini −−working-dir

./your working directory/ −−rootdir ./your directory to scripts/ −−decoder-flags ”-v 0”

If you would like to switch on/off the DPR model or other reordering models, you can
use the configurations lambdas and activate. For example do the following

./your directory to scripts/training/mert-moses.pl

./your directory to source/your source file ./your directory to target/your target file

./your directory to moses/moses-cmd/src/moses ./your directory to model/model/moses.ini
−−working-dir ./your working directory/ −−rootdir ./your directory to scripts/
−−decoder-flags ”-v 0” −−lambdas=”wDPR:0.5,0.1-1.5”
−−activate=d 1, lm, tm, w, wDPR

The command tells MERT that the initial weight for the DPR model is 0.5 (you can also
define weights for other parameters such as ”d”, ”lm”, ”tm” and ”w”) and the range
of the weight is between 0.1 and 1.5. Meanwhile, there are 5 weights needed tuning:
d 1 (i.e. the word distance-based reordering model), lm (the language model), tm (the
phrase translation model), w (the word penalty) and wDPR (the DPR model).

2.3.8 Decoding

When you obtain the tuned parameters for the MOSES decoder, use the following com-
mand to decode the test sentences

./your directory to moses/moses-cmd/src/moses
-config /your directory to model/model/moses.ini
-input-file /your directory to source/your source test
1> /your directory to target/your target translation 2> /your directory to log/log file

The translations will be written in the file your target translation and a log file log file
will also be created.

Now, enjoy the distance phrase reordering model!

10 Chapter 2 User manual

2.4 Trouble shooting

When you compile the files or execute the commands, you might meet the following
errors:

• Permission denied. Make sure the file is executable, you can change the mode
of the file by using chmod

chmod u+x your file

• /bin/sh: ./check-dependencies.pl: /usr/bin/perlM̂: bad interpreter: No

such file or directory. This is due to different coding of CR (carriage re-
turn) between Windows and Linux (Unix) and cause a problem to function check-
dependencies.pl (in the directory /MOSES tools/scripts/). You can try the Perl
function delDots.pl 5 to solve the problem. Just do the following:

perl delDots.pl check-dependencies.pl check-dependencies1.pl
delete check-dependencies.pl
mv check-dependencies1.pl check-dependencies.pl

• ERROR: Cannot find mkcls, GIZA++, & snt2cooc.out in . Did you in-

stall this script using ‘make release’? at ./moses-script/scripts-20100427-

2119/training/train-factored-phrase-model.perl line 152. This might hap-
pen when you use train-factored-phrase-model.perl to train a MOSES system. The
solution is to search “my $BINDIR=” in train-factored-phrase-model.perl and mod-
ify the line as

my $BINDIR=“your directory to GIZA++”

5The file is in the directory /MOSES tools/.

Chapter 3

Preliminary results

We now test the new MT system (MOSES with DPR) on an MT task: French to English
translation. The EuroParl corpus1 (French–English) was used, from which we extracted
sentence pairs where both sentences had between 1 and 100 words, and where the ratio
of the lengths was no more than 2 : 1. The training set had 50K sentences whilst the
develop and the test sizes were fixed at 1K sentences.

For parameter tuning, minimum-error-rating training (MERT) (Och, 2003) was applied.
Experiments were repeated three times to assess variance and the performance was
evaluated by four standard MT measurements, namely word error rate (WER), BLEU,
NIST and METEOR (see (Callison-Burch et al., 2007) for details).

Table 3.1 demonstrates the translation results. In most of the cases, importing a DPR
model improved the translation quality, especially the METEOR score.

System MT evaluations
BLEU [%] WER [%] NIST METEOR [%]

MOSES+LR+WDR 26.1± 0.1 39.0± 0.4 6.67± 0.04 48.7± 0.3
MOSES+DPR+LR+WDR 26.5± 0.3 39.0± 0.1 6.68± 0.04 50.9± 0.2

MOSES+DPR+WDR 26.3± 0.1 38.9± 0.3 6.68± 0.04 50.7± 0.1
MOSES+DPR 26.3± 0.1 39.1± 0.2 6.66± 0.04 50.8± 0.1

Table 3.1: Evaluations for MT experiments. Bold numbers refer to the best results.

1The corpus can be downloaded at http://www.statmt.org/europarl/.

11

http://www.statmt.org/europarl/

Chapter 4

Code guide

This chapter gives an overview of the code. The DPR model is implemented using object-
oriented principles, and the developers can gain a general idea of its class organisation
from this chapter. All source code is in the directory /MOSES tools/DPR model and
each class, function library and main process contains a brief description on its members
and functions at the beginning of its .h/.cpp file.

