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Abstract. In this paper we introduce a new option pricing mech-
anism for reducing the exposure problem encountered by bidding
agents with complementary valuations when participating in sequen-
tial, second-price auction markets. Existing option pricing models
have two main drawbacks: they either apply fixed exercise prices,
which may deter bidders with low valuations, thereby decreasing al-
locative efficiency, or options are offered for free, in which case bid-
ders are less likely to exercise them, thereby reducing seller revenues.
The proposed mechanism involvingflexibly priced optionsaddresses
these problems by calculating the exercise price as well as the op-
tion price based on the bids received during an auction. For this new
model, which extends and encompasses all the previous models ex-
amined, we derive the optimal strategies for a bidding agent with
complementary preferences. Finally, we use these strategies to evalu-
ate the proposed option mechanism through Monte-Carlo simutions,
and compare it to existing mechanisms, both in terms of the seller
revenue and the social welfare. We show that our new mechanism
achieves higher market efficiency compared to having no options and
free options, while achieving higher revenues for the seller than any
existing option mechanism.

1 Introduction

Auctions are an efficient method for allocating resources or tasks
between self-interested agents and, as a result, have been an impor-
tant area of research in the multi-agent community. In recent years,
research has focused primarily on settings where agents have com-
binatorial preferences and are interested in purchasing bundles of
resources. Most of the solutions designed to address this problem
involve one-shot, combinatorial auctions, where all parties declare
their preferences to a center, which then computes the optimal allo-
cation and corresponding payments [2]. Although such auctions have
many desirable properties, in practice many settings are inherently
decentralized and sequential. Often, the resources to be allocated are
offered by different sellers, sometimes in different markets, or re-
sources become available over time. Examples include inter-related
items sold on eBay by different sellers in auctions with different clos-
ing times [4], decentralised transportation logistics, in which part-
capacity loads are offered throughout a day by different shippers [9],
and electricity grids, where a larger generation capacity needs to be
acquired from different sellers [7]. In such settings, an agent desiring
a bundle of goods (henceforth called asynergy bidder) is faced with
the so-calledexposureproblem when it has purchased a number of
items from the bundle, but is unable to obtain the remaining items. In

1 Intelligence, Agents, Multimedia Group, University of Southamp-
ton, SO17 1BJ Southampton, United Kingdom, email:
{vr2,iv,eg,nrj}@ecs.soton.ac.uk

order to address this important problem, this paper proposes a new
option pricing mechanism, and shows its superiority over existing
approaches.

In more detail, although the exposure problem is well known, it
has mostly been studied from the perspective of designing efficient
bidding strategies that would help agents act in such market settings
(e.g. [1, 3, 8, 11]). In this paper, we base our work on a different
approach, that preserves the sequential nature of the allocation prob-
lem, and which involves auctioningoptionsfor the goods, instead of
the goods themselves. An option is essentially a contract between the
buyer and the seller of a good, where (1) the writer or seller of the
option has theobligation to sell the good for theexercise price, but
not the right, and (2) the buyer of the option has theright to buy the
good for a pre-agreedexercise price, but not the obligation. Since
the buyer gains the right to choose in the future whether or not she
wants to buy the good, she pays for this right through anoption price
which she has to pay in advance, regardless of whether she chooses
to exercise the option or not.

Options are effective because they can help a synergy bidder re-
duce the exposure problem she faces since, even though she has to
pay the option price, if she fails to complete her desired bundle, she
does not have to pay the exercise price as well. Thereby, she is able
to limit her loss. Such options work well because part of the uncer-
tainty of not winning subsequent auctions is transferred to the seller,
who may now miss out on the exercise price if the buyer fails to ac-
quire the desired bundle. At the same time, the seller can also benefit
indirectly from the participation in the market by additional synergy
buyers, who would otherwise have stayed away, due to the risk of
exposure to a potential loss.

Applying options to reduce the exposure problem in sequential
auctions is not new, and there have been a limited number of pa-
pers that study this setting. In this context, two main types of pricing
mechanisms exist in the current literature. One approach (e.g. by [4])
is to have free options (i.e., an option price of zero), and then let
the exercise price be determined by the market (i.e., the submitted
bids). However, this approach enables self-interested agents to hoard
those options, even if they are unlikely to exercising them, thus con-
siderably reducing both the allocative efficiency of the market and
seller revenue. To address this, another approach (proposed in [6])
is to have a fixed exercise price, set by the seller, and then have the
market determine the option price. In this case, however, the exercise
price can be perceived as a reserve price since no bidder with a valu-
ation below that price has an incentive to participate. This negatively
effects the market efficiency, and may also affect the seller’s profits
by excluding some bidders from the market.

