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Abstract. In service-oriented systems, such as grids and cloudsywWhen faced with uncertainty, migrating the task allows the consumer
users are able to outsource complex computational tasks by procuie proactively switch to faster resources as the deadline approaches.
ing resources on demand from remote service providers. As theskdditionally, the consumer can use migration opportunistically to ex-
providers typically display highly heterogeneous performance charploit low resource costs when these fluctuate over time.

acteristics, service procurement can be challenging when the con- While task migration has received considerable attention in the
sumer is uncertain about the computational requirements of its tasikerature, most of this focuses on balancing and predicting loads in
a priori. Given this, we here argue that the key to addessing thiclosed systems, such as data centres or clusters [7, 2]. This is fun-
problem istask migration where the consumer can move a partially damentally different from the emerging open systems we consider,
completed task from one provider to another. We show that doingvhere resources are offered by self-interested agents that areaiot
this optimally is NP-hard, but we also propose two novel algorithms essarily cooperative and that demand financial remuneration. First, it
based on new and established search techniques, that can be useddgecessary to reason about the costs of resources and balance this
an intelligent agent to efficiently find the optimal solution in realistic with the value and inherent uncertainty in the consumer's task. Sec-
settings. However, these algorithms require full information aboutond, it is vital to consider the incentives of the participants and ad-
the providers’ quality of service and costs over time. Critically, asdress the possibility that they lie about their capabilities, for example
providers are usually self-interested agents, they may lie strategicallyy inflating costs to increase profits or by overstating their speeds.
about these to inflate profits. To address this, we turn to mechanism Some of these issues are addressed by [5], who consider uncer-
design and propose a payment scheme that incentivises truthfulnegainty in the behaviour of service providers and propose a mechanism
In empirical experiments, we show that (i) task migration results into incentivise them to be truthful. However, they do not examine task
an up to 160% improvement in utility, (i) full information about the migration or settings where the consumer is able to flexibly buy pro-
providers’ costs is necessary to achieve this and (iii) our mechanisroessing time (this is often known adrastructure as a serviceather

requires only a small investment to elicit this information. thansoftware as a servicavhere functionality is provided without
control over the underlying implementation). Furthermore, they do
1 INTRODUCTION not discuss potentially strategic behaviour by the consumer.

Service-oriented approaches promise to revolutionise the way com- e address these shortcomings in this paper, and, more specifi-
putational resources are used and shared in distributed systems [16flY; make the following three contributions to the state of the art.
Specifically, emerging cloud, grid and peer-to-peer platforms allowf ISt e prove that optimal task migration is an NP-hard problem.
consumers to procure such resourceslemando complete highly Secon_d, we employ both noyel and estab_llshed search algorithms and
demanding computational tasks (such as video rendering, climaf@nalytical techniques to design two algorithms that can be used by an
modelling or difficult optimisation problems). Providers, on the otherintelligent agent to optimally migrate tasks. Respectively, these deal
hand, benefit from selling unused resources, and there is already'4th Settings where the task can be processed at a given provider for
plethora of services that are being offered over the Intérnet. any arbitrary amount of time, and where processing time is sold in

Now, a key feature in these systems is the highly heterogeneoydiScrete time slots. Third, we propose a payment mechanism that can
nature of the available offerings, ranging from cheap (or even freef® used by anintermediary agent to achieve optimal task migration in
processing time on idle desktop PCs to the exclusive use of experractice. Specifically, this mechanisneficient i.e., implements the
sive supercomputers. This poses a critical decision problem for th@Ptimal migration strategyncentive-compatiblé.e., incentivises all
consumer — when choosing a service, its cost and quality need to bt@rtlmpgnts tq reveal their p_rlvate information truthfully, andivid- _
balanced with the value and time constraints of the task. Doing this i§@/ly rational i.e., both providers and the consumer expect to benefit.
particularly challenging when there is uncertainty about the compu- Additionally, we evaluate our techniques empirically and show
tational requirements of the task, which occurs frequently in practicdnat task migration offers a significant benefit, leading to an up to
for many well-known computationally hard problems [3, 11]. 160% improvement |n_ut|||ty. We also demonstrate that full |nf9r-

In this paper, we will argue that the key to addressing this uncer-m"f‘t'on about cost proflles.allows t.he consumgr to fqrther benefit by
tainty is task migration i.e., the process of transferring the current USing the most cost-effective provider at any time. Finally, we show
state of a running task from one resource to another [7], thus aithat our proposed intermediary mechanism requires only a small in-

lowing several providers to contribute sequentially to the same task/€Stment in order to incentivise truthfulness. _
In the following, we first formalise our model (Section 2) and then