As mentioned in Chapter 2, the DPR package consists of two modules: a sample ex-
traction module (smt mainProcess construct phraseDB) and a DPR probability genera-
tion module (smt mainProcess generatePhraseOption). The relationships among classes,
function libraries and main processes are illustrated in Figure 4.1 and Figure 4.2.

In the following, we provide a summary of the package framework:

• The main processes: smt mainProcess construct phraseReorderingDB.cpp and
smt mainProcess generatePhraseOption.cpp.

• Processing a sentence:

– sentenceArray.h/cpp. Store the words (or word-class tags) for a sentence.

– wordClassDict.h/cpp. Store the word-class label for each word.

– phraseNgramDict.h/cpp. Store the word/word-class ngram features.

– alignArray.h/cpp. Store the word alignments for each sentence pair.

• Constructing and processing a sample (phrase pair) pool:

– phraseConstructionFunction.h/cpp. Contain functions to construct the
sample (phrase pair) pool.

– corpusPhraseDB.h/cpp. Store the (source) phrases that appear in the
train/test corpus.

13

14 Chapter 4 Code guide

Figure 4.1: The relationships among classes, function libraries and main processes in
the sample extraction module. The red block denotes the main process for this module
(i.e. main.cpp); the blue block denotes the function library containing all functions
needed in this module, and the black blocks are the classes. An arrow from block A to

block B indicates that Block B directly calls functions (or uses classes) in Block A.

Figure 4.2: The relationships among classes, function libraries and main processes in
the DPR probability generation module. The red block denotes the main process for
this module (i.e. main.cpp); the blue block denotes the function library containing all
functions needed in this module, and the black blocks are the classes. An arrow from
block A to block B indicates that Block B directly calls functions (or uses classes) in

Block A.

Chapter 4 Code guide 15

– phraseReorderingTable.h/cpp. Store phrase pairs with their reordering
distances (orientation class).

– phraseTranslationTable.h/cpp. Store source phrases and their transla-
tions from a phrase table generated by Moses (to ensure the consistency
between the two phrase pair databases).

• Constructing a DPR model:

– weightMatrix.h/cpp. Train and store the weight matrix (matrices) of the
DPR model.

– relabelFeature.h/cpp. Store the relabel dictionary for ngram features (to
reduce the size of the feature expression).

• Generating DPR probabilities:

– probPredictionFunction.h/cpp. Contain functions to generate DPR prob-
abilities for phrase options of each develop/test sentence.

– sentencePhraseOption.h/cpp. Store phrase options (including target trans-
lations and DPR probabilities) for each develop/test sentence.

• The configuration process: smt configuration.cpp.

• Other modifications on MOSES

– DPR reordering.h/cpp. An interface between the DPR model and the
MOSES decoder.

– Parameter.cpp

– StaticData.h/cpp

– Makefile.am

– mert-moses.pl

The following sections specify the members and public functions for each class, function
library and main process.

16 Chapter 4 Code guide

4.1 The main processes

Name smt mainProcess construct phraseReorderingDB.cpp

Function Extract samples (phrase pairs) for training a DPR model

Inputs

soucreCorpus (SourceCorpusFile) the source corpus (text file)
targetCorpus (TargetCorpusFile) the target corpus (text file)
wordAlignmentFile (alignmentFile) the word alignment file (text file from GIZA++)
wordClassFile fr (SourceWordClassFile) the word-class dictionary for source words
wordClassFile en (TargetWordClassFile) the word-class dictionary for target words
maxNgramSize the max length of ngram features
minPrune prune ngram features that occur less than minPrune times
windowSize the window size of the environment (for feature extraction)
maxPhraseLength extract phrases upto length maxPhraseLength
testCorpusFile (TestFileName) (optional) the source test corpus to filter the phrase DB

Outputs

fout phraseDB (phraseTableFile) the output file of the phrase DB. Format:
source phrase ||| target phrase ||| reordering dist ||| features

fout relabelDB the relabel dictionary of ngram features

Chapter 4 Code guide 17

Name smt mainProcess generatePhraseOption.cpp

Function A. Learn the sub-DPR model for each source cluster
B. Construct the phrase option database