To address the shortcomings of existing option models, in this pa-
per we introduce a general pricing mechanism with flexibly priced



options, in which the exercise price, as well as the option price, are
determined by the market, and which generalises the aforementioned
option models. We then compare this model to the existing option
models and demonstrate the efficacy of our approach for a setting
in which asynergy bidderrequires items from all auctions, whereas
other bidders (calledlocal bidders) only participate in one of the auc-
tions. We choose this setting since it highlights the exposure problem,
but the mechanism can be equally applied to more general settings.
In doing so, we extend the state-of-the-art in the following ways:

• To compare our new approach with existing ones, we derive, for
the first time, the optimal bidding strategy for a synergy bidder in
an options model with fixed exercise prices.

• Before presenting the most general model, we start by introducing
a new option pricing mechanism, which involves both the option
and exercise price of an option being determined by the market.
We then extend this basic model and present a generalised flexibly
priced options model which encompasses all of the existing mod-
els, including the fixed exercise price model, as well as the model
with free options.

• We then derive the optimal bidding strategy for the synergy bidder
in this general model.

• We experimentally compare our new pricing model to existing op-
tion models from the literature, as well as to using direct auctions.
We show that our flexible options approach achieves 12%-13%
improvement in market allocation efficiency (measured in terms
of the social welfare of all participating agents), compared to the
state of the art fixed price options model. Furthermore, we show
that the generalised model can achieve between 4%-12% higher
revenue than all existing option pricing models.
The remainder of the paper is structured as follows. We first intro-

duce our setting more formally in Section 2. In Section 3, we then
present the various option models and the derivation of the optimal
bidding strategies. In Section 4, we present the experiments compar-
ing the various option models, and Section 5 concludes.

2 The Problem Setting

We consider a setting withm sequential, second-price, sealed-bid
auctions, each selling an option to buy a single item, where the clos-
ing time for auction at timej is strictly prior to the closing time of
auctionj + 1 (∀j = 1..m − 1). We choose these auctions because
local bidders desiring a single item (sold in only one of them auc-
tions) have a simple, dominant bidding strategy and, furthermore,
they are (weakly) strategically equivalent to the widely-used English
auction. We assume that there exists a singlesynergybidder who is
interested in purchasing all of the items and receives a value ofv if
it succeeds, and0 otherwise. We choose this setting to highlight the
exposure problem. Furthermore, every auctionj ∈ {1, . . . , m} has
Nj local bidders. These bidders only participate in their own auction,
and are only interested in acquiring a single item. The values of this
item for local bidders in auctionj are i.i.d. drawn from a cumulative
distribution functionFj . Finally, we assume that all bidders seek to
maximise their expected profits (i.e. expected value minus expected
payments).2

Given this setting, we are interested in finding theBayes-Nash
equilibrium strategies for all of the bidders for different option pric-
ing mechanisms.3 However, even with options, due to the second-
price auction, the local bidders have a dominant bidding strategy.

2 This implies that bidders are assumed to be risk neutral.
3 The Bayes-Nash equilibrium is the standard solution concept used in game

theory to analyze games with imperfect information, such as auctions.

Therefore, the main problem is finding the optimal strategy for the
synergy bidder and this is largely decision-theoretic in nature.

We furthermore note that, although we focus largely on a single
participating synergy bidder when presenting the strategies and re-
sults, this analysis can be easily extended to multiple synergy bid-
ders. This setting is addressed in Section 3.4.

3 Option Pricing Models

In this section we present the three option models that we examine in
this paper. In Section 3.1 we start by formally presenting the option
model with fixed exercise prices, followed, in Section 3.2, by our new
model with flexibly priced options. Although this model improves
efficiency, this comes at the expense of seller revenue compared to
the fixed exercise model (as we show in Section 4). We therefore
introduce a generalised flexibly priced options model in Section 3.3
which extends and encompasses all of the option models discussed in
this paper. We then derive the equilibrium bidding strategies for this
general model. Finally, in Section 3.4 we address the setting with
multiple synergy bidders.

3.1 Fixed Exercise Price

To compare our new approach with existing option pricing mecha-
nisms, we first derive the optimal bidding strategies for a synergy bid-
der in a fixed exercise price setting, where the exercise price for the
options to be acquired is set by the seller before the start of the auc-
tions.4 While the different exercise prices for the auctions are fixed
in advance, the option prices are determined by the second-highest
bid in the auction. In the following, we let

−→
K denote the vector of

fixed exercise prices, whereKj is the exercise price of thejth auc-
tion. Note that, ifKj = 0, this is equivalent to adirect saleauction,
i.e., without any options. Furthermore, note that local bidders have
a dominant strategy to bid their value minus the exercise price if
this difference is positive, and zero otherwise. The following theo-
rem then specifies the optimal bidding strategy of the synergy bidder
(we omit the proof since we later present the proof of Theorem 2,
which is a generalisation of this theorem):

Theorem 1. Consider the setting presented above, with a pre-
specified exercise price vector

−→
K . If v ≤

∑m

j=1
Kj , then b∗r =

0, r ∈ {1, . . . , m} constitutes a Bayes-Nash equilibrium for the syn-
ergy bidder. Otherwise, the equilibrium is given by:

b
∗
r =











v −
∑m

j=1
Kj , if r = m

∫ b∗r+1+Kr+1

Kr+1
H(ω)dω, if 1 ≤ r < m

(1)

whereHj(x) = (Fj(x))Nj .

3.2 Flexibly Priced Options

In the above fixed exercise price options model, the existence of the
exercise prices creates a secondary effect similar to having a reserve
price in the auction. This is because any bidder with a private valu-
ation lower thanKj will not participate in the auction and the same
will happen if the synergy bidder has a valuation lower than the sum
of the exercise prices. Although this reduces the exposure problem of

4 This option protocol is similar to the one in [6], but their bidding strategy
relies on using a heuristic, and they do not derive analytical expressions for
the equilibrium strategies w.r.t. the local bidders.
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Figure 1. The relationship between the maximum exercise price,KH , and
the second-highest bid,b2nd, and its effect in determining the option price,

p, and actual exercise price,K, for flexibly priced options model.

the synergy bidder compared to direct sales, at the same time it may
significantly reduce the market efficiency, and also negatively effects
seller revenue if this value is set too high.

In order to remove this effect, we introduce a model involving flex-
ibly priced options, i.e., that have a flexible exercise price (first pre-
sented, as an extended abstract, in [10]). In more detail, in this model,
we set amaximumexercise priceKH

j for the auction, but the actual
exercise priceKj depends on the bids placed by the bidders so as to
eliminate the reserve price effect. Specifically, this is set to:

Kj = min{KH
j , b

2nd
j },

whereb2nd
j is the second-highest bid. Furthermore, the price paid by

the winning bidder in order to purchase the option (the option price)
is set to:

pj = b
2nd
j − Kj

To understand how this mechanism works, Figure 1 illustrates its
features and how it compares to some existing approaches. As shown,
depending on the values ofKH

j and b2nd, one of two situations
can occur. EitherKH

j < b2nd, in which case the actual exercise
price is set toKH

j , and the winner paysb2nd − KH
j . Otherwise,

if KH
j ≥ b2nd, then the actual exercise price is set to the second

highest bid and the option is given to the winning bidder for free. In
both cases, however, the total payment of the winner (if she decides
to exercise the purchased option) will be equal to the second high-
est bid. Crucially, this means that, unlike the option mechanism with
fixed exercise prices, from a local bidder’s perspective, this auction
is identical to a regular second-price auction, and there are no sec-
ondary effects on these bidders. Therefore, this options model only
affects bidders with synergies.

Moreover, note from Figure 1 that this approach is a generalization
of two other auction mechanisms. If the seller setsKH

j = 0, then the
auction becomes identical to a direct sales auction (without options).
Furthermore, ifKH

j is set at a sufficiently high value (i.e. asKH
j →

∞), then the exercise price is always equal to the second highest bid,
and the option is always purchased for free.

The advantage of the flexibly priced options model is that it re-
moves the reserve price effect and thereby increases market effi-
ciency. However, as we will show in the experiments (Section 4), a
seller may still prefer using the fixed exercise price model since this
can generate higher revenue when the fixed exercise price is appro-
priately selected. Therefore, in the next section we propose a gener-
alised model that can obtain both high efficiency and seller revenue.

3.3 Generalised Flexibly Priced Options Model

In this section, we extend the flexibly priced model of section 3.2
to include aminimum exercise price5, which enables the seller to
control the revenue level of the auction. This more general model
encompasses a wide range of existing option mechanisms and can

5 An alternative approach is to set a minimum option or reserve price, which
is equivalent from a local bidder’s perspective, but is lesseffective in re-
ducing the exposure problem for a synergy bidder.

take advantage of all the benefits of the models discussed so far. This
means that it can achieve both high efficiency and high seller revenue
at the same time. More formally:

Definition 1. Generalised Flexibly Priced Options
LetKL

j andKH
j denote the minimum and maximum exercise prices

respectively for auctionj. These parameters are set by the seller in
advance of the auction and are known to the bidders. Furthermore,
b2nd
j is the second highest bid. Then the actual exercise price,Kj , of

the auction is given by:

Kj = max{KL
j , min{KH

j , b
2nd
j }}

Furthermore, the option price is given by:

pj = max{0, b
2nd
j − Kj}

Note that by settingKL
j = KH

j = Kj , this corresponds to the
the model with fixed exercise prices.Furthermore, the flexibly priced
options model is given byKL

j = 0. We now derive the equilibrium
strategy of a synergy bidder for the generalised model:

Theorem 2. Considering the same setting as before, the following
bidsb∗r , r ∈ {1, . . . , m} constitute a Bayes-Nash equilibrium for the
synergy bidder in auctions with generalised flexibly priced options.
If r = m:

b
∗
m = v −

m−1
∑

i=1

Ki (2)

If r < m andv ≤
∑r−1

i=1
Ki + KH

r +
∑m

i=r+1
KL

i :

b
∗
r = v −

r−1
∑

i=1

Ki −
m

∑

i=r+1

K
L
i (3)

Otherwise: b
∗
r = K

H
r + EP

∗
r+1(v,

−→
K

∗
r(K

H
r )) (4)

whereEP ∗
j denotes the equilibrium expected profit of the synergy

bidder at timej. EP ∗
j can be calculated recursively as follows.

First, if j = m:

EP
∗

m(v,
−→
K

∗

m) = (v −

m−1
∑

i=1

Ki − K
L
m)Hm(K

L
m)

+

∫

v−

∑m−1
i=1

Ki

KL
m

(v −

m−1
∑

i=1

Ki − ω)H
′

m(ω)dω (5)

If j < m andv ≤
∑j−1

i=1
Ki + KH

j +
∑m

i=j+1
KL

i :

EP
∗

j (v,
−→
K

∗

j ) = EP
∗

j+1(v,
−→
K

∗

j (K
L
j ))Hj(K

L
j )

+

∫

v−

∑j−1
i=1

Ki−
∑m

i=j+1 KL
i

KL
j

EP
∗

j+1(v,
−→
K

∗

j (ω))H
′

j(ω)dω (6)

Otherwise:

EP
∗

j (v,
−→
K

∗

j ) = EP
∗

j+1(v,
−→
K

∗

j (K
L
j ))Hj(K

L
j )

+

∫

KH
j

KL
j

EP
∗

j+1(v,
−→
K

∗

j (ω))H
′

j(ω)dω

+

∫

KH
j

+EP∗

j+1(v,
−→
K∗

j
(KH

j
))

KH
j

(EP
∗

j+1(v,
−→
K

∗

j (K
H
j ))−ω+K

H
j )H

′

j(ω)dω

(7)

where Hj(x) = (Fj(x))Nj . Here, Kj denotes the actual exer-
cise price for an option that the synergy bidder has purchased.
Furthermore, the vector

−→
K∗

j contains known exercise prices
from all past auctions when participating in thejth auction, as
well as the parameters for auctions still to come. Specifically:
−→
K∗

j = 〈{K1}, . . . , {Kj−1}, {K
L
j , KH

j }, . . . , {KL
m, KH

m}〉,

for j = 1, . . . , m. Furthemore, we let
−→
K∗

j (x) =

〈{K1}, . . . , {Kj−1}, {x}, {K
L
j+1, K

H
j+1} . . . , {KL

m, KH
m}〉.



Proof. Note that the local bidders would have to pay eitherpj +
Kj = KL

j if the second highest bidb2nd
j ≤ KL

j , or pj + Kj =

b2nd
j otherwise. Therefore each auction is strategically equivalent to

a second price auction with reserveKL
j , from the point of view of a

local bidder. Thus, these bidders would participate and bid truthfully,
if their valuation is at leastKL

j (see [5]).
The synergy bidder cares about the value of the highest bid (and

thus the highest valuation) among theNj local bidders participating
in the jth auction. These valuations are drawn from a distribution
with cdf Fj(x), thus the top bid of the local bidders is a random
variable with cdfHj(x) = (Fj(x))Nj .6

To compute the bidding strategy of the synergy bidder, we start
from the last (mth) auction. She bidsbm = 0, if she has not won
all the previous auctions, as she needs all the items to make a profit.
Otherwise, if the exercise prices for the options purchased areKj ,
her profit equalsv−

∑m−1

i=1
Ki −max{KL

m, ω} by winning the last
item when the highest opponent bid is equal toω,7 whereω is drawn
from Hm(x). Her expected utility (when she bidsbm) is:

EPm(v, bm,
−→
K

∗

m) = (v −

m−1
∑

i=1

Ki − K
L
m)H

′

m(K
L
m)+

∫

bm

KL
m

(v −

m−1
∑

i=1

Ki − ω)H
′

m(ω)dω

The bid which maximizes this utility is found by setting:

dEPm(v, bm,
−→
K∗

m)

dbm

= 0 ⇔ v −

m−1
∑

i=1

Ki − bm = 0,

which gives Equation 2. The expected profit of synergy bidder when
bidding bm is therefore:EP∗

m(v,
−→
K∗

m) = EPm(v, bm,
−→
K∗

m) , which
gives Equation 5, when substitutingbm from Equation 2.

Assume that we have computed the bidsbj and expected profit
EP ∗

j for ∀j > r and that these are given by the equations of this
theorem. To complete the proof, we now compute the bid and ex-
pected profit for therth auction. We examine two cases, depending
on whetherbr ≤ KH

r or not:
Case I: br ≤ KH

r . Then∀ω ≤ br ⇒ ω ≤ KH
r . Hence, if the

synergy bidder wins with a bid ofbr, the second bid in the auction
(which is the highest opponent bid) must be smaller thanKH

r and
therefore the exercise price is equal to this bid (orKL

r if this bid is
lower thanKL

r ) and it is given for free. Thus, the expected profit of
the synergy bidder is:

EPr(v, br,
−→
K

∗

r) = EP
∗

r+1(v,
−→
K

∗

r(K
L
r ))Hr(K

L
r )

+

∫

br

KL
r

EP
∗

r+1(v,
−→
K

∗

r(ω))H
′

r(ω)dω

To find the bidbr that maximizes this expected utility we use La-
grange multipliers. After we introduce a factorδ to convert the in-
equality, it can be rewritten as:br − KH

r + δ2 = 0. Then, the La-
grange equation becomes:

Λ(br, λ, δ) = −EPr(v, br,
−→
K

∗

r) + λ(br − K
H
r + δ

2
)

The possible variables which maximize this function are found by
setting the partial derivative for all the dependent variablesbr, λ, δ to
0:

ϑΛ(br, λ, δ)

ϑbr

= 0 ⇔ EP
∗

r+1(v,
−→
K

∗

r(br))H
′

r(br) = λ

ϑΛ(br, λ, δ)

ϑλ
= 0 ⇔ br − K

H
r + δ

2
= 0

ϑΛ(br, λ, δ)

ϑδ
= 0 ⇔ λδ = 0

6 To be entirely precise, we assume that if this highest bid is lower than the
minimum exercise priceKL

j , then the bids are actually placed but ignored
eventually.

7 Note that it should bev ≥
∑m−1

i=1
Ki + KL

m when she has won all the
previous auctions, which follows from the bids placed.

The last equation can mean that: either (i)δ = 0, thusbr = KH
r ,

or (ii) λ = 0, and by substituting into the first equation, we get that
EP ∗

r+1(v,
−→
K∗

r(br)) = 0. The expected utilityEP ∗
r+1 is given ei-

ther by Equation 6 or 7, depending on whether the valuation dis-
counted by the exercise prices up to that point and the minimum ex-
ercise prices of future roundsv −

∑i=r

i=1
Ki −

∑m

i=r+2
KL

i is less
or greater (respectively) thanKH

r+1. The second case cannot be, if

EP ∗
r+1(v,

−→
K∗

r(br)) = 0, because the first integral of Equation 7 is
greater than0, unlessbr = KL

r = KH
r , which would yield an ex-

pected utility of0 and thus cannot be the optimal bid (in general). On
the other hand, if the expected utilityEP ∗

r+1 is given by Equation 6,

then it isEP ∗
r+1(v,

−→
K∗

r(br)) = 0 exactly when the upper bound of
the integral is equal toKL

r+1, which gives Equation 3. This happens
becauseKr is set to bidbr of Equation 3, and thus, by placing this
bid br, both parts of Equation 6, for roundr + 1 become equal to0.

Note that of the two possible maximabr = v −
∑r−1

i=1
Ki −

∑m

i=r+1
KL

i (Eq. 3) andbr = KH
r , given by this analysis, the

first one yields a higher revenue, asEP ∗
r+1(v,

−→
K∗

r(ω))H
′

r(ω) <

0, ∀ω > v −
∑r−1

i=1
Ki −

∑m

i=r+1
KL

i . This means that the opti-

mal bid is given by Eq. 3. It should bebr ≤ KH
r ⇔ v−

∑r−1

i=1
Ki −

∑m

i=r+1
KL

i ≤ KH
r , which gives the bound of the theorem.

Case II: br > KH
r . If the synergy bidder wins with bidbr, the

second bid in the auction could be smaller thanKH
r , thus the exercise

price is equal to this bid (orKL
r if the bid is even smaller than this)

and it is given for free, like in the previous case. However, it could
also be higher thanKH

r , and thus the exercise price is equal toKH
r ,

whereas the payment for getting the options would be equal to the
second bid minusKH

r . Hence, the expected profit of the synergy
bidder is:

EPr(v, br,
−→
K

∗

r )=EP
∗

r+1(v,
−→
K

∗

r (K
L
r ))Hr(K

L
r )+

∫

KH
r

KL
r

EP
∗

r+1(v,
−→
K

∗

r (ω))H
′

r(ω)dω

+

∫

br

KH
r

(EP
∗

r+1(v,
−→
K

∗

r (K
H
r )) − ω + K

H
r )H

′

r(ω)dω

To find the bid br that maximizes this expected utility we use
Lagrange multipliers again:

Λ(br, λ, δ) = −EPr(v, br,
−→
K

∗

r) + λ(br − K
H
r − δ

2
)

ϑΛ(br, λ, δ)

ϑbr

= 0 ⇔ H
′

r(br)
(

EP
∗

r+1(v,
−→
K

∗

r(K
H
r )) − br + K

H
r

)

= λ

ϑΛ(br, λ, δ)

ϑλ
= 0 ⇔ br − K

H
r − δ

2
= 0

ϑΛ(br, λ, δ)

ϑδ
= 0 ⇔ λδ = 0

The last equation can mean that: either (i)δ = 0, thus br =
KH

r , or (ii) λ = 0, and by substituting into the first equation,
we get thatH

′

r(br)
(

EP ∗
r+1(v,

−→
K∗

r(K
H
r )) − br + KH

r

)

⇔ br =

EP ∗
r+1(v,

−→
K∗

r(K
H
r )) + KH

r , which is indeed Equation 4. It should

be br ≥ KH
r ⇔ EP ∗

r+1(v,
−→
K∗

r(K
H
r )) ≥ 0. This happens exactly

when v −
∑r

i=1
Ki >

∑m

i=r+1
KL

i . But sinceKr = KH
r , this

means thatv >
∑r−1

i=1
Ki + KH

r +
∑m

i=r+1
KL

i .
Note that of the two possible maximabr = KH

r andbr = KH
r +

EP ∗
r+1(v,

−→
K∗

r(K
H
r )), given by this analysis, the first one yields a

higher revenue, as(EP ∗
r+1(v,

−→
K∗

r(K
H
r )) − ω + KH

r )H
′

r(ω) >

0, ∀ω ∈ [KH
r , br]. Hence, the optimal bid is given by Eq. 4, when

v >
∑r−1

i=1
Ki + KH

r +
∑m

i=r+1
KL

i .

The intuition behind these equations, in simple terms, is that in
the last auction the bidder bids according to its valuationv minus the
exercise pricesKi which it will have to pay in order to buy all the
previous items; the last auction is essentially strategically equivalent
to a standard second price auction with a reserve price, so the bidder
bids its true (discounted) value. In any previous auctionr < m,



the discounted valuev minus the exercise pricesKi up to that point
give the discounted value of the bidder; this is further discounted by
the minimum exercise pricesKL

i of the future auctions. Now, if this
value is higher than the maximum exercise price limitKH

r for that
auction, then it bids this maximum exercise price limitKH

r plus the
profit it expects from the remaining rounds conditional on the fact
thatKr = KH

r ; if the exercise priceKr is indeed smaller then its
profit can only increase. On the other hand, since the agent cannot bid
higher than the discounted value, if this is smaller thanKH

r , then the
agent hopes to get the option for free, therefore it bids the discounted
value; if it wins it will have to pay0 and the exercise priceKr will be
smaller than the discounted valuev−

∑r−1

i=1
Ki−

∑m

i=r+1
KL

i , thus
in the next round the discounted valuev −

∑r

i=1
Ki −

∑m

i=r+2
KL

i

at that point will be higher thanKL
r+1, and the synergy bidder will

always be able to participate. This is also true, when the discounted
value is greater thanKH

r .

3.4 Multiple Synergy Bidders
We finish the theoretical analysis by showing that in all the theorems
that we have presented, the bidding strategies will remain unchanged,
even if multiple (i.e.n) synergy bidders participate. We prove this for
the flexible auction model from Theorem 2, but the same argument
applies to the fixed option model in Theorem 1.

Proposition 1. A setting withn synergy bidders with a valuation
vi for synergy bidderi when it obtainsm items, and0 otherwise, is
strategically equivalent (in the case of a sequence ofm auctions with
generalised flexibly priced options) to a setting where only a single
synergy bidder participates and his valuation is equal tomaxi{vi}.

Proof. As Eq. 3 and 4 show, the optimal bids of synergy bidders
in any auction are not affected by their opponents’ bids placed in
that particular auction, but only in the remaining ones. Furthermore,
each synergy bidder would need to win all items in order to make a
profit, thus only the synergy bidder (if any) who won the first auction
would participate in the remaining ones, and the bidding strategies
and the expected profit in the remaining rounds would remain un-
changed. Thus, only the synergy bidder with the highest valuation
v = maxi{vi} matters in the analysis, as he is the only one who can
win the first auction. This scenario is strategically equivalent to one
where only the highest valuation synergy bidder participates.

4 Experimental Analysis
In this section, we use the the optimal bidding strategies derived in
Section 3 to evaluate experimentally the flexible option pricing mod-
els and compare them to existing option models as well as direct sales
(which appears as a special case forK = KL = KH = 0).

4.1 Experimental Setup
The setting used for our experiments is as follows. In each run, we
simulate a market consisting ofm = 3 sequential auctions. Each
auction involvesN = 5 local bidders, and one synergy bidder. The
valuations of the local bidders are i.i.d. drawn from normal distri-
butionsN (µ = 2, σ = 4), bounded at 0. The reason for choos-
ing such a high dispersion is that this increases the uncertainty in
the market, and hence the benefits of using options. The valuation
for the synergy bidder,vsyn, is drawn from the normal distribution
N (µsyn = 20, σsyn = 2). This setting was chosen as it demon-
strates the effect of the exposure problem; if the value of the synergy
bidder is set too high, then the synergy bidder would win all of the
auctions, even in the case of direct sale. On the other hand, if the

value is set too low, then the exposure problem disappears since lo-
cal bidders will win all of the auctions. Here the value of the synergy
bidder is in between these extremes and is representative of a setting
in which the exposure problem plays an important role.

The exercise prices for the options are set as follows. For the fixed
exercise options model, the value ofK was varied betweenK = 0 (a
setting equivalent to direct sale) andK = 20 (the average valuation
of the synergy bidder), for all the 3 items offered in the auction se-
quence. For the generalized flexible case, we consider 2 values of the
parameterKL: KL = 0 andKL = 6. The rationale for this choice is
thatKL = 0 represents the fully flexible auction model (introduced
in Section 3.2), whileKL = 6 represents the value which was found
experimentally to provide the best revenues for the seller. In both of
these generalised cases, the value of the upper limitKH was varied
from 0 to 20, as for the fixed case.

4.2 Efficiency Criteria
We compare the three option models above based on two main com-
parison criteria, which are standard in auction theory: the allocative
efficiency of the market and the revenue obtained by the auctioneer.

Formally, the allocative efficiency is calculated as follows. Letvk
i

denote the valuation of local bidderi (wherei ∈ {1..N}) in the
kth auction (wherek ∈ {1..m}) and letvsyn be the valuation of
the synergy bidder. Furthermore, letxk

i , xsyn ∈ {0, 1} denote the
actual allocation of the options in a certain run of the simulation.
That is,x1

i = 1 means that local bidderi acquired the option in the
1st auction, andxsyn = 1 means that the synergy bidder wonall the
auctions. Given this, the allocative efficiency,η, of the entire market
in a given run is defined as:

η =

∑n

i=1

∑m

k=1
xk

i vk
i + xsynvsyn

max
(

vsyn,
∑m

k=1
maxi∈{1,...,N}(vk

i )
) (8)

By calculating the efficiency of the market in this way, we im-
plicitly assume that local bidders will always exercise their options,
and that the synergy bidder will exercise its option if and only if it
wins all auctions. We can safely make this assumption because we
consider optimal bidding strategies, and a rational bidder will never
place a bid such that the combined exercise and option price will ex-
ceed the (marginal) value of the item. Therefore, it is optimal for a
bidder who has acquired options for all of its desired items to ex-
ercise them. Thus aninefficient outcome occurs in two situations.
Either the local bidders have won the items, but the value of the syn-
ergy bidder exceeds the sum of the values of the local bidders; or, the
synergy bidder has won some auctions but not all, and will therefore
not exercise its option(s).

4.3 Experimental Results
Figure 2 compares the allocative efficiency of the market (left), and
the seller revenues (right) for the three option mechanisms. Here,
flexible Kcorresponds to the general model whereKL = 0; fixed K
corresponds toK = KL = KH ; the third line shows the generalised
option model which starts atK = KL = KH = 6 after which we
keepKL fixed at6 while KH increases.

Note that, for thefixed exercise priceoption model, both the ef-
ficiency and the seller revenue decrease sharply whenK becomes
larger than around6. At this point, the synergy bidder is likely to
leave the market due to the reservation price effect of this mecha-
nism. Specifically, this occurs when the sum of the exercise prices
of the auctions exceeds the valuation of the synergy bidder, in which
case the bidder no longer has an incentive to participate. This also
holds for many of the local bidders.



0 2 4 6 8 10 12 14 16 18 20
0.8

0.82

0.84

0.86

0.88

0.9

0.92

Value of the exercise price K, respectively K
H

 selected by the auctioneer

M
ar

ke
t a

llo
ca

tio
n 

ef
fic

ie
nc

y

Allocation efficiency for fixed, flexible and generalised flexible option markets

 

 

Flexible K
Fixed K
K

L
=6, Flexible K

H

0 2 4 6 8 10 12 14 16 18 20

19

19.5

20

20.5

21

Value of the exercise price K
H

, respectively K set by the seller

To
ta

l r
ev

en
ue

 o
f t

he
 a

uc
tio

ne
er

Auctioneer revenue in the fixed, flexible and generalised flexible option models

 

 

Flexible K

Fixed K

K
L
=6, Flexible K

H

Figure 2. Allocative efficiency (left) and seller revenue (right) using the options mechanism with fixed and flexible exercise price, for different values ofK,
respectively andKH . The graph shows averages and standard error bars over 10000runs, for each data point.

As shown by the results, this reservation effect can be avoided by
using the flexibly priced option mechanism. In this mechanism, the
level of KH has a different effect thanK in fixed-price options. In
particular, the options become effectively free whenKH becomes
sufficiently high. This is because, whenKH is set very high, it will
almost certainly exceed the second-highest bid. If this happens, the
exercise price becomes equal to this bid, and the option price be-
comes zero (see Section 3.2). However, free options can also be sub-
optimal in terms of market efficiency. This is because a synergy bid-
der will always bid to acquire the options, even if she has a very low
probability of exercising them. In such a case, if the seller receives
a high bid from one of the local bidders, it may be better to allocate
the item to this local bidder, rather than the synergy bidder.

While the flexibly priced option model outperforms the other mod-
els in terms of efficiency (as is shown in Figure 2), the same can-
not be said for seller revenue. As Figure 2 (right) shows, the seller
can achieve higher revenues by using fixed exercise prices. Here, the
fixedK in our model acts effectively as a reserve price and standard
auction theory shows that, even in a single second-price auction, the
seller can increase its revenues by using reserve prices [5].

Now, both revenue and efficiency can be addressed using our more
generalised flexible model, which admits both a lower and an upper
limit of the exercise price, and thus can take care of both of these
aspects. In the case shown in the figure, we fix the lower threshold
to KL = 6, which was found to be the level ofKL for which the
best auctioneer revenue can be achieved, for this setting. Beyond this
value, bidding agents would start to drop out of the market. The upper
limit KH is allowed to rise, however, thus capturing some of the ben-
efits of both the fixed and flexible options. Somewhat surprisingly, as
shown in Figure 2 (right), the generalised option pricing outperforms
both of the other option models (as well as direct auctions, i.e. for
K = KH = 0) in terms of revenue which can be extracted by the
seller. On closer analysis, this is because it can take advantage of
the reserve price effect like the fixed option pricing model, but at the
same time it is able to maintain a higher level of allocation efficiency.
Naturally, the allocative efficiency is higher forKL = 0 since this
removes the reserve price effect, but this comes at a cost in terms
of revenue. Nonetheless, the setting which generates the highest rev-
enue for the seller still results in a higher allocative efficiency com-
pared to the fixed pricing model and direct auctions (denoted Fig. 2
by the point in whichK = KL = KH = 0).

5 Conclusions
In this paper, we introduce an option pricing mechanism which ad-
dresses the exposure problem of a synergy bidder. Here, the exercise
price is set flexibly, as a minimum between the second highest bid
and a seller-prescribed maximum level, while the option price is de-
termined by the open market. We derive the optimal bidding policies
of the synergy bidder for a combined mechanism which encompasses
our new approach, as well as existing option models. We show that
our combined pricing model can significantly increase the efficiency
of the resulting allocations compared to fixed-priced options and hav-
ing no options, while at the same time obtaining higher revenues than
any of the other option models, including the flexibly priced one.

The results in this paper are based on the assumption that the syn-
ergy bidder is interested in winning all the auctions, and derives no
utility from winning less. This setting best captures the exposure
problem, and our main goal here was to demonstrate the effective-
ness of the new option pricing model in addressing this issue. Now,
while there are a number of settings where such an assumption is re-
alistic8, there are also settings where bidders are interested in more
complex or partial subsets of the available goods. Thus, our future
work will seek to extend our analysis to deal with such cases.
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