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Abstract: Adaptive infinite-impulse-response (IIR) filtering provides a powerful approach for 
solving a variety of practical signal processing problems. Because the error surface of IIR filters 
is typically multimodal, global optimisation techniques are generally required in order to avoid 
local minima. This contribution applies the particle swarm optimisation (PSO) to digital IIR filter 
design in a realistic time domain setting where the desired filter output is corrupted by noise. 
PSO as global optimisation techniques offers advantages of simplicity in implementation, ability 
to quickly converge to a reasonably good solution and robustness against local minima. Our 
simulation study involving system identification application confirms that the proposed approach 
is accurate and has a fast convergence rate and the results obtained demonstrate that the PSO 
offers a viable tool to design digital IIR filters. We also apply the quantum-behaved particle 
swarm optimisation (QPSO) algorithm to the same digital IIR filter design and our results do not 
show any performance advantage of the QPSO algorithm over the PSO, although the former does 
have fewer algorithmic parameters that require tuning. 
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1 Introduction 

Adaptive infinite-impulse-response (IIR) filtering has been 
an active area of research for many years and many 
properties of IIR filters are well-known (Widrow and 
Stearns, 1985; Shynk, 1989). Despite the fact that the digital 

IIR filter design is a well-researched area, major difficulties 
still exist in practice. This is because the error surface or  
the cost function of IIR filters is generally multimodal  
with respect to the filter coefficients. Thus, gradient-based 
algorithms can easily be stuck at local minima. In  
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order to achieve a global minimum solution, global 
optimisation techniques are needed, which require extensive 
computations. Despite of this drawback, applying global 
optimisation methods to IIR filter design is attractive, since 
in many applications a global optimal design offers much 
better solution than local optimal ones. The genetic 
algorithm (GA) (Goldberg, 1989; Man et al., 1998) as a 
global optimisation method has attracted considerable 
attention in application to digital IIR filter design (Nambiar 
et al., 1992; Wilson and Macleod, 1993; White and 
Flockton, 1994; Ng et al., 1996). An alternative global 
optimisation technique known as the adaptive simulated 
annealing (ASA) (Ingber, 1996; Chen and Luk, 1999) has 
also been applied to design IIR filters (Chen et al., 2001). 
More recently, the work of Chen et al. (2005) developed a 
simple yet efficient global search method, referred to as the 
repeated weighted boost search (RWBS) algorithm and 
demonstrated its application in digital IIR filter design. 

The particle swarm optimisation (PSO) is a  
population-based stochastic optimisation technique 
(Kennedy and Eberhart, 1995, 2001) inspired by social 
behaviour of bird flocking or fish schooling. The algorithm 
starts with a random initialisation of a swarm of individuals, 
referred to as particles, within the problem search space. It 
then endeavours to find a global optimal solution by simply 
adjusting the trajectory of each individual toward its own 
best location visited so far and toward the best position of 
the entire swarm at each evolutionary optimisation step. The 
attractions of the PSO method include its simplicity in 
implementation, ability to quickly converge to a reasonably 
good solution and its robustness against local minima. The 
PSO technique has been applied to wide-ranging practical 
optimisation problems successfully (Kennedy and Eberhart, 
2001; Ratnaweera et al., 2004; Guru et al., 2005; Sun et al., 
2006, 2008; Feng, 2006; El-Metwally et al., 2006; Soo et 
al., 2007; Awadallah and Soliman, 2008; Guerra and 
Coelho, 2008; Leong and Yen, 2008; Soliman et al., 2008; 
Yao et al., 2009). 

There exist some works applying the PSO to IIR filter 
designs. A quantum-behaved particle swarm optimisation 
(QPSO) algorithm was employed to design IIR filter (Fang 
et al., 2006), while the work (Das and Konar, 2007) applied 
the PSO algorithm to design two-dimensional IIR filters. 
These works, however, were developed for the synthesis of 
IIR filters in the frequency domain where a set of noise-free 
exact frequency response points are known for the IIR filter 
to match. In this contribution, we propose to apply the PSO 
algorithm for designing digital IIR filters in a realistic  
time domain setting where the desired filter output is 
corrupted by noise. System identification application is used 
to demonstrate the proposed PSO approach. Compared with 
the results obtained using the GA, the ASA and  
the RWBS methods for IIR filtering available in the 
literature, the efficiency and solution quality of the  
PSO-based method appear to be slightly better. This 
suggests that the PSO technique offers a viable alternative 
to digital IIR filter design. It is believed that the QPSO 
algorithm offers performance advantages over the PSO 

algorithm (Sun et al., 2004, 2005, 2006; Fang et al., 2006). 
We also apply the QPSO to the same digital IIR filter design 
problem. However, our experimental results do not show 
any performance advantage of the QPSO algorithm over the 
PSO algorithm, although the former does have fewer 
algorithmic parameters that require tuning than the latter. 