Inputs

soucreCorpus (TestFile) the source test corpus
sourceCorpus tr (SourceCorpusFile) the name of the source training corpus for

reading word/word-class ngram dictionaries
targetCorpus tr (TargetCorpusFile) the name of the target training corpus for

reading word/word-class ngram dictionaries
wordClassFile fr (SourceWordClassFile) the word-class dictionary for source words
wordClassFile en (TargetWordClassFile) the word-class dictionary for target words
extractPhraseTable (phraseTableFile) the phrase pairs extracted for the DPR model
relabelDict the relabel dictionary for ngram features
classSetup current only support two class setups: 3 and 5
maxNgramSize the max length of ngram features
minPrune prune ngram features that occur less than minPrune

times
windowSize the window size of the environment (for feature

extraction)
maxPhraseLength extract phrases upto length maxPhraseLength
distCut cut examples whose reordering distances are longer

than distCut
maxRound maximum iteration for training weight matrix W ,

see (Ni et al., 2009)
step the learning rate of the PSL algorithm,

see (Ni et al., 2009)
eTol the error tolerance for training weight matrix W ,

see (Ni et al., 2009)
phraseTranslationTable the phrase translation table from MOSES

recommend using Moses’s filtered translation table
filterLabel 1: the phrase translation table has been filtered

0: otherwise
batchLabel 1: store all sentence options first then output them

at once, use large memory but fast
0: collect and output phrase options for one sentence
at a time, use less memory but slower

maxTranslation the maximum number of translation for each
source phrase, if 0, use all translations

minTrainingExample the minimum number of training examples required

Outputs

fout weightMatrix (weightMatrixFile) the output file for the DPR model
fout phraseOptionDB (phraseOptionFile) the phrase option database for test sentences

18 Chapter 4 Code guide

4.2 Processing a sentence

Name sentenceArray.h/cpp

Function store the words for a sentence

Members

sentence (string array) store the words of a sentence
sentenceLengh (int) store the sentence length

Public Functions

sentenceArray() constructor, create an empty sentence
sentenceArray(string sentenceString) constructor, get words from a sentence string
sentenceArray(string sentenceString, constructor, get the words and transform them
wordClassDict* wordDict) to tags
string getPhraseFromSentence(int startPos, return the phrase sentence[startPos : endPos]
int endPos)
string getPhraseFromSentence(int startPos) return the word sentence[startPos]
int getSentenceLength() return the length of the sentence

Name wordClassDict.h/cpp

Function store the word-class label for each word

Members

wordClassDictionary (map), store the words (string) and the
word-class labels (int)

readDictCheck 0: can not find the dictionary file
1: otherwise

numWords the number of words in the dictionary

Public Functions

wordClassDict(char* dictFileName) constructor, read a dictionary file
bool checkReadFileStatus() check the read status of the dictionary
void createWCFile(char* inputFile,char* outputFile) output the dictionary to outputFile file
int getNumWords() get the size of the dictionary
int getWordClass(string word) get the word-class label of a word

Chapter 4 Code guide 19

Name phraseNgramDict.h/cpp

Function store the word/word-class ngram features

Members

phraseDict (map), store each phrase (ngram), its feature label,
length and frequency

readDictCheck 0: can not find the dictionary file
1: otherwise

ngramIndex the ngram label
(used when constructing the dictionary)

Public Functions

phraseNgramDict(char* dictFileName) constructor, read a dictionary file
phraseNgramDict() constructor, create an empty dictionary file
void insertNgram(string key, insert a new ngram feature
int ngramLength)
void deleteNgram(string key) delete an ngram feature
int getNgramIndex(string key) get the label of an ngram feature
int getNgramOccurance(string key) get the frequency of an ngram feature
int getNgramLength(string key) get the length of an ngram feature
vector<int> getNgramItems(string key) get the (label, length, frequency) of an ngram feature
bool findNgram(string key) search an ngram feature in the dictionary
bool checkReadFileStatus() check the read status of a dictionary
void outputNgramDict(char* output the dictionary to dictFileName file
dictFileName, int minOccurenceCut)
int getNumFeature() get the number of features in this dictionary

Name alignArray.h/cpp

Function store the word alignments for each sentence

Members

align FRtoEN (map) the source to target alignment
([source word Pos]→[target word Pos])

align ENtoFR (map) the target to source alignment
([target word Pos]→[source word Pos])

Public Functions

alignArray() constructor, create an empty alignment file
alignArray(string alignmentString) get the word alignments from a string
vector<int> getFRtoEN alignment return the corresponding target POSs for a
(int sourcePos) source POS
vector<int> getENtoFR alignment return the corresponding source POSs for a
(int targetPos) target POS
bool checkFRtoEN alignment(int sourcePos) check if the source POS is null aligned
bool checkENtoFR alignment(int targetPos) check if the target POS is null aligned

20 Chapter 4 Code guide

4.3 Constructing and processing a sample (phrase pair)

pool

Name phraseConstructionFunction.h/cpp

Function contain functions to construct the sample pool

Public Functions

bool smt construct phraseNgramDict(construct the ngram dictionary for the
char* inputCorpusFile, char* ngramDictFile, source/target word/word-class tag corpus
int maxNgram, int minPrune)

phraseNgramDict smt construct phraseNgramDict((overloaded) construct the ngram dictionary
char* inputCorpusFile, char* ngramDictFile, for the source/target word/word-class tag
int maxNgram, int minPrune, bool overloadFlag) corpus

bool smt construct wordDict(construct the word-class dictionary and
char* wordClassDictFile, char* inputCorpus, create the tag corpus for the source/target
char* tagsCorpus) corpus

wordClassDict smt construct wordDict((overloaded) construct the word-class
char* wordClassDictFile, char* inputCorpus, dictionary and create the tag corpus for
char* tagsCorpus, bool overloadFlag) the source/target corpus

vector<int> smt extract ngramFeature (extract ngram features around a source or
sentenceArray* sentence, phraseNgramDict* target phrase
ngramDictionary, int zoneL, int zoneR,
int flag, int maxNgramSize)

void smt consistPhrasePair(extract all consistent phrase pairs (upto
sentenceArray* sentenceFR, length maxPhraseLength) for a sentence pair
sentenceArray* sentenceEN, using the word alignments
sentenceArray* tagFR, sentenceArray* tagEN, (Time complexity O(N2))
phraseNgramDict* ngramDictFR,
phraseNgramDict* ngramDictEN,
phraseNgramDict* tagsDictFR,
phraseNgramDict* tagsDictEN,
alignArray sentenceAlignment, int zoneConf[],
int maxPhraseLength, int maxNgramSize,
relabelFeature* featureRelabelDB, ofstream& fout)

Chapter 4 Code guide 21

Name phraseConstructionFunction.h/cpp

Function contain functions to construct the sample pool

Public Functions Continued

void smt consistPhrasePair((overloaded) extract all consistent phrase
sentenceArray* sentenceFR, pairs (upto length maxPhraseLength and
sentenceArray* sentenceEN, appeared in testPhraseDB) for a sentence
sentenceArray* tagFR, sentenceArray* tagEN, pair using the word alignments
phraseNgramDict* ngramDictFR, (Time complexity O(N2))
phraseNgramDict* ngramDictEN,
phraseNgramDict* tagsDictFR,
phraseNgramDict* tagsDictEN,
alignArray sentenceAlignment, int zoneConf[],
int maxPhraseLength, int maxNgramSize,
relabelFeature* featureRelabelDB, ofstream& fout
corpusPhraseDB* testPhraseDB)

void smt constructPhraseReorderingDB(extract all consistent phrase pairs with
char* sourceCorpusFile, char* targetCorpusFile, their reordering distances and ngram features
char* wordAlignmentFile, char* tagsSourceFile, (for all sentences in sourceCorpusFile)
char* tagsTargetFile, char* phraseDBFile,
phraseNgramDict* ngramDictFR,
phraseNgramDict* ngramDictEN,
phraseNgramDict* tagsDictFR,
phraseNgramDict* tagsDictEN, int zoneConf[],
int maxPhraseLength, int maxNgramSize,
char* featureRelabelDBFile)

void smt constructPhraseReorderingDB(extract all consistent phrase pairs (appeared
char* sourceCorpusFile, char* targetCorpusFile, in testFileName) with their reordering
char* wordAlignmentFile, char* tagsSourceFile, distances and ngram features
char* tagsTargetFile, char* phraseDBFile, (for all sentences in sourceCorpusFile)
phraseNgramDict* ngramDictFR,
phraseNgramDict* ngramDictEN,
phraseNgramDict* tagsDictFR,
phraseNgramDict* tagsDictEN, int zoneConf[],
int maxPhraseLength, int maxNgramSize,
char* featureRelabelDBFile, char* testFileName)

22 Chapter 4 Code guide

Name corpusPhraseDB.h/cpp

Function store the (source) phrases that appear in the
train/test corpus

Members

phraseDB (map) store the phrases appeared in the corpus
numPhrase (int) the number of phrases
maxPhraseLength (int) the max phrase length in this phrase DB

Public Functions

corpusPhraseDB() constructor, create an empty phrase DB
corpusPhraseDB(char* inFileName, constructor, create a phrase DB for an input
int MAXPLENGTH) corpus
corpusPhraseDB(char* inFileName, constructor, read the phrase DB from a DB file
int MAXPLENGTH, bool readDict)
bool checkPhraseDB(string phrase) check if a phrase appears in the phrase DB
int getNumPhrase() return the number of phrases
int getMaxPhraseLength() return the maximum phrase length
void outAllPhrases(char* outFileName) output all phrases to outFileName file

Format: phrase ||| phraseIndex

Chapter 4 Code guide 23

Name phraseReorderingTable.h/cpp

Function store the phrase pairs with their reordering
distances (orientation class)

Members

phraseTable (map) store the source phrases with the orientation
classes and the ngram features

numCluster (int) the number of clusters (source phrases)
numPhrasePair (int) the number of phrase pairs stored
positionIndex (vector) store the start position of ngram features

for each phrase pair in a position file

Public Functions

sourceReorderingTable() constructor, create an empty phrase table
sourceReorderingTable(char* inputFileName, constructor, read a phrase table from
int classSetup, int distCut) inputFileName file
createOrientationClass(int dist, int classSetup) create the orientation class from the reordering

distance of a phrase pair
int getClusterMember(string sourcePhrase) get the number of examples in this cluster
vector<string> getClusterNames() get all source phrases in the phrase table
int getNumCluster() get the number of clusters (unique source phrases)
int getNumPhrasePair() get the number of phrase pairs in the phrase table
int getNumOrientatin() get the class setup
vector<vector<int>> getExamples(string get the examples with their ngram features
sourcePhrase, ifstream& inputFile) (store in a vector)
vector<unsigned long long> getPositionIndex() get the start positions (in a position file) of

ngram features for all phrase pairs

24 Chapter 4 Code guide

Name phraseTranslationTable.h/cpp

Function store source phrases and their translations from
a phrase table generated by Moses

Members

phraseTranslationTable (map) a phrase table store source phrases →
target translations

numCluster (int) the number of clusters (unique source
phrases) in the phrase table

numPhrasePair (int) the number of phrase pairs in the phrase table

Public Functions

phraseTranslationTable() constructor, create an empty phrase table
phraseTranslationTable(char* inputFileName) constructor, read the phrase pairs from an input file
phraseTranslationTable(char* inputFileName, constructor, read the phrase pairs from an input file
int maxTranslations) (for each phrase extract top maxTranslations

translations)
phraseTranslationTable(char* constructor, read the phrase pairs (appeared in
inputFileName, corpusPhraseDB* testPhraseDB) from an input file
testPhraseDB)
phraseTranslationTable(char* constructor, read the phrase pairs (appeared in
inputFileName, corpusPhraseDB* testPhraseDB) from an input file (for each
testPhraseDB, int maxTranslations) phrase extract top maxTranslations translations)
vector<string> getClusterNames() get all source phrases in the phrase table
int getNumCluster() get the number of clusters (unique source phrases)
int getNumPhrasePair() get the number of phrase pairs in the phrase table
vector<string> getTargetTranslation(get target translations for a source phrase
string sourcePhrase)
int getNumberofTargetTranslation(get the number of target translations for a source
string sourcePhrase) phrase

Chapter 4 Code guide 25

4.4 Constructing a DPR model

Name weightMatrix.h/cpp

Function train and store the weight matrix (matrices) of the
DPR model (The file contains two classes)

Class weightMatrixW

Members

weightMatrix (map) store the start positions of all sub-DPR
models (one for each source phrase) in a
weight matrix database

numCluster (int) the number of clusters (source phrases)

Public Functions

weightMatrixW() constructor, create an empty dictionary. Format:
source phrase → its DPR model in the database

weightMatrixW(char* inputFileName) constructor, read the dictionary from an input file
int getNumCluster() get the number of clusters (source phrases)
void writeWeightMatrix(char* outputFileName) output the position dictionary to outputFileName

file. Format: source phrase ||| start position
void insertWeightCluster(string sourcePhrase, insert the start position of a new sub-DPR model
unsigned long long startPos)
unsigned long long getWeightClusterPOS(get the start position of a sub-DPR model for a
string sourcePhrase) source phrase

26 Chapter 4 Code guide

Name weightMatrix.h/cpp (continued)

Function train and store the weight matrix (matrices) of
the DPR model (The file contains two classes)

Class weightClusterW

Members

weightCluster (map) store orientation → ngram features →
feature values

numOrientation (int) the number of orientation classes
sourcePhrase (string) the source phrase for this sub-DPR

model
distMatrix (float matrix) the distance matrix

(for structured learning)

Public Functions

weightClusterW(string source, int numClass) constructor, create an empty sub-DPR model
(i.e. a weight cluster)

weightClusterW(ifstream& inputFile, constructor, read a sub-DPR model from an
int numClass, unsigned long long startPos) input file
int getNumOrientation() get the number of classes
string getClusterName() get the name (source phrase) of the

sub-DPR model
unsigned long long writeWeightCluster(output the sub-DPR model to outputFile file
ofstream& outputFile)
void getWeightCluster(ifstream& inputFile, read the sub-DPR model from an input file
int numClass, unsigned long long startPos)
void structureLearningW(vector<vector<int>> train a sub-DPR model using the structured
phraseTable, int maxRound, float step, float eTol) learning algorithm
vector<float> structureLearningConfidence(return the confidence W T φ(x) for each class
vector<int> featureList)
vector<float> structureLearningConfidence((overloaded) return the confidence W T φ(x) for
vector<int> sourceFeature, vector<int> each class
targetFeature)

Chapter 4 Code guide 27

Name relabelFeature.h/cpp

Function Store the relabel dictionary for ngram features

Members

featureRelabel (map) the relabel dictionary of ngram features
countFeatureRelabel (int) the number of features in the relabel

dictionary

Public Functions

relabelFeature() constructor, create an empty relabel dictionary
relabelFeature(char* relabelFilename) constructor, read a relabel dictionary from an

input file
int insertFeature(int featureIndex) relabel and insert an ngram feature
int getRelabeledFeature(int featureIndex) return an ngram feature’s relabeled feature
int getNumFeature() return the number of relabeled features
void writeRelabelFeatures(char* dictFileName) output the relabel dictionary to dictFileName file

28 Chapter 4 Code guide

4.5 Generating DPR probabilities

Name probPredictionFunction.h/cpp

Function contain functions to generate DPR probabilities
for phrase options of each develop/test sentence

Public Functions

void smt sourceClusterPrediction(for each cluster (source phrase), read its
weightClusterW* wt, sub-DPR model W and predict the DPR
ifstream& sourceFeatureFileName, probabilities (normalised) for each instance
phraseFeaturePositionMap
sourceFeaturePosition,
targetFeatureMap targetTranslation,
sentencePhraseOption* phraseOption)

void smt sourceClusterPrediction((overloaded) for each cluster (source phrase),
weightClusterW* wt, read its sub-DPR model W and predict the DPR
ifstream& sourceFeatureFile, probabilities (normalised) for each instance
phraseFeaturePositionMap
sourceFeaturePosition,
sourceTargetFeatureMapSTR::const iterator
sourceTargetFound,
sentencePhraseOptionSTR *phraseOption)

void smt createSourceCluster(given a test corpus, extract all source phrases
char* inputFileName, appeared, store the source features in
phraseNgramDict* ngramDictFR, outputFileName file and return a sourcePositionMap
phraseNgramDict* ngramDictEN, dictionary
phraseNgramDict* tagsDict fr,
phraseNgramDict* tagsDict en,
wordClassDict* wordDict fr,
wordClassDict* wordDict en,
int maxPhraseLength,
int maxNgramSize, int zoneConf[],
relabelFeature* relabelDict,
phraseReorderingTable* trainingPhraseTable,
char* outputFileName,
sourcePositionMap* sourcePositionDict)

Chapter 4 Code guide 29

Name probPredictionFunction.h/cpp

Function contain functions to generate DPR probabilities
for phrase options of each develop/test sentence

Public Functions Continued

void smt createSourceCluster((overloaded) given a test corpus, extract all source
char* inputFileName, phrases appeared, store the source features in
phraseNgramDict* ngramDictFR, outputFileName file and return a sourcePositionMap
phraseNgramDict* ngramDictEN, dictionary
phraseNgramDict* tagsDict fr,
phraseNgramDict* tagsDict en,
wordClassDict* wordDict fr,
wordClassDict* wordDict en,
int maxPhraseLength,
int maxNgramSize, int zoneConf[],
relabelFeature* relabelDict,
phraseTranslationTable*
trainingPhraseTable,
char* outputFileName,
sourcePositionMap* sourcePositionDict)

void smt createSourceCluster((overloaded) given a test corpus, extract all source
string sourceSentence, phrases appeared, store the source features in
phraseNgramDict* ngramDictFR, outputFileName file and return a sourcePositionMap
phraseNgramDict* ngramDictEN, dictionary
phraseNgramDict* tagsDict fr,
phraseNgramDict* tagsDict en,
wordClassDict* wordDict fr,
wordClassDict* wordDict en,
int maxPhraseLength,
int maxNgramSize, int zoneConf[],
relabelFeature* relabelDict,
phraseTranslationTable*
trainingPhraseTable,
char* outputFileName,
sourcePositionMap* sourcePositionDict)

30 Chapter 4 Code guide

Name probPredictionFunction.h/cpp

Function contain functions to generate DPR probabilities
for phrase options of each develop/test sentence

Public Functions Continued

sentencePhraseOption create phrase options for each test sentence
smt collectPhraseOptions(Format: sentenceIndex→[left boundary, right boundary]
char* inputFileName, →target translations → reordering probabilities
phraseNgramDict* ngramDictFR,
phraseNgramDict* ngramDictEN,
phraseNgramDict* tagsDict fr,
phraseNgramDict* tagsDict en,
wordClassDict* wordDict fr,
wordClassDict* wordDict en,
int maxPhraseLength,
int maxNgramSize, int zoneConf[],
relabelFeature* relabelDict,
phraseReorderingTable*
trainingPhraseTable,
char* weightFileName,
weightMatrixW* weightMatrix

sentencePhraseOption (overloaded) create phrase options for each test sentence
smt collectPhraseOptions(Format: sentenceIndex→[left boundary, right boundary]
char* inputFileName, →target translations → reordering probabilities
phraseNgramDict* ngramDictFR,
phraseNgramDict* ngramDictEN,
phraseNgramDict* tagsDict fr,
phraseNgramDict* tagsDict en,
wordClassDict* wordDict fr,
wordClassDict* wordDict en,
int maxPhraseLength,
int maxNgramSize, int zoneConf[],
relabelFeature* relabelDict,
phraseTranslationTable*
trainingPhraseTable,
char* weightFileName,
weightMatrixW* weightMatrix,
int classSetup)

Chapter 4 Code guide 31

Name probPredictionFunction.h/cpp

Function contain functions to generate DPR probabilities
for phrase options of each develop/test sentence

Public Functions Continued

void smt collectPhraseOptions((overloaded) create phrase options for each test sentence
char* inputFileName, Format: sentenceIndex→[left boundary, right boundary]
phraseNgramDict* ngramDictFR, →target translations → reordering probabilities
phraseNgramDict* ngramDictEN,
phraseNgramDict* tagsDict fr,
phraseNgramDict* tagsDict en,
wordClassDict* wordDict fr,
wordClassDict* wordDict en,
int maxPhraseLength,
int maxNgramSize, int zoneConf[],
relabelFeature* relabelDict,
phraseTranslationTable*
trainingPhraseTable,
char* weightFileName,
weightMatrixW* weightMatrix,
int classSetup,
char* outPhraseOptionFileName)

32 Chapter 4 Code guide

Name sentencePhraseOption.h/cpp

Function store phrase options (including target translations
and DPR probabilities) for each develop/test
sentence (The file contains two classes)

Class sentencePhraseOption

Members

phraseOption (map) store the phrase options. Format:
sentenceID→[left boundary, right boundary]→
target translations (index)→reordering
probabilities

numSen (int) store the number of sentences

Public Functions

sentencePhraseOption() constructor, create an empty phrase option list
void createPhraseOption(compute the DPR probabilities for a phrase pair
int sentenceIndex, and update the phrase option list
unsigned short phrase boundary[],
mapTargetProbOption targetProbs
void createPhraseOption((overloaded) compute the DPR probabilities for a
unsigned short phrase boundary[], phrase pair and update the phrase option list
mapTargetProbOption targetProbs)
void outputPhraseOption(output all phrase options to outputFile file
ofstream& outputFile,
int sentenceIndex,
sentenceArray* sentence,
phraseTranslationTable*
trainingPhraseTable)
int getNumSentence() get the number of sentences

Chapter 4 Code guide 33

Name sentencePhraseOption.h/cpp (continued)

Function store phrase options (including target translations
and DPR probabilities) for each develop/test
sentence (The file contains two classes)

Class sentencePhraseOptionSTR

Members also members inherited from
sentencePhraseOption

phraseOption (map) store the phrase options. Format:
sentenceID→[left boundary, right boundary]→
target translations (index)→reordering
probabilities

Public Functions

sentencePhraseOptionSTR() constructor, create an empty phrase option list
sentencePhraseOptionSTR(char* constructor, read phrase options from
inputFileName) inputFileName file
void outputPhraseOption(char* output all phrase options to outputFileName file
outputFileName)
void outputPhraseOption(ofstream& (overloaded) output all phrase options to
outputFile) outputFileName file
void createPhraseOption(compute the DPR probabilities for a phrase pair
int sentenceIndex, and update the phrase option list
unsigned short phrase boundary[],
mapTargetProbOptionSTR targetProbs)
void createPhraseOption((overloaded) compute the DPR probabilities for a
unsigned short phrase boundary[], phrase pair and update the phrase option list
mapTargetProbOptionSTR targetProbs)
vector<float> getPhraseProbs(get the target translations and their DPR
int sentenceIndex, probabilities for a source phrase
unsigned short phrase boundary[],
string targetPhrase, int numClass)

4.6 The configuration process

Name smt configuration.cpp

Function generate a configuration file for the DPR model

4.7 Other modifications on MOSES

To integrate the DPR model into the MOSES decoder, modifications are made to
MOSES files Parameter.cpp, StaticData.h/cpp and Makefile.am in the directory

34 Chapter 4 Code guide

/MOSES tools/moses/src/ and mert-moses.pl in the directory /MOSES tools/scripts/training/.
To see these modifications, simply search “DPR” in the files.

A class DPR reordering.h/cpp (in the directory /MOSES tools/moses/src/) is also
created as an interface between the DPR model and the MOSES decoder.

Chapter 4 Code guide 35

Name DPR reordering.h/cpp

Function an interface between the DPR model and the
MOSES decoder

Members

m dprOptionStartPOS (vector) store start positions of phrase options
for each sentence
(i.e. start positions of each line in the sentence
option file)

sentenceOptionFile (ifstream) the ifstream handle of the sentence
option file

sentenceID (long int) the test sentence ID
sentencePhraseOption (map) store phrase options for each sentence
classSetup (int) the number of orientations
unDetectProb (float) the constant DPR probability for the

phrase pair which is not in the sentence options
WDR cost (vector) the word distance-based reordering costs

Public Functions

DPR reordering(constructor, read the sentence option file
ScoreIndexManager &scoreIndexManager,
const string filePath,
const string classString,
const vector<float>& weights)
size t GetNumScoreComponents() const return the number of score components (i.e. 1)
string GetScoreProducerDescription() const return the name of the DPR model
string GetScoreProducerWeightShortName() const return the short name of the weight for the

DPR model (i.e. wDPR)
FFState* Evaluate(compute DPR probabilities for the current
const Hypothesis& cur hypo, extending phrase pair
const FFState* prev state,
ScoreComponentCollection* accumulator) const
const FFState* EmptyHypothesisState() const initialisation function
void clearSentencePhraseOption() const clear the phrase options in the option database
void constructSentencePhraseOption() const construct phrase options for the current

translating sentence
float generateReorderingProb(generate DPR probabilities for a phrase pair
size t boundary left, size t boundary right,
size t prev boundary right,
string targetPhrase) const
int createOrientationClass(int dist) const create the orientation class using the reordering

distance

Bibliography

C. Callison-Burch, C. Fordyce, P. Koehn, C. Monz, and J. Schroeder. (meta-) evaluation
of machine translation. In Proceedings of the Second Workshop on Statistical Machine
Translation, pages 136–158, Prague, Czech Republic, June 2007.

P. Koehn, A. Axelrod, A. B. Mayne, C. Callison-Burch, M. Osborne, and D. Talbot.
Edinburgh system description for the 2005 iwslt speech translation evaluation. In
Proceedings of the International Workshop on Spoken Language Translation (IWSLT
2005), Pittsburgh, PA, October 2005.

P. Koehn and H. Hoang. Moses installation and training run-through. In http: // www.

statmt. org/ moses_ steps. html , December 2009.

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico adn N. Bertoldi,
B. Cowan, W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin, and
E. Herbst. Moses: open source toolkit for statistical machine translation. In Pro-
ceedings of Annual Meeting of the Association for Computational Linguistics (ACL),
demonstration session, Prague, Czech Republic, 2007.

Y. Ni, C. Saunders, S. Szedmak, and M. Niranjan. Handling phrase reorderings for ma-
chine translation. In Proceedings of the joint conference of the 47th Annual Meeting of
the Association for Computational Linguistics and the 4th International Joint Con-
ference on Natural Language Processing of the Asian Federation of Natural Language
Processing (ACL–IJCNLP 2009), pages 241–244, Singapore, 2009.

F. J. Och. Minimum error rate training in statistical machine translation. In Proceedings
of the 41st Annual Meeting of the Association for Computational Linguistics (ACL
2003), Japan, September 2003.

37

http://www.statmt.org/moses_steps.html
http://www.statmt.org/moses_steps.html

	Acknowledgements
	1 Introduction
	1.1 Distance phrase reordering
	1.2 Copyright announcement

	2 User manual
	2.1 Source code
	2.2 Compilation
	2.3 How to use
	2.3.1 Training a MOSES system
	2.3.2 Prerequisite
	2.3.3 Generating a parameter configuration file
	2.3.4 Generating training samples for the DPR model
	2.3.5 Training the DPR model and generating DPR probabilities
	2.3.6 Integrating the DPR model into MOSES
	2.3.7 Minimal error-rating training (MERT)
	2.3.8 Decoding

	2.4 Trouble shooting

	3 Preliminary results
	4 Code guide
	4.1 The main processes
	4.2 Processing a sentence
	4.3 Constructing and processing a sample (phrase pair) pool
	4.4 Constructing a DPR model
	4.5 Generating DPR probabilities
	4.6 The configuration process
	4.7 Other modifications on MOSES

	Bibliography

