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Abstract. In this paper we introduce a new option pricing mech- order to address this important problem, this paper proposes a new
anism for reducing the exposure problem encountered by biddingption pricing mechanism, and shows its superiority over existing
agents with complementary valuations when participating in sequerapproaches.

tial, second-price auction markets. Existing option pricing models In more detail, although the exposure problem is well known, it
have two main drawbacks: they either apply fixed exercise priceshas mostly been studied from the perspective of designing efficient
which may deter bidders with low valuations, thereby decreasing albidding strategies that would help agents act in such market settings
locative efficiency, or options are offered for free, in which case bid (e.g. [1, 3, 8, 11]). In this paper, we base our work on a different
ders are less likely to exercise them, thereby reducing seller revenuespproach, that preserves the sequential nature of the allocation prob-
The proposed mechanism involvifigxibly priced optionsiddresses  lem, and which involves auctionirgptionsfor the goods, instead of
these problems by calculating the exercise price as well as the ophe goods themselves. An option is essentially a contract between the
tion price based on the bids received during an auction. For this newuyer and the seller of a good, where (1) the writer or seller of the
model, which extends and encompasses all the previous models egption has thebligationto sell the good for thexercise pricebut
amined, we derive the optimal strategies for a bidding agent witmot the right, and (2) the buyer of the option has tiight to buy the
complementary preferences. Finally, we use these strategies to evalgeod for a pre-agreeexercise pricebut not the obligation. Since

ate the proposed option mechanism through Monte-Carlo simutionghe buyer gains the right to choose in the future whether or not she
and compare it to existing mechanisms, both in terms of the sellewants to buy the good, she pays for this right througlation price
revenue and the social welfare. We show that our new mechanismvhich she has to pay in advance, regardless of whether she chooses
achieves higher market efficiency compared to having no options antb exercise the option or not.

free options, while achieving higher revenues for the seller than any Options are effective because they can help a synergy bidder re-
existing option mechanism. duce the exposure problem she faces since, even though she has to
pay the option price, if she fails to complete her desired bundle, she
does not have to pay the exercise price as well. Thereby, she is able
to limit her loss. Such options work well because part of the uncer-

Auctions are an efficient method for allocating resources or taskéa'nty of not winning subsequent au9t|ons_|s tr'ansferred 0 the seller,
It]o may now miss out on the exercise price if the buyer fails to ac-

between self-interested agents and, as a result, have been an imp\g re the desired bundle. At th i th f Iso benefit
tant area of research in the multi-agent community. In recent year uire the desired bundle. € same time, the Seller can aiso benetl

research has focused primarily on settings where agents have Com_directly from the participgtion in the market by additional synergy
binatorial preferences and are interested in purchasing bundles gyyers, who would qtherW|se have stayed away, due to the risk of
resources. Most of the solutions designed to address this probleﬁf(posur.e toa p_otentlal loss. . .
involve one-shot, combinatorial auctions, where all parties declare Applylng options to reduce the exposure prok?lem in sequential
their preferences to a center, which then computes the optimal aIIo"’-IlJCtIons Is not new, ar_1d there .have been a I|m|t_ed number Qf_pa-
cation and corresponding payments [2]. Although such auctions ha ers tha_t study t.hlsf setting. In th'§ context, two main types of pricing
echanisms exist in the current literature. One approach (e.g. by [4]

many desirable properties, in practice many settings are inherentl) o h f i . i ) f d then let
decentralized and sequential. Often, the resources to be allocated el0 Nave iree options (ie., an option price 0 zgro), and then fe
the exercise price be determined by the market (i.e., the submitted

offered by different sellers, sometimes in different markets, or re- ids). H thi h bl f-int ted ts 1o hoard
sources become available over time. Examples include inter-relate 5). However, this approach enables self-interested agents to hoar

items sold on eBay by different sellers in auctions with different Clos-t _gse g:)tlonds, e_vent;f met);‘are”unllligly toﬁc_e>_<er<:|smgfg ttlk?em, thkust cor;—
ing times [4], decentralised transportation logistics, in which part-SI erably reducing bo € allocalive €ficiency ot the market an

capacity loads are offered throughout a day by different shiprs [ seller revenue. To address this, another approach (proposed) in [6]

and electricity grids, where a larger generation capacity needs to b to have a fixed exercise price, set by the seller, and then have the

acquired from different sellers [7]. In such settings, an agentidgsir market determine the option price. In this case, however, the exercise

a bundle of goods (henceforth calledynergy bidderis faced with prlice can be perce.ived asareserve price sin(;g no biddgr with a.valu-
the so-callecexposureproblem when it has purchased a number of ation below that price has an incentive to participate. This negatively

items from the bundle, but is unable to obtain the remaining items. IrﬁffECtS th? market ef_flClency, and may also affect the sellers profits
y excluding some bidders from the market.
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1 Introduction




options, in which the exercise price, as well as the option price, ar&herefore, the main problem is finding the optimal strategy for the
determined by the market, and which generalises the aforementionesynergy bidder and this is largely decision-theoretic in nature.

option models. We then compare this model to the existing option We furthermore note that, although we focus largely on a single
models and demonstrate the efficacy of our approach for a settingarticipating synergy bidder when presenting the strategies and re-
in which asynergy bidderequires items from all auctions, whereas sults, this analysis can be easily extended to multiple synergy bid-
other bidders (calletbcal bidderg only participate in one of the auc- ders. This setting is addressed in Section 3.4.

tions. We choose this setting since it highlights the exposure problem,

but the mechanism can be equally applied to more general setting
In doing so, we extend the state-of-the-art in the following ways:

e To compare our new approach with existing ones, we derive foph this section we present the three option models that we examine in
the first time, the optimal bidding strategy for a synergy bidder inthis paper. In Section 3.1 we start by formally presenting the option
an options model with fixed exercise prices. model with fixed exercise prices, followed, in Section 3.2, by our new

o Before presenting the most general model, we start by introducin§de! with flexibly priced options. Although this model improves
a new option pricing mechanism, which involves both the optioneﬁ'c'?”cy' this comes at the expense of_ seller revenue compared to
and exercise price of an option being determined by the markethe fixed exercise model (as we show in Section 4). We therefore

We then extend this basic model and present a generalised flexibijfiroduce a generalised flexibly priced options model in Section 3.3
priced options model which encompasses all of the existing modWhich extends and encompasses all of the option models discussed in

els, including the fixed exercise price model, as well as the modeihis paper. We then derive the equilibrium bidding strategies for this
with free options. gengral model. Flpally, in Section 3.4 we address the setting with
e We then derive the optimal bidding strategy for the synergy biddefMultiple synergy bidders.
in this general model.
» We experimentally compare our new pricing model to existingop-3.1  Fixed Exercise Price
tion models from the literature, as well as to using direct auctions.
We show that our flexible options approach achieves 12%-139J© compare our new approach with existing option pricing mecha-
improvement in market allocation efficiency (measured in termshisms, we first derive the optimal bidding strategies for a synergy bid-
of the social welfare of all participating agents), compared to theder in a fixed exercise price setting, where the exercise price for the
state of the art fixed price options model. Furthermore, we showPPtions to be acquired is set by the seller before the start of the auc-
that the generalised model can achieve between 4%-12% highéipns.“ While the different exercise prices for the auctions are fixed
revenue than all existing option pricing models. in advance, the option prices are determgled by the second-highest
The remainder of the paper is structured as follows. We first introid in the auction. In the following, we lek” denote the vector of
duce our setting more formally in Section 2. In Section 3, we therfixed exercise prices, whee; is the exercise price of thg" auc-
present the various option models and the derivation of the optimalfon- Note that, if; = 0, this is equivalent to direct saleauction,
bidding strategies. In Section 4, we present the experiments compak€-» Without any options. Furthermore, note that local bidders have

3 Option Pricing Models

this difference is positive, and zero otherwise. The following theo-
2 The Problem Setting rem then specifies the optimal bidding strategy of the synergy bidder