2 The PSO algorithm for digital IIR filter design 

We consider the digital IIR filter with the input-output 
relationship governed by the following difference equation: 
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where ( )x k  and ( )y k  are the filter’s input and output, 
respectively and ( )M L≥  is the filter order. The transfer 
function of this IIR filter is expressed by: 
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The most commonly used approach to IIR filter design is to 
formulate the problem as an optimisation problem with the 
mean square error (MSE) as the cost function: 

( )22( ) ( ) ( ) ( ) ,HJ e k d k y k⎡ ⎤⎡ ⎤= = −⎣ ⎦ ⎣ ⎦w E E  (3) 

where ( )d k  is the filter’s desired response, 
( ) ( ) ( )e k d k y k= −  is the filter’s error signal and: 
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denotes the filter coefficient vector. The design goal is to 
minimise the MSE (3) by adjusting .Hw  In practice, 
ensemble operation is difficult to realise and the cost 
function (3) is usually substituted by the time average cost 
function: 
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During the adaptive process, the stability of the IIR filter 
must always be maintained. The IIR filter (1) is in its direct 
form. An efficient way of maintaining stability of an IIR 
filter is to convert the direct form to the lattice form (Gray 
and Markel, 1973) and to make sure that all the reflection 
coefficients of the IIR filter, ik  for 0 1,i M≤ ≤ −  have 
magnitudes less than one. This approach is adopted in our 
design to guarantee the stability of the IIR filter during 
adaptation. Thus, the actual filter coefficient vector used in 
optimisation is: 

0 1 0 1 1 2[ ] [ ] ,T T
L M Da a a k k w w w−= =w  (6) 

where 1D M L= + +  is the dimension of the filter 
coefficient vector. For the notational convenience, the cost 
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function will still be denoted as J  or .NJ  Converting the 
reflection coefficients back to the direct-form coefficients 

,ib  1 ,i M≤ ≤  is straightforward (Gray and Markel, 1973). 
For example, for the second-order ( 2)M =  IIR filter: 
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while for the third-order ( 3)M =  IIR filter: 
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2.1 The PSO algorithm 

As described previously, the digital IIR filter design is 
posed as the following optimisation task: 

opt arg min ( )F=
w

w w  (9) 
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where the cost function ( )F w  is defined by ( )J w  or 
( )NJ w  and: 

max, max,[ , ]j j jW W−W  (11) 

specifies the search range for .jw  The flowchart of the 
proposed PSO-aided IIR filter design is given in Figure 1. 

Figure 1 Flowchart of the PSO algorithm 
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A swarm of particles, { }[ ]
1 ,
Sl

i i=u  that represent potential 

solutions are evolved in the search space ,DW  where S  is 
the swarm size and index l  denotes the iteration step. 

a The swarm initialisation. Set 0l =  and randomly 

generate the initial particles, { }[ ]
1 ,
Sl

i i=u  in the search 

space .DW  

b The swarm evaluation. Each particle [ ]l
iu  has a cost 

( )[ ]l
iF u  associated with it. Each particle [ ]l

iu  
remembers its best position visited so far, denoted as 

[ ] ,lipb  which provides the cognitive information. Every 
particle also knows the best position visited so far 
among the entire swarm, denoted as [ ] ,lgb  which 
provides the social information. The cognitive 

information { }[ ]
1

Sl
i i=pb  and the social information [ ]lgb  

are updated at each iteration: 

For ( 1; ; )i i S i+ ≤ + +  

 If ( ) ( )( )[ ] [ ] [ ] [ ];l l l l
i i i iF F< =u pb pb u  

End for; 

( )[ ]
1arg min ;l
i S ii F∗
≤ ≤= pb  

( ) ( )( )[ ] [ ] [ ] [ ]If ;l l l l
i i

F F∗ ∗< =pb gb gb pb  

c The swarm update. Each particle [ ]l
iu  has a velocity, 

denoted as [ ] ,liv  to direct its ‘flying’. The velocity and 
position of the thi  particle are updated in each iteration 
according to: 
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where ξ  is the inertia weight, 1c  and 2c  are the two 
acceleration coefficients, while 1 ()randϕ =  and 

2 ()randϕ =  denotes the two random variables 
uniformly distributed in (0, 1). 

In order to avoid excessive roaming of particles beyond 
the search space (Guru et al., 2005), a velocity space: 

max, max,
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where |jv  denotes the thj  element of .v  Moreover, if 
[ 1]l
i
+v  approaches zero, it is reinitialised according to: 

If ( )[ 1] 0l
ji

+ ==v  

 If ( () 0.5)rand <  

  [ 1]
max, ;l

j v ji Vϕ γ+ = ∗ ∗v  

 Else 
  [ 1]

max, ;l
j v ji Vϕ γ+ = − ∗ ∗v  

 End if; 
End if; 

where ()v randϕ =  is another uniform random variable 
in (0, 1) and γ  a small positive constant. 

Similarly, each [ 1]l
i
+u  is checked to ensure that it stays 

inside the search space .DW  Specifically: 
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That is, if a particle is outside the search space, it is 
moved back inside the search space randomly, rather 
than forcing it to stay at the border. This is similar to 
the checking procedure given in Guru et al. (2005). 

d Termination condition check. If the maximum number 
of iterations, max ,I  is reached, terminate the algorithm 

with the solution max[ ]
opt ;I=w gb  otherwise, set 

1l l= +  and go to Step b. 

The time-varying acceleration coefficient (TVAC) reported 
in Ratnaweera et al. (2004) is known to enhance the 
performance of PSO. The reason is that at the initial stages, 
a large cognitive component and a small social component 
help particles to wander around or exploit better the search 
space and to avoid local minima. In the later stages, a small 
cognitive component and a large social component help 
particles to converge quickly to a global minimum. This 
TVAC as suggested in Ratnaweera et al. (2004) is adopted, 
in which 1c  for the cognitive component is reduced from 
2.5 to 0.5 and 2c  for the social component varies from 0.5 
to 2.5 during the iterative procedure according to: 

1 max2.5 (2.0 ) / (1.0 )= − ∗ ∗c l I  (15) 

and 

2 max0.5 (2.0 ) (1.0 ) ,c l I= + ∗ ∗  (16) 

respectively. Our empirical experience also suggests that 
using a random inertia weight: 

()randξ =  (17) 

achieves better performance than using 0ξ =  or a constant 
.ξ  An appropriate value of γ  in reinitialising zero velocity 

found empirically for our IIR filter design application is 
0.7.γ =  The swarm size S  depends on how hard the 

optimisation problem (9) is. For our IIR filter design 
problem, choosing the maximum number of iterations as 

max 20I =  is often adequate. A typical choice of the 
maximum velocity bound is max, max,2 .j jV W=  The search 
space is specified by the design problem. In particular, 

max, jW  is smaller than but close to 1.0, for 2 ,L j D+ ≤ ≤  
due to the IIR filter stability consideration. 

2.2 The QPSO algorithm 

The QPSO algorithm (Sun et al., 2004, 2005, 2006) is also 
applied to solve the IIR filter design problem (9) within the 
search space (10) and the flowchart of the QPSO-based IIR 
filter design is shown in Figure 2. 

Figure 2 Flowchart of the QPSO algorithm 
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a The swarm initialisation. This is identical to Step a of 
the PSO algorithm. 

b The swarm evaluation. This is also identical to Step b 
of the PSO algorithm. 

c The swarm update. The mean position of { }[ ]
1

Sl
i i=pb  is 

calculated as: 
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1
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i

i
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and the particles are updated according to1: 
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For ( 1; ; )i i S i+ ≤ + +  

 1 ();randϕ =  

 2 ();randϕ =  

 ();u randϕ =  

 For ( 1; ; )j j D j= ≤ + +  

  ( )[ ] [ ]
1 2 1 2( );= ∗ + ∗ +pb gbl l

j jip ϕ ϕ ϕ ϕ  

  [ ] [ ] ;| |l l
e j ju c= ∗ −pm u  

  If ( () 0.5)rand >  

   [ 1] log(1 );l
j ui p u ϕ+ = − ∗u  

  Else 
   [ 1] log(1 );l

j ui p u ϕ+ = + ∗u  

 End for; 
End for; 

where ec  is the contraction-expansion coefficient. 