1 University of Southampton, UK, emai{ss2,eg,nfj@ecs.soton.ac.uk consider optimal migration (Section 3). In Section 4, we describe our

2 See, e.g.aws. amazon. conl ec2, code. googl e. conl appengi ne or mechanism and evaluate our work in Section 5. Section 6 concludes.
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2 SYSTEM MODEL gration costs between providers and back to the consumer, respec-

We consider a setting where a service consumer faces a computtvely. Similarly, the expected utility for a given providers:

tional task of uncertaindifficulty, which corresponds to the number t; i1 izl

of computational cyclésrequired to complete it. Prior to comple- [Us(p)] = 7/ -/ (‘“"qi + zjf““) ne (z * Z:ﬁ)

tion, the consumer has a probability distribution over this difficulty, :7 J; )

where we usé" to denote its cumulative distribution function and _ (1 _F (Z tjqj)) e (r 4 Z‘J) & @

f the corresponding density function. Thug(x) is the probability = =

that the task requires at mastcycles. Furthermore, the task has a where the first term integrates over the cost when the task is com-

deadlinety and avalueV' > 0, which the consumer only receives if pleted at providet (and thus a partial cost is incurred), while the

the task is completed and the results are returned within the deadlingecond term adds the full cost when the task is not completed after
We assume there afeserviceprovidersthat are able to work on ¢, time units at provider. While this service provisioning mech-

the task on the consumer’s behalf. Each provider {1,2,...,n} anism may offer more flexibility, it is rather uncommon in reality,

has aquality of servicg(QoS)q;, which denotes the number of cy- mostly for practical reasons. Instead, services are typically allocated

cles it can execute in one time unit. While working on the task, thein fixed-size time slots, which eases the administrative burden on

provider also incurs a cost. This represents both the running cost fdysoth providers and consumers.

the service, but also, and typically more importantly, the opportunity In thesediscrete-time service provisioning mechanisms, execu-

cost that arises from offering the resource to the consumer rathrer thdion time can only be allocated to the consumer in multiples of some

use it for other purposes, including selling it to a different customerfixed time slotsA¢, i.e., it must hold that; = « - At, wherex is an

As these costs can vary significantly over time, for example, duringnteger. This is common in many real cloud or grid settings, where

peak hours or when the provider requires the resource for its owRrocessing time is allocated in hourly slots. In these settings, once

computations, we represent this asost profilec;, which maps time ~ started, the resource is reserved for the user for the full time slot,

to a cost per time unﬁ.Using this, the cost for running the resource and so the entire cost is incurred even if the task completes half-way

from timea to b is calculated 35(: ci(t)dt. through execution. For conciseness, we assumeXha a system-
Crucially, a running task can be interrupted at a certain provider Wide parameter and that migration may only take place at the end of

andmigratedto another providey, which then continues execution. 2 time slot. In these settings, the consumer’s expected utility is still

This may happen several times during task execution, but to refle@iven by Equation 1, but[E/i(p)] is now obtained by simply sum-

network charges, the consumer incurs a monetary cost;of; for ming the_ expected costs o_f each time slot. This follows from Equa-

each such migration.These costs are also incurred when initially tion 1 (without the need to integrate ovgy. L

transferring the task to the first provider and when eventually receiv- Finally, for both the continuous and discrete provisioning scenar-

ing the results after the required number of cycles have been executd®f: We define the expectadcial vyc_al_far.eof a migration schedule as
(usingi = 0 to denote the consumer). the sum of all the participants’ utilities:

. . . , n
lee_n this formahsgnop, we repregent _the consumer’s stjafegy for E[W ()] = E[Uc(p)] + Z E[U; (p)] 3)
executing and migrating its task asragration schedule = (3, t), ) ) ) =1 ] )
wheres is a vector of service providers, ahi a vector denotingthe ~ In the following, we will be interested in finding thaptimal mi-

maximum execution times each providet in the schedule before ~gration schedulg™ that maximises the social welfare, i.g’, =
migrating toi + 1. We usen = [3| = [#| to denote the number of argmaxE[W (p)]. We focus our attention on this schedule, as it max-

providers in the schedule, and, w.l.0.g., we assume that the sum #nises the expected difference between the value of completing the
execution times does not exceed the deadline ¥g.,,., ti < ta task and the total costs incurred and so naturally represents a solution
g, * Z n 1= .