(we omit the proof since we later present the proof of Theorem 2,
We consider a setting wittn sequential, second-price, sealed-bid which is a generalisation of this theorem):

auctions, each selling an option to buy a single item, where the clos- ) . )
Theorem 1. Consider the setting presented above, with a pre-

ing time for auction at timg is strictly prior to the closing time of iy

auctionj + 1 (Vj = 1..m — 1). We choose these auctions becausespecified exercise price vectdt. If v < > " | Kj, thenb; =
local bidders desiring a single item (sold in only one of theauc- 0,7 € {1,..., m} constitutes a Bayes-Nash equilibrium for the syn-
tions) have a simple, dominant bidding strategy and, furthermore€rdy bidder. Otherwise, the equilibrium is given by:

they are (weakly) strategically equivalent to the widely-used English VYK, it —m

auction. We assume that there exists a sisgieergybidder who is . g=1729

interested in purchasing all of the items and receives a valuefof b, = b K @)

it succeeds, and otherwise. We choose this setting to highlight the KTfl " H(w)dw, f1<r<m

exposure problem. Furthermore, every auctjioa {1,...,m} has

Nj local bidders. These bidders only participate in their own auctionWwhereH; (z) = (F} ().

and are only interested in acquiring a single item. The values of this

it_em_for _Iocal bid(_jers in quctiom are i.i.d. drawn from _acumulative 3.2 Flexibly Priced Options

distribution functionF;. Finally, we assume that all bidders seek to

maximise their expected profits (i.e. expected value minus expecteld the above fixed exercise price options model, the existence of the

paymentsY. exercise prices creates a secondary effect similar to having aeeserv
Given this setting, we are interested in finding Bayes-Nash price in the auction. This is because any bidder with a private valu-

equilibrium strategies for all of the bidders for different option pric- ation lower thank’; will not participate in the auction and the same

ing mechanism$.However, even with options, due to the second- Will happen if the synergy bidder has a valuation lower than the sum

price auction, the local bidders have a dominant bidding strategyof the exercise prices. Although this reduces the exposure problem of

2 This implies that bidders are assumed to be risk neutral. 4 This option protocol is similar to the one in [6], but their 8idg strategy
3 The Bayes-Nash equilibrium is the standard solution conesgd in game relies on using a heuristic, and they do not derive analitixpressions for
theory to analyze games with imperfect information, such asange the equilibrium strategies w.r.t. the local bidders.



K=KH, p=b2nd-KH K=b2d p=0 take advantage of all the benefits of the models discussed so far. This

p A N - A N means that it can achieve both high efficiency and high seller revenue
aps L g st KH—>00 at the same time. More formally:
"direct sale auctions free options”” Definition 1. Generalised Flexibly Priced Options

Figure 1. The relationship between the maximum exercise p#¢é,, and Let K]L and KJH denote the minimum and maximum exercise prices
the second-highest biﬂ?_"d, and its effect in determining the option price, respectively for auctiori. These parameters are set by the seller in
p, and actual exercise pricé, for flexibly priced options model. advance of the auction and are known to the bidders. Furthermore,

2nd j5 the second highest bid. Then the actual exercise pfigepf
the synergy bidder compared to direct sales, at the same time it ma[}%e auction is given gy: piGep

significantly reduce the market efficiency, and also negatively effects
seller revenue if this value is set too high. K; = max{Kj, min{K;", b;"*}}

In order to remove this effect, we introduce a model involving flex- pyrthermore, the option price is given by:
ibly priced options, i.e., that have a flexible exercise price (first pre- omd
sented, as an extended abstract, in [10]). In more detail, in this model, pj = max{0,b;"" — K;}
we set anaximumexercise pricek I for the auction, but the actual Note that by settingg? = K" = K, this corresponds to the
exercise pricé(; depends on the bids placed by the bidders so as tghe model with fixed exercise prices.Furthermore, the flexibly priced
eliminate the reserve price effect. Specifically, this is set to: options model is given bY(jL = 0. We now derive the equilibrium
strategy of a synergy bidder for the generalised model:

K; = min{K[",b]""}, o . .
Theorem 2. Considering the same setting as before, the following

whereb?"* is the second-highest bid. Furthermore, the price paid b idsb;, Tbe_d‘gla e m}t.CO”Stit.‘tﬁe a Bayel_s-l\éa;h quilib_riur(;w fort_the
the winning bidder in order to purchase the option (the option priceﬁy;irg%_ iader in auctions wi genlera Ised fiexibly priced options.
is set to: B —
n by, =v— K; 2
p=b"" - K; ; @

To understand how this mechanism works, Figure 1 illustrates it$f r < m andv < 37"} K; + K + 3" K}
features and how it compares to some existing approaches. As shown,

r—1 m
depending on the values di;f and b>"?, one of two situations b Z K Z KL @)
can occur. Eitherk /' < »*"%, in which case the actual exercise " — S
rice is set toK X, and the winner pays*"? — K. Otherwise, .
P pay y Otherwise:  b% = K7 + EP}, (v, K1(KM)) 4)

if KJH > b?"?, then the actual exercise price is set to the second
highest bid and the option is given to the winning bidder for free. Inwhere EP; denotes the equilibrium expected profit of the synergy
both cases, however, the total payment of the winner (if she deciddydder at timej. £ P can be calculated recursively as follows.
to exercise the purchased option) will be equal to the second highFirst, if j = m:
e_st bid. Crgcially,_ this means that, ur_llike the option mecha_nism with BP0, RB5) = (0 — Z Ki— KLY Ho (K2)
fixed exercise prices, from a local bidder’s perspective, this auction " " pt " "
is identical to a regular second-price auction, and there are no sec- ey K m—1 ,
ondary effects on these bidders. Therefore, this options model only +/ L =Y Ki-wH, (wde  (8)
affects bidders with synergies. K =1

Moreover, note from Figure 1 that this approach is a generalizatioff j < m andv < >/~ K; + K7 + i KE:
of two other auction mechanisms. If the seller §6t8 = 0, then the
auction becomes identical to a direct sales auction (without options). EP; (v, ?j) =EP} (v, ?;ﬁ (K[)H;(KJ)
Furthermore, |fKJH is set at a sufficiently high value (i.e. é@H — I IS L s _ .
o0), then the exercise price is always equal to the second highest bid, + ./KL a EP/ (v, K} (w)H;(w)dw (6)
and the option is always purchased for free. i

The advantage of the flexibly priced options model is that it re-Otherwise:
moves the reserve price effect and thereby increases market effi-
ciency. However, as we will show in the experiments (Section 4), a o
seller may still prefer using the fixed exercise price model since this n /Ka EP, (0, B () H (w)dw
can generate higher revenue when the fixed exercise price is appro- Kk
priately selected. Therefore, in the next section we propose a gener-  kHepr ;@ R3(xH))
alised model that can obtain both high efficiency and seller revenue.f/

m—1

T * 2k oL L
EP; (v, K}) = EP;y, (v, K;(Kj))H;(K;}')

* TEx 4
(EP (v, KJ(K[)—w+ K] ) H (w)dw

™
3.3 Generalised Flexibly Priced Options Model where H,(z) = (F;(z))™7. Here, K, denotes the actual exer-
In this section, we extend the flexibly priced model of section 3.201S€ price for an option ﬁ? the SY”ergy bidder has_ purchased.
to include aminimum exercise pri€e which enables the seller to Furthermore, the vectork'; contains known exercise prices

control the revenue level of the auction. This more general modeflom all past auctions when participating in the auction, as
encompasses a wide range of existing option mechanisms and Cﬁf}ll as the parameters for auctions still to come. Specifically:

Cw—— — - —— K= K AR G K UG K,
n alternative approach is to set a minimum option or reserice pwhic . _ X _
is equivalent from a local bidder’s perspective, but is leffsctive in re- for j - L...,m. Fgrthemﬂtr)re, we ILet Ké(x) -
ducing the exposure problem for a synergy bidder. ({K1}, AR ) {a) {K4, K b { K, K 1)

KH
J




Proof. Note that the local bidders would have to pay eitper+- The last equation can mean that: eitherd(iy= 0, thusb, = K,

K; = K if the second highest bitf"? < K, orp; + K; =  or (i) A = 0, and by substituting into the first equation, we get that

b?”d otherwise. Therefore each auction is strategically equivalent tqu:“(v’ ?:(br)) = 0. The expected utility= P, , is given ei-

a second price auction with reseri€”, from the point of view of a  ther by Equation 6 or 7, depending on whether the valuation dis-

local bidder. Thus, these bidders would participate and bid truthfullycounted by the exercise prices up to that point and the minimum ex-

if their valuation is at leask’/ (see [5]). ercise prices of future rounds— /=7 K; — DD KF is less
The synergy bidder cares about the value of the highest bid (ang, greater (respectively) thali/” ;. The second case cannot be, if

SRy
thus the highest valuation) among thg local bidders participating . =, _ N _ . .
in the j** auction. These valuations are drawn from a distributionE r1(v; K (br)) = 0, because the first integral of Equation 7 is

. _ ; . . greater thard, unlessh, = KX = KX, which would yield an ex-
:I/V;rkilag?ef Vl\;]tﬁxgdftlt}u(smt)hi t&? (t;l;j)g ghe local bidders is a random pected utility of0 and thus cannot be the optimal bid (in general). On
J - J o

To compute the bidding strategy of the synergy bidder, we starf€ other hand, if the expected utilifyF"., is given by Equation 6,
from the last (') auction. She bids,, = 0, if she has not won thenitisEP (v, K7 (b,)) = 0 exactly when the upper bound of
all the previous auctions, as she needs all the items to make a profthe integral is equal t& %, which gives Equation 3. This happens
Otherwise, if the exercise prices for the options purchasedsare  becauseX., is set to bidb, of Equation 3, and thus, by placing this
her profit equals — 3" " K; — max{K/,w} by winning the last  bid b,., both parts of Equation 6, for round+ 1 become equal t.

item when the highest opponent bid is equaltbwherew is drawn Note that of the two possible maxinta = v — Z;;l K; —

from H..(z). Her expected utility (when she bids,) is: Z;’;Hl KE (Eq. 3) andb, = K[, given by this analysis, the
m—1 /

EPp (v, b, K5) = (v — 3 K- K5yH (KE)+ first one yields a higher revenue, &P, (v, ?;ﬁ(w))HT(w) <
i=1 0,Vw > v — 7" K, — ¥ . K{ This means that the opti-

m m—1 / i I I H — r—1 P

/b (0 S K- )t @) ma}rllbld is ngven b)gEq. 3 It should be <K' ©v-3 | K;
KL = i1 K < K7, which gives the bound of the theorem.

Case II: b, > K!. If the synergy bidder wins with bid,., the
second bid in the auction could be smaller thgf, thus the exercise

AE Py, (v, b, KX) m-1 price is equal to this bid (oK if the bid is even smaller than this)
T’ =0ev- Z Ki —bm =0, and it is given for free, like in the previous case. However, it could
=t also be higher thai’?, and thus the exercise price is equakd,
which gives Equation 2. The expected profit of synergy bidder wherwhereas the payment for getting the options would be equal to the
bidding b, is therefore:EP? (v, K%,) = EPpn(v,bm, K%,) , Which second bid minusk” . Hence, the expected profit of the synergy
gives Equation 5, when substitutihg, from Equation 2. bidder is: .
Assume that we have computed the bidsand expected profit Epr(vvbT,z;):Ep;+1<v,z;(KT%))HT(KTLH/;(LT EP:H(U_};M)H;(W)W
EP; for Vj > r and that these are given by the equations of this r
theorem. To complete the proof, we now compute the bid and ex-

pected profit for the*" auction. We examine two cases, depending To find the bidb, that maximizes this expected utility we use

The bid which maximizes this utility is found by setting:

by ’
+ /K}_I(EP:+1('U, RAKE) —w+ kH)H, (w)dw
JKE

on whethew, < K or not: Lagrange multipliers again:
Case I: b, < K. ThenVw < b, = w < K. Hence, if the A(br, X, 8) = —EPy(v, by, B5) + A(by — K — 62)
synergy bidder wins with a bid df., the second bid in the auction IA(br, A, ) , I .
(which is the highest opponent bid) must be smaller thgh and o =0 Ho (b)) (BPL (v, KI(KT) = br + KT) = A
therefore the exercise price is equal to this bid &gk if this bid is 9N (b, TA_(;) b
lower thank' ") and it is given for free. Thus, the expected profit of — g T0eb -k -8 =0
the synergy bidder is: A (bry A, 5)
EP.(v,b,, K1) = EP}, | (v, RA(KE) H, (KF) 96 =0 A=0
+/br EP?, ) (0, B2 () H. (w)do Tr}}e last equation can mean that: either {i)= 0, thusb, =
Kk K7, or (i) A = 0, and by substituting into the first equation,

To find the bidb, that maximizes this expected utility we use La- ' . o H H _
grange multipliers. After we introduce a factbrto convert the in- W€ 9€t thatf,.(b-) (EP;y1 (v, K7 (K;h)) = br + KJT) & by =

equality, it can be rewritten a8, — K + 6% = 0. Then, the La- EP} (v, ?i(Kﬁ)) + K, which is indeed Equation 4. It should

grange equation becomes: beb. > K < EP (v, K:(KH)) > 0. This happens exactly
A(br, A, 8) = —EP, (v, by, K2) 4+ A(br — KX+ 52) whenv — 37 K; > Y KP. ButsinceK, = K/, this
The possible variables which maximize this function are found bymeans that > > /"' K, + K + 37" K[
setting the partial derivative for all the dependent variables, § to Note that of the two possible maxinda = K7 andb, = KX +
0: IA(br, N, 6) . , EPT*H(U,I_():(K,?)), given by this analysis, the first one yields a
™) El _ * * _ — ’
9bn =0 Bl (v, Ko (b)) Hy (br) = A higher revenue, agEP;} (v, Ki(KE)) — w + KF)H, (w) >
OA(Dr, N, 6) b KH st 0,Vw € [K¥,b.]. Hence, the optimal bid is given by Eq. 4, when
xS K =0 v NI K K Y KR O
OA(br, A, 6)
9o 0 A=0 The intuition behind these equations, in simple terms, is that in

the last auction the bidder bids according to its valuatiomnus the
minimum exercise pricé’ L, then the bids are actually placed but ignored exerf:lse .prlcesKi which it W',” h‘,"’lve to pay in order t,o buy all t.he
eventually. J previous items; the last auction is essentially strategically equivalent

7 Note that it should be > 27! K, + KL when she has won all the 0 @ standard second price auction with a reserve price, so the bidder

previous auctions, which follows from the bids placed. bids its true (discounted) value. In any previous auctiorc m,

6 To be entirely precise, we assume that if this highest bidvietdhan the



the discounted value minus the exercise pricds; up to that point  value is set too low, then the exposure problem disappears since lo-
give the discounted value of the bidder; this is further discounted bycal bidders will win all of the auctions. Here the value of the synergy
the minimum exercise prices of the future auctions. Now, if this  bidder is in between these extremes and is representative of a setting
value is higher than the maximum exercise price lidif’ for that in which the exposure problem plays an important role.

auction, then it bids this maximum exercise price lifif’ plus the The exercise prices for the options are set as follows. For the fixed
profit it expects from the remaining rounds conditional on the factexercise options model, the valuelgfwas varied betweeR” = 0 (a
that K. = K; if the exercise price,. is indeed smaller then its  setting equivalent to direct sale) aid = 20 (the average valuation
profit can only increase. On the other hand, since the agent cannot baf the synergy bidder), for all the 3 items offered in the auction se-
higher than the discounted value, if this is smaller thg, thenthe  quence. For the generalized flexible case, we consider 2 values of the
agent hopes to get the option for free, therefore it bids the discountegarametefs;: K; = 0 andKr = 6. The rationale for this choice is
value; if it wins it will have to pay) and the exercise prick,- will be that K1, = 0 represents the fully flexible auction model (introduced
smaller than the discounted value 37— K; — S, K thus  in Section 3.2), while;, = 6 represents the value which was found

in the next round the discounted value- >°7_ | K; — Z?;r+2 Kk experimentally to provide the best revenues for the §e|ler. In .both of
at that point will be higher thadZ, ,, and the synergy bidder will these generalised cases, the value of the upper lifpitwas varied

always be able to participate. This is also true, when the discountetiom 0 to 20, as for the fixed case.

value is greater thafi(”. - o
g " 4.2 Efficiency Criteria

3.4 Multiple Synergy Bidders We compare the three option models above based on two main com-

We finish the theoretical analysis by showing that in all the theorem®2ison criteria, which are standard in auction theory: the allocative
that we have presented, the bidding strategies will remain unchangegﬁ'c'ency of the markeF and t,h? reve.nue obtained by the auctlgneer.
even if multiple (i.e) synergy bidders participate. We prove this for Formally, the allocative efficiency is calculated as follows. 1.t

the flexible auction model from Theorem 2, but the same argumengtehnote the valuation of local biddér(wheres € {1..N}) " the
. ; . . auction (wherek € {1..m}) and letv,,, be the valuation of
applies to the fixed option model in Theorem 1.

the synergy bidder. Furthermore, lef, 25, € {0,1} denote the
Proposition 1. A setting withn synergy bidders with a valuation actua] aIIlocation of the options in_ a certain_ run of the_simulation.
v; for synergy biddei when it obtainsn items, and) otherwise, is ~ 1hatis,z; = 1 means that local biddéracquired the option in the
strategally equvalnt (1 e case o a sequenceakicionswih  LiLSLCIEN, S0k | means il e oylery bicoer v
generalised flexibly priced options) to a setting where only a singleIn a giveﬁ un is defi'ned as: oy

synergy bidder participates and his valuation is equakiex;{v; }.

Tl, m; 5”5 + TsynUsyn
Proof. As Eq. 3 and 4 show, the optimal bids of synergy bidders n= Liz1 21 Taynlsy (8)

m
in any auction are not affected by their opponents’ bids placed in max (Vsyn, Jo4L; maxie1,....n3 (0]))
that particular auction, but only in the remaining ones. Furthermore, i . i . i
each synergy bidder would need to win all items in order to make a BY calculating the efficiency of the market in this way, we im-
profit, thus only the synergy bidder (if any) who won the first auction Plicitly assume that local bidders will always exercise their options,
would participate in the remaining ones, and the bidding strategie§nd that the synergy bidder will exercise its option if and only if it
and the expected profit in the remaining rounds would remain unwins all auctions. We can safely make this assumption because we
changed. Thus, only the synergy bidder with the highest valuatioonsider optimal bidding strategies, and a rational bidder will never
v = max; {v;} matters in the analysis, as he is the only one who carplace a bid such that the combined exercise and option price will ex-
win the first auction. This scenario is strategically equivalent to oneceed the (marginal) value of the item. Therefore, it is optimal for a
where only the highest valuation synergy bidder participates.C] bidder who has acquired options for all of its desired items to ex-
ercise them. Thus aimefficient outcome occurs in two situations.

. . Either the local bidders have won the items, but the value of the syn-
4 EXpe”memal AnaIyS|s ergy bidder exceeds the sum of the values of the local bidders; or, the
In this section, we use the the optimal bidding strategies derived isynergy bidder has won some auctions but not all, and will therefore
Section 3 to evaluate experimentally the flexible option pricing mod-not exercise its option(s).
els and compare them to existing option models as well as direct sales

(which appears as a special casefor= K, = Ky = 0). 4.3 Experimental Results
. Figure 2 compares the allocative efficiency of the market (left), and
4.1 Experimental Setup the seller revenues (right) for the three option mechanisms. Here,

The setting used for our experiments is as follows. In each run, wdlexible Kcorresponds to the general model whéfe = 0; fixed K
simulate a market consisting et = 3 sequential auctions. Each corresponds t& = K = Ky, the third line shows the generalised
auction involvesN = 5 local bidders, and one synergy bidder. The option model which starts & = K = Ky = 6 after which we
valuations of the local bidders are i.i.d. drawn from normal distri- keepK, fixed at6 while Ky increases.

butions A (u = 2,0 = 4), bounded at 0. The reason for choos- Note that, for thefixed exercise priception model, both the ef-
ing such a high dispersion is that this increases the uncertainty ificiency and the seller revenue decrease sharply wkidmecomes

the market, and hence the benefits of using options. The valuatiolarger than around. At this point, the synergy bidder is likely to
for the synergy bidder,,, is drawn from the normal distribution leave the market due to the reservation price effect of this mecha-
N(psyn = 20,0y, = 2). This setting was chosen as it demon- nism. Specifically, this occurs when the sum of the exercise prices
strates the effect of the exposure problem:; if the value of the synerggf the auctions exceeds the valuation of the synergy bidder, in which
bidder is set too high, then the synergy bidder would win all of thecase the bidder no longer has an incentive to participate. This also
auctions, even in the case of direct sale. On the other hand, if theolds for many of the local bidders.
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Figure 2. Allocative efficiency (left) and seller revenue (right) ngithe options mechanism with fixed and flexible exercise pftredifferent values of<,

respectively and<y . The graph shows averages and standard error bars over a@@)dor each data point.

As shown by the results, this reservation effect can be avoided b Conclusions
using the flexibly priced option mechanism. In this mechanism, then this paper, we introduce an option pricing mechanism which ad-
level of Ky has a different effect thaK’ in fixed-price options. In  dresses the exposure problem of a synergy bidder. Here, thésexerc
particular, the options become effectively free wh€w becomes  price is set flexibly, as a minimum between the second highest bid
sufficiently high. This is because, whé{i; is set very high, it will  and a seller-prescribed maximum level, while the option price is de-
almost certainly exceed the second-highest bid. If this happens, thtermined by the open market. We derive the optimal bidding policies
exercise price becomes equal to this bid, and the option price besfthe synergy bidder for a combined mechanism which encompasses
comes zero (see Section 3.2). However, free options can also be sublur new approach, as well as existing option models. We show that
optimal in terms of market efficiency. This is because a synergy bideur combined pricing model can significantly increase the efficiency
der will always bid to acquire the options, even if she has a very lowof the resulting allocations compared to fixed-priced options and hav-
probability of exercising them. In such a case, if the seller receivesng no options, while at the same time obtaining higher revenues than
a high bid from one of the local bidders, it may be better to allocateany of the other option models, including the flexibly priced one.
the item to this local bidder, rather than the synergy bidder. The results in this paper are based on the assumption that the syn-

While the flexibly priced option model outperforms the other mod- ergy bidder is interested in winning all the auctions, and derives no
els in terms of efficiency (as is shown in Figure 2), the same canutility from winning less. This setting best captures the exposure
not be said for seller revenue. As Figure 2 (right) shows, the selleproblem, and our main goal here was to demonstrate the effective-
can achieve higher revenues by using fixed exercise prices. Here, timess of the new option pricing model in addressing this issue. Now,
fixed K in our model acts effectively as a reserve price and standarevhile there are a number of settings where such an assumption is re-
auction theory shows that, even in a single second-price auction, thaistic®, there are also settings where bidders are interested in more
seller can increase its revenues by using reserve prices [5]. complex or partial subsets of the available goods. Thus, our future

Now, both revenue and efficiency can be addressed using our mokeork will seek to extend our analysis to deal with such cases.
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pared to the fixed pricing model and direct auctions (denoted Fig. 2 One such example is transportation logistics with partkraeturn loads.

by the point in whichK = K, = Ky = 0). F

a

or example, an agent acquiring orders to fill one truck may tegédt both
n outgoing and a return order for the combination to be ptiéta