Each [ 1]l
i
+u  is then checked to ensure that it stays inside 

the search space .DW  Specifically, if a particle is 
outside the search space, it is moved back inside the 
search space randomly, as in the case of the PSO 
algorithm. 

d Termination condition check. As in the PSO algorithm, 
if the maximum number of iterations, max ,I  is reached, 
the algorithm is terminated with the solution 

max[ ]
opt ;I=w gb  otherwise, it sets 1l l= +  and goes to 

Step b. 

The QPSO algorithm has fewer algorithmic parameters  
that require tuning than the PSO algorithm. The  
contraction-expansion coefficient ec  is critical to the 
performance of the algorithm and it is typically determined 
by experiment. The empirical formula for computing ec  
(Sun et al., 2004, 2005, 2006): 

max max min max( )ec c c c l I= − − ∗  (19) 

is used in our experiment, where appropriate values for 
maxc  and minc  can only be found empirically. 

3 System identification application 

System identification application based on adaptive IIR 
filter, as depicted in Figure 3, is used in the experiment. In 
this configuration, the unknown plant has a transfer function 

( )SH z  and the PSO algorithm described in the previous 
section is employed to adjust the IIR filter that is used to 
model the system. When the filter order M  is smaller than 
the system order, local minima problems can be 
encountered (Shynk, 1989) and this is used to simulate a 

multimodal environment. The signal-to-noise (SNR) ratio of 
the system is defined as: 

2 2SNR .d n= σ σ  (20) 

Here, 2
nσ  is the noise variance and the system signal 

variance 2
dσ  is given by: 

( )
2

2 1( ) ,
1
x

d S S
dz

H z H z
z

−=
− ∫
σ

σ  (21) 

where 2
xσ  is the input signal variance. A numerical 

evaluation of the filter power ( )1( ) dz
S S zH z H z −∫  can be 

found in (Åström, 1970). The search ranges for the filter 
coefficients are 1.0ia ≤  and 0.99.iκ ≤  Thus, the search 
space (10) is specified by max, 1.0jW =  for 1 1j L≤ ≤ +  and 

max, 0.99jW =  for 2 .L j D+ ≤ ≤  The results obtained by 
the PSO as well as QPSO-based IIR filter designs are 
compared with those obtained using the GA (White and 
Flockton, 1994), the ASA (Chen et al., 2001) and the 
RWBS (Chen et al., 2005). 

Figure 3 Schematic of adaptive IIR filter for system 
identification configuration (see online version for 
colours) 
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Example one 

This example was taken from Shynk (1989). The system 
and filter transfer functions respectively are: 

1

1 2
0.05 0.4( )

1 1.1314 0.25S
z

H z
z z

−

− −

−
=

− +
 (22) 

and 

0
1

1
( ) .

1M
a

H z
b z −

=
+

 (23) 

The analytical cost function J  in this case is known when 
the input is a white sequence and 2 0.n =σ  The cost function 

has a global minimum at global [ 0.311 0.906]T= − −w   

with the value of the normalised cost function 
2

global( ) 0.2772dJ =w σ  and a local minimum at 

local [0.114 0.519] .T=w  
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Figure 4 Convergence performance averaged over 100  
random experiments for example one obtained using, 
(a) the PSO and QPSO (b) the ASA (c) the RWBS 

 
(a) 

 
(b) 

 
(c) 

Notes: The dashed line indicates the global minimum. 
The ASA result is quoted from Chen et al. (2001) 
and the RWBS result from Chen et al. (2005). 

 

Figure 5 Distribution of the solutions, 0 1( , )a b  shown as small 
circles, obtained in the 100 random experiments for 
example one using, (a) the PSO (b) the RWBS  
(c) the QPSO 

 
(a) 

 
(b) 

 
(c) 

Note: The large square indicates the global minimum. 
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For the PSO, the swarm size was set to 30S =  and the 
maximum number of iterations to max 20.I =  Figure 4(a) 
depicts the evolution of the normalised cost function 
averaged over 100 different random runs obtained using the 
PSO. Under the identical experimental conditions, the ASA 
(Chen et al., 2001) and the RWBS (Chen et al., 2005) were 
also applied to this example and the results obtained are 
reproduced in Figures 4(b) and 4(c), respectively. It can be 
seen from Figure 4 that both the ASA and RWBS had a 
similar convergence speed, requiring on average 300 cost 
function evaluations to converge to the global optimal 
solution while the PSO had a slightly faster convergence 
speed as it required a slightly fewer cost function 
evaluations, about 250 on average, to converge. The work of 
White and Flockton (1994) applied a GA to the same 
example. The result given in White and Flockton (1994) 
shows that the GA was slower to converge to the global 
minimum, requiring an average of 600 cost function 
evaluations to do so. 

For the QPSO with the swarm size 30S =  and the 
maximum number of iterations max 20,I =  appropriate 
values for maxc  and minc  were found empirically to be 

max 1.4c =  and min 0.6.c =  The learning curve of the QPSO 
is also depicted in Figure 4(a) in comparison with that 
obtained by the PSO. For this example, we do not see any 
convergence advantage of the QPSO over the PSO. From 
Figure 4(a), it can be seen that initially the QPSO algorithm 
converged faster than the PSO algorithm but after about 100 
cost evaluations it became slower than the PSO. In fact, the 
QPSO algorithm took on average 300 cost function 
evaluations to converge to the global optimal solution. The 
distribution of the solutions obtained in the 100 experiments 
by the PSO algorithm is shown in Figure 5, in comparison 
with the solution distributions obtained by the RWBS 
algorithm and the QPSO algorithm, which confirms that the 
solution quality of the PSO algorithm was better than the 
other two algorithms. 

Example two 

This was a third-order system with the transfer function 
given by: 

1 2

1 2 3
0.3 0.4 0.5( ) .

1 1.2 0.5 0.1S
z z

H z
z z z

− −

− − −

− + −
=

− + −
 (24) 

In the simulation, the system input ( )x k  was a uniformly 
distributed white sequence, taking values from (–1, 1) and 
the SNR = 30 dB. The data length used to calculate the 
MSE (5) was 2,000.N =  When a reduced-order filter with 

2M =  and 1L =  was used, the MSE became multimodal 
and the gradient-based IIR filter design performed poorly as 
was demonstrated in Chen et al. (2001). It was also clearly 
shown in Chen et al. (2005) that there were many global 
optimal solutions. 

Figure 6 Convergence performance averaged over 500  
random experiments for example two obtained using, 
(a) the PSO and QPSO (b) the ASA (c) the RWBS 

 
(a) 

 
(b) 

 
(c) 

Note: The ASA result is quoted from Chen et al. (2001) 
and the RWBS result from Chen et al. (2005). 
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Figure 7 Distribution of the solutions, 0 1( , )a a  shown as  
circles and 0 1( , )κ κ  shown as crosses, obtained in the 
500 random experiments for example two using,  
(a) the PSO (b) the RWBS (c) the QPSO 

 
(a) 

 
(b) 

 
(c) 

The swarm size 40S =  and the maximum number of 
iterations max 20I =  were used for both the PSO and QPSO 
algorithms, while max 1.0c =  and min 0.5c =  were adopted 
by the QPSO algorithm. The convergence performance of 
the four algorithms, the PSO, QPSO, ASA and RWBS, 
averaged over 500 experiments are depicted in Figure 6. 
The results of the ASA and RWBS are reproduced from 
Chen et al. (2001, 2005), respectively. Again, the ASA and 
RWBS algorithms are seen to have a similar convergence 
speed. However, the PSO converged faster than the ASA 
and RWBS algorithms. From Figure 6(a), it can also be seen 
that the PSO algorithm converged slightly faster than the 
QPSO algorithm to a global minimum, although the latter 
had slightly faster initial convergence speed. The 
distribution of the solutions obtained in the 500 random 
experiments by the PSO algorithm is illustrated in Figure 7, 
in comparison with the solution distributions obtained by 
the RWBS and QPSO algorithms. 

4 Conclusions 

This contribution has applied a popular global optimisation 
algorithm, known as the PSO, to the digital IIR filter design. 
Simulation study involving system identification application 
has demonstrated that the PSO is easy to implement, is 
robust against local minimum problem and has a fast 
convergence speed. In particular, compared with the results 
of using other global optimisation techniques for adaptive 
IIR filtering available in the literature, the efficiency and the 
solution quality of the PSO appear to be slightly better. 
Thus, this study has confirmed that the PSO offers a viable 
alternative design approach for IIR filtering. We have also 
implemented the QPSO algorithm to the same digital IIR 
filter design problem. But our results obtained do not show 
any performance advantage of the QPSO algorithm over the 
PSO, although the QPSO does have fewer algorithmic 
parameters that require tuning than the PSO algorithm. 
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Notes 
1 In the original QPSO (Sun et al., 2004, 2005, 2006), the 

uniform random variables 1,ϕ  2ϕ  and uϕ  are called at the 
element-level inside the inner loop for j  but we find that the 
performance is better by calling them at the vector-level 
outside the inner loop for .j  