Next, we will describe in more detail the utility functions of the that best uses the available resources to complete the task.

participants in these systems (assuming they are risk neutral). Inde;  OpTIMAL TASK MIGRATION

ing so, we cover the two possible ways in which services may be prop, thjs section, we consider the problem of finding the optimal mi-

visioned in practice: continuous-time and discrete-time provisioninggration schedule*. Initially, in Section 3.1, we characterise the
We first look atcontinuous-time service provisioning, where the  computational complexity of this problem and then we describe two

consumer can execute the task &y arbitrary amount of time at  gjgorithms for solving it — the first, in Section 3.2, deals with

a given provider. When this applies, only costs for the actual time;ontinuous-time provisioning for a particular problem distribution,

the task is executing are incurred, and the results are transferred bagfile the second, in Section 3.3, presents a general algorithm for any
to the consumer as soon as the required number of cycles has begftribution when discrete provisioning is employed.

reached. Here, the scheduled timesnay take on any values from
R+, and so the consumer’s expected utility prior to executionis: 3.1 Problem Hardness

n " i1 Unfortunately, finding the optimal migration schedule is a computa-
E[Uc(p)] = F (Z tiqi) V=3 (1 - F (Z tjqj> ) SMi_1 tionally hard problem, as we show in the following.
i=1 i=1 j=1

Theorem 1 OPTIMAL TASK MIGRATION [OTM] is NP-hard.
m [3 i—1
_ 27: FAS tigg | —F (> tjq “misoe (1) Proof. We prove this by providing a polynomial time transformation

i=1 j=1 j=1 from an instance of the NP-complete\KPsSACK problem to an in-
where the first term is the expected reward from completing the tasktance of OTM. The proof applies to both continuous and discrete
successfully, while the second and third terms comprise the total miprovisioning. First, we consider an instance ofiAPSACK: we let
I=1{1,2,...,k} beasetofitemsyp, the weight of item andv; its
4 When costs are subject to uncertainty, these correspoexptectedosts. value.. The Capafcgrﬁ and the target value_ i6. To t_rjnsiorm thlhs.
5 We assume migration costs are subadditive, ke, g,k : mi_; < to an instance o , We create one service provider for each item

mi_k +mk_s;, Since we could simply route through intermediate nodes. ¢- For each such provider we set its quality of service ag = v;
6 For conciseness and w.l.o.g., we assumeshat 7, unless noted otherwise. ~and define its cost profile such that;(z) = 0if i—1 < z <4, and

3 In practice, this might be measured in floating point operati@i.OP).



with gx+1 = 0 andck+1(z) = 0 that corresponds to not choosing

. ! . . . X 1: P <FILTERDOMINATED > Prune providers using item 1
an item. Next, we define the migration costs such that migrating to a2: (s ) « (0, ()) > Best ordering and times so far
provideri (with 1 < ¢ < k) costsw; (m,—; = w;), while migrating 3 Q« (57) > Unexpanded orderings
to providerk + 1 or back to the consumer is freex{_ ;41 = 0, g: while @ # () do > More unexpanded?

. : 5 < REMOVEHEAD(Q) > Remove first element @
mo—k+1 = 0 andm, o = 0). Finally, we set the value of the task 6. 7 . opTiMALTIMES(5) > Calculate times fog
toV = C + ¢, wheree < min; w;, its deadline tat; = k, and 7 if FEASIBLE(Z) then > Prune using item 3
we setF, such that the difficulty is alway®. This transformation & foralli € Pdo > Consider all providers

b formed in polynomial time, and it is straight-forward to . i < a., then > Prune using item 2
can be performed in poly ) g We 10: Q< Q®((i)®3) > Add new ordering
see that the original instance of theuKpSACK problem is satisfied 11: if E[w((3,2))] > E[w((z*,%"))] then > Best so far?
if and only if the solution to the constructed OTM instance contains12: (3,1") + (5,7) > Update current best
at least one provider other thani 1. ] 13: return (57, ¢7) > Return optimal

Despite this hardness result, we will propose two algorithms for ) . )

different provisioning mechanisms outlined earlier. expected utility. Furthermore, sin¢e depends only on the char-
' _ o acteristics 0f;—1, Sa, - . . , Sy, there must be an optimal schedule
3.2 Continuous-Time Provisioning that does noéndwith these providers.

First, we consider continuous-time provisioning. Now, to solve OTM ysing these, we search the space of possible orderings, discarding
optimally in this case, we need to make some assumptions aboghy that cannot be optimal. Critically, we perform this search by
the difficulty distribution of the task. For the purpose of this paper,considering the last provider first and then build up the migration
we will assume that the dlfflCUlty follows an exponential distribution schedule from back to front. Doing this allows us to exp|oit item 3
with rate paramete, i.e., F'(z) = 1 — e andf(z) = Ae™**.  apove and prune all orderings that end with infeasible providers.

We chose this particular distribution, as there is evidence that the The full details are given in Algorithm 3In practice, the algo-
run-time of computionally difficult tasks often follows this in prac- rithm finds a solution for realistic settings with hundreds of providers
tice [11]. For the purpose of this section, we will also make the sim-in seconds on a standard PC. In the following, we now turn to the
plifying assumption that the cost of each provider does not fluctuatgjiscrete-time provisioning mechanism and present an algorithm that

over time — which we denote by definirg(z) = k; for some con-  can be used for arbitrary distributions and fluctuating prices.
stant costk;. We make these assumptions to keep the calculations

manageable, but we note that we will consider arbitrary costs and.3 Discrete-Time Provisioning

distributions for the discrete mechanism in Section 3.3. Due to the discrete time slots present here and the limited size of the
Given this, we can now calculate the expected social welfare astate space, this problem is a natural candidateéyoamic program-
follows (using Equations 1, 2 and 3): ming [4]. Thus, we characterise the state of a tasiSas (d, t,1),
" ia whered is the difficulty achieved so fat,is the elapsed time and
EW ()] =) e M Ei=1% is the provider where the task is currently executing. Given this, we
1=i recursively define theptimalexpected welfare achievable in st&te
ki —Aa ) ) i
((vommo—5p) (=) =) @ (9] = { a0, ma, (Ewj(5))) otonaise | O

To find p* that maximises this, we first show how to find the optimal
processing timeg, given a particular sequence of providersiere,
we can use Lagrange multipliers to maximise Equation 4 subject t6
the deadline constraint. Due to space reasons, we omit the details and
simply show the resulting closed form solution fora@liwith > 1:

Faot m +m —-m + L=
| x Ao —1 r—1—x z—0 z—1—0 Py
n

k
(do—1 — 4a) (V - Mas0 = xas — Sm)

where Bw} (S)] is the optimal expected welfare achievable in state
giventhat the task is next executed at proviger

t+At
Elw] ({d, t,i))] = —mi_; — /t ¢j(z)dz + Fj(d) - (V = mjo0)

+ (1= F;(d) - Elw" ({d + q; At, t + At, )]  (8)

ty = — where F;(d) is the conditional probability that providgrwill suc-
) cessfully complete the task within the time interval, given that
i1 d cycles have already been executed without completing the task,
with S, = 37, e Zimat1 lids i.e., Fj(d) = (F(d+gqjAt) — F(d))/(1 — F(d)). In the special
k; NG @) ) case wherd’'(d) = 1, we letF;(d) = 0. We also assume here that
’ ((V T mimo ™ *qi> (1—et) m“HZ> © Mii = 0, wr(1ic)h occurs wherj1 (th)e task is not migrated.

The first processing time, , is obtained ag; = tq — > , . It Using this recursive formulation, we can find the optimal migra-
is important to note here that eathonly depends on the times of tion schedule by finding the solution td«&* ({0, 0, 0))] and noting
providers followingz in the schedule. Thus, all times can be calcu- the chosen decision variablgsn Equation 7. The resulting list of
lated efficiently using backwards induction. providers indicates the optimal sequence of providers to use for each

This leaves the problem of determining the optiroederingof  time slot. We omit a detailed listing of our algorithm to solve this
providers,s. However, we can exploit some characteristics of thehere, as it follows standard dynamic programming practices (we first

Az

optimal solution to design an algorithm that is fast in pracfice: identify reachable states and then compute Equation 7 for all such

1. The optimal solution never contains a dominated provides (  states in a bottom-up manner starting from the deadline and then
dominated byj if (ks > kj A g < q;5) V (ki > kj Agi < gj)). working backwards in time). Clearly, as with all dynamic program-

2. ltis never optimal to migrate to a slower provider (ig+,1 > ¢;). ming approaches, the efficiency depends on how well the problem

3. When Equation 5 is negative or cannot be solved for a particucan be discretised. Specifically, the number of states to evaluate is
lar - in a given schedulg, this indicates that the optima) is 0. bounded byn - (¢* 4+ t) /2 - maxi(q:)/ ged(q1, g2, - - - , qn), Where

7 Intuitively, these hold due to the time invariance of the exguttial function. & In the algorithm® denotes concatenation, such that @ (b) = (a, b).



n is the number of providers, = |tq/At] the number of full time  of the reports of others. Intuitively, it can be seen that, for this to hold,
slots that can be utilised before the deadline gni{¢1, g2, . . . , gn) it is necessary that the payment does not depend on the (reported)
is the greatest common divisor of gll. Yet, in practice, even large costs of providet, which is the case for Equation'®Second, the
problems can be solved quickly. For example, when the deadline igiechanism isndividually rational which means that the provider

ta = 24 hours, a single time slot i&¢ = 1 hour, there are 50 po- will always be better off (in expectation) participating than not. Note
tential providers, and the values fgrrange in integer steps from 1 that this requires; + E[U;(p")] to be positive always, and it is easy

to 100, then the algorithm considers up to 1.5 million states. On do verify that this is indeed the case.

modern PC, this is solved in seconds. 2 Strategic Providersand Unknown QoS

To conlude t.h's section, we note tha_t both algonthms_ presentegt ihe service provider is also asked to report its QoS and this can-
here covera W_'de range of realistic settings and can efficiently COMAot be verified by the centre, then the VCG mechanism is no longer
pute optimal T“'gra“o“ schedules when there are d(_)zens or even hu'?fcentive compatible. To see this, note that the service provider can
dreds of_prowders. However, w_e_have assume_d full |r_1format|ouabo artificially inflate the expected social welfarelVE_; (p*)] in Equa-
the providers and that these willingly offer their services. In the nex ion 9, by reporting a higher QoS, resulting in a higher payment (even
section, we address the more realistic case where participants ajgy, o optimal migration schedule remains unchanged)
self-interested and might strategise about the information they reveal. Now, this problem can be avoided by calculating t.he payments

4 INCENTIVISING TRUTHFULNESS based on thactualutilities of the other agentsfter execution, rather

In order to calculate the optimal migration schedule we have so fafi@n using thexpecteditilities. This so-called execution-contingent
assumed that the consumer has access to complete information aboift© has been successfully applied to address similar problems, e.g.,
the quality of service (QoS) and cost profiles of the providers. Inin [9, 5]. Specifically, the payments are here calculated as follows.

;= g __ .
practice, this information needs to be elicited and a strategic prot®t #* = (5',7) denote the executed schedule, whereontains

. . —
vider may misreport if this results in a higher expected utility. To (€ Service providers that have actually been usedatit actual
this end, we turn to the field of mechanism design to find appro{ime that they spent executing the task. Furthermorey'let |s'|.

priate payments that incentivise the service providers to reveal theif "€n the actual t‘fﬂ"ty of thethl provider in the schedule i§.given
information truthfully. In this context, a well known mechanism is by: Ui(p') = — [y ci(z + 327, t;)dz. Furthermore, the utility of
Vickrey-CIarke_-Groves (\_/CC_;) [8] Th_e main adyaptage of VCG iS the consumer i§/c(p') = V — Zzil Mi—1-i — My—o if the task
that the .resultlng allocation efficient i.e., !t maximises the social has succeeded, aiith (') = — Znil mi_1; otherwise. Then the
welfare in the system. However, as we will show, the VCG mecha- A i =

) . S . . , payment ta is given by:
nism only works in our setting if we know or can verify the providers
quality of service, and the consumer is truthful about the properties
of the task (i.e., the task difficulty distribution and the value it de-
rives if the task is completed). To address the setting in which bot

sides can misreport, we first need to introduce a trusted interme t'given that the providers are truthful). However, Equation 10 no

?hrg ngrr:é:; nlc:eufr(;;]tgn(]:qacl)lr(zd ;\?:222 dv{rc])(zjgas‘:glélgt;;rgggaetgfg;;er:eli nger relies on the reported QoS values. It is straightforward to show
to incentivise both sides. In the following, we first apply the VCG at Equation 10 incentivises the providers to report their private in-

mechanism when the consumer is assumed to be truthful and the Q(;%rmatlon_ (including the_QoS) trut_hfully. _Essgntlally, this hOIdS. be-_
ause doing so results in the optimal migration schedule, which in

IS know.n.. Wwe then proceed to the setting where the .QOS also nee@am results (in expectation) in the highest payment to the providers.
to be elicited. Finally, we assume that the consumer is also strateg

: AT . LFhe fact that the migration schedule is calculated optimally is impor-
and consider the elicitation problem on both sides. Co : S
tant, otherwise incentive compatibility is generally 1&stn the case
4.1 Strategic Providersand Known QoS that providers are asked to report their QoS, however, this requires
We first consider the case where a provider can only misreport itall the providers in the system to be truthful. Now, since the optimal
cost profile? In this case, we can use the standard VCG mechanismesponse of a provider depends on the fact that others are truthful
which calculates the payments to a service provider based on thas well, this means that the mechanism is no longer incentive com-
marginal contributionof that provider [8]. Specifically, for our set- patible indominant strategiesut rather inex postmplementation,
ting, the VCG payments dransfersto each providet are given by:  which is a slightly weaker solution concept [1]. Furthermore, note
i = E[W_;(p*)] — EW(p*,)], ©) that payments can be negative (e.g., when the task fails, payments
will always be negative). Therefore, providers bear some of the ris
but, in expectationpayments are always positive. Therefore, given
(}he assumption of risk neutrality, individual rationality still holds.

T = [Uc(ﬂ')Jr > Uile)| —EW(pL,)] (10)
JefLn I\

rNote that theexpectedpayment,E[r;], is identical to Equation 9

wherep™ is the optimal migration schedulg;_; is the optimal sched-
ule if provideri did not exist, and BV_;(p*)] = E[W(p*)] —
E[U;(p")] is the social welfare excluding the expected costs incurre
by 4 (but including the provider in the schedyé and its impacton 4.3 Strategic Providersand a Strategic Consumer
the other agents’ expected utilities). In words, the transfers to provi‘Ve now turn to the problem of the strategic consumer, who may mis-
deri are equal to the difference between the social welfare excludingeport his valuatiorl/, deadlinety and the difficulty distribution”
the costsof 4, and the social welfare when excludingltogether.  to the centre. A ri@e approach is to simply let the consumer pay the
This is also known as itsiarginal contributiorto the social welfare.  sum of the transfers to the providers. However, it is easy to see that,
VCG has a number of desirable properties. First, iinentive  since these payments depend on the reports of the consumer, this is
compatible in dominant strategiewhich means that a provider is not incentive compatible (e.g., the consumer may report a lower val-
always (weakly) better off revealing its true cost profile, irrespectiveuation in an attempt to lower these payments). If we instead apply the

9 The QoS could be verified by the centre during execution, bygmod- 10 The formal requirement imonotonicity of which bid independence is a
ifying the task code to sample the speed of the processoridrcéise, a consequence. See, e.g., [6] for details.
penalty could be imposed (either monetary or virtual by usingpatation 11 We note that our mechanism can be extended for certain sohaigolu-
mechanism) if the observed QoS does not correspond to theedf@oS. tions, similar to those reported in [5].



VCG mechanism as in Section 4.1, the marginal contribution of theof serviceg; that is drawn from the discrete uniform distribution
consumer becomes{® (p*)] — E[Uc (p*)] — 0 = ;7;1 E[U:(p*)] Uaq(1,5), while each of the latter’g; is drawn fromiis(5, 100). To
(noting that the social welfare without the consumep)sThis is ~ generate costs, we |éf denote thecost per cycleof i. As desktop

the sum of the expected utilities of the providers (which is alwaysPCs are more common, likely to be in lower demand and have a
negative). Now, using the standard VCG, a consumer still has an ifower running cost, we draw each desktofyrom the continuous
centive to misreport the problem distribution, since the payments arginiform distributionZ/: (0, 0.01), while each supercomputercs is
calculated based oexpecteditilities. For example, if the consumer drawn from4:(0.35, 0.5). Using this, we calculate theost per time
reports that the task will finish quickly with high probability, then unitof provideri asc; = ¢; - ¢;.Thus, the desktop PCs may be virtu-
the expected utility of providers following the first one are likely to ally free, but even the fastest need 20 hours on average to complete
be close to zero, resulting in low payments for the consumer. Againthe consumer’s task. The fastest supercomputers, in contrast, do this
this problem can be solved by using the execution-contingent VCGIN an average 60 minutes, but charge up to $50 per hour.

Then the (negative) transfers to the consumer simply become: To simulate realistic migration costs between providers in a global
o , network, we place all agents uniformly at random on a unit sphere.

7o =21 Vi) an We then compute the migration cost frano j as the shortest dis-
We summarise the main properties in the following theorem: tance between them along the outside of the sphere, multiplied by

Theorem 2 For a given optimal schedulg®, the transfers calcu- & pon;tanlrh. We vary this constant in our experiments, such that
9 b P migration costst most$0, $5, $10 or $25.

lated by Equations 10 and 11 are ex-post incentive compatible (i.e.,
given that others are truthful) and individually rational w.r.t. the 52 Benchmark Strategies

providers and the consumer. . . . . . .
. . I .. Asdiscussed earlier, we are interested in measuring the relative ben-
Although the (execution-contingent) VCG mechanism is efficient,” oo o : . .
fit of considering migration and also of using full information about

note that the payments to the service providers do not correspond o ) .
. ; e cost profiles of providers. Thus, we use a set of benchmat&-stra
the payments received by the centre from the consumer. That is, the

mechanism is ndbudget balancedn fact, while the consumer pays gies that we classify along the following dimensions:

the true costs incurred by the providers, the centre has to pay them Information: Myopicstrategies assume that costs do not change,
slightly more to elicit this information truthfully. Therefore, the cen-  i.e., ateach point in time, they plan optimally assuming;, z >

tre has tosubsidisehe market? This budget deficit could be recov- ¢ : ci(z) = ci(t). Once costs change, however, the plan is
ered by charging a fixed subscription fee to consumers, providers, o adaptedinformedstrategies use full information abowt

both. Alternatively, if the mechanism is deployed within a companye Migration: Singlestrategies plan optimally but use at most a sin-
or by the government, they may be willing to pay the mechanism in gle provider to complete the taskligrating strategies use migra-
return for obtaining an efficient market. In the next section, we will  tion when this is beneficial.

empmc_a!ly evaluate the mechan_ls_m_and measure the size of the buq’hroughout this section, we consider all combinations of these, not-
get deficit. We show that the deficit is small compared to the overal|ng that our approach correspondsrttormed migrating

costs when there is sufficient competition.
5.3 Continuous-Time Provisioning Results

5 EMPIRICAL EVALUATION i ) . . .
In this section, we evaluate our approach empirically by simulating’V/é begin by looking at the continuous provisioning setting, where

a large range of distributed systems and realistic task distributiongh€ task difficulty is distributed according to an expenential distri-
To this end, we first describe our experimental setup (Section 5.1§ution with rate parametex = 55. Since our approach does not
and then outline a number of benchmark strategies (Section 5.2). [A€al with fluctuating cost profiles, we do not examine the difference
Sections 5.3 and 5.4, we show our results for the continuous anfétweennformedandmyopicstrategies here, concentrating instead
discrete provisioning settings, respectively. on the difference beweesingleandmigrating strategies. To cover a
51 Experimental Setup range of settings, Figure 1 shows the results for various numbers of
: . . roviders,n, and migration costsp.
We test our approaches over a wide range of settings to represeRtThetopﬁmalf heregshows the af/rérage social welfare obtained for the
\?V%S\S/frle ;Cr?unniggf :;Jast r:tifnbea?;f%g:gr:génﬂ:gggm;rlhdeog])? tehé%i erent strategies. Several trends immediately emerge here. First, it
social v)\//elfare obtained{) eacﬁ strategy (and, where a Iicablep alt'% clear that using migration is generally of significant benefit, as it
Y 9y ’ PP ’ Sc%nsistently obtains a higher utility in all but one setting. This im-

the expecteq utility of the mtermedla_ry age_nt, or centre). . . provement arises because the consumer is able to first attempt execu-
For consistency, we keep certain variables of the simulatio

) : ) ) ion on the slower, cheap providers and then only near the deadline
flxegl throughout this section (the trends cor_mnue to hold for Otherswitch to the faster ones (a typical optimal migration schedule here
choices). First, the consumer faces a task with v&ue $100 and

has 2— i . Theingl h her h i i-
deadlinet; = 24 hours. We vary the distributioft, from which the as 2-3 providers). Theinglesrategy, on the other hand, immed

difficulty of the task is drawn, but we generally choose one with aately procures a fast, expensive provider to complete the task.
. ' 5 Over all these cases, migration yields an average improvement of
mean of around00 (this could represerit00 - 10'® CPU cycles). g y g P

over 15%, but is as high as 22% in some cases. Generally, the rel-

t We as;]sume tk:at ezch pror:nder O\ih\i;:;kctme F?I:tvivg%soss'ble reSourCive improvement is greater when network costs are low and when
YPes, chosen at random. cheap, S op PC80%) or expen- there are more providers. Intuitively, this is because there are more

sive, fastsupercomputer$20%). Each of the former has a quality opportunities for migration and the costs are lower.

12 |n general, it is impossible to have mechanisms which are bdittiesft To conclude the continuous case, the bottom half of the graph
and budget balanced [8]. Here we focus on efficiency, anddenbudget ~ shows the expected utility of the intermediary agent, or centre. As
balanced mechanisms in future work. outlined in Section 4, the centre here incurdedicit However, this

13 To obtain statistical significance, we repeat all experimefi00 times : 0
and when reporting performance differences, we ensuregsiificance is relatively small (8.5% of the welfare on average) and drops to less

by performing ANOVA and pairwise t-tests with < 0.05. As the 95%  than 1% in some settings. In general, we note that the deficit de-
confidence intervals of the results are small, we omit them ftengraphs.  creases as the number of providers rises and as migration costs drop
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Figurel. Results for continuous-time provisioning. Figure2. Results for discrete-time provisioning.

— this is because it is increasingly likely in these settings that a propayment. When a smooth cost profile is used, transfers are generally
vider can be replaced by another similar one and so its marginal cofower, because fewer providers are required and their marginal con

tribution is relatively low (i.e., there is more competition). tribution is often lower too. Overall, the deficit is usually acceptable
and, in all but two cases, outweighs the loss in welfare that would be
5.4 Discrete-Time Provisioning Results incurred by switching to any other strategy.

Next, we consider the discrete-time case. As our approach for thi% CONCL USIONS AND FUTURE WORK

deals with arbitrary distributions and cost profiles, we are here able T o i

to evaluate the effect of varying levels of uncertainty as well as cost h€ approaches outlined in this paper can be applied in a wide range
fluctuations over time. Thus, we now assume the task difficulty j<of service-oriented settings. First, we envisage that users of cloud and
drawn from a normal distribution with a mean of 100 and standarcdrid systems can use our algorithms to execute their tasks more ef-
deviations that we vary from 0 to 400 (truncated at 0). Furthermoref€ctively, reducing overall costs and meeting time constraints despite
we considerandomcost profiles for providers, where we perturb Uncertain requirements. Even in the absence of a mechanism, i.e.,
the cost per cyclé; (described above) randomly once per hour by when the only information about costs consists of the current posted
multiplying it by a random value drawn from. (0, 10). Second, pric_es of resources, we showed that a myopic migra_tion strategy still
we consider ssmoothprofile, where the cost of is calculated as ~achieves a significant improvement over non-migrating strategies.
ci(x) = & - qi- 2.5 (sin(5 - (|20 + x)) + 1), whered is the Second, our proposed mechanism can be used to implement ef-
longitude of the provider on the unit sphere. Choosing this mean§Cient systems, where the best resources are selected to complete a
that the cost varies smoothly between 0 and 5 times the normal co8fven task. As this requires investment by an intermediary, we believe
during a full day, thus simulating peak and off-peak hours. Uging that this would most likely _be offere_:d by an organisation or govern-
creates an offset based on 24 equal time zones, reflecting the fiact tHR€Nt that has an interest in ensuring efficiency, e.g., to manage an
peak times may be specific to the provider’s location. As the trend9Pen cloud or |nter-organ|s_at|onal grid. Alternatively, an |ntermed|-'
discussed in Section 5.3 continue to hold, we now only consider 287y could offer the mechanism as a value-added service and reclaim
providers and fix the maximum migration cos8at costs elsewhere, e.g., through subscription fees or advertising.

The results of our experiments are shown in Figure 2, grouped by In future work, we will consider the possibility of failures and set-
the cost profiles usechomogeneousefers to the unperturbed cost tings whe_re prqviders can invest a variable effort by dedicating only
profiles, where no distinction betwearformedandmyopicis neces- @ Proportion of its resources to the task.
sary). Here, the benefit of task migration is more pronounced and BACK NOWL EDGEMENTS
ident over a l_arge range Qf sc_ettlngs. Typically, thiermed migrating This work was undertaken as part of the ALADDIN project, whigointly funded by
strategy achieves a relative improvement of around 30-50% over thRAE Systems and EPSRC (EP/C548051/1), and as part of the EPSR&ifproject
simplemyopic singlestrategy, although for high uncertainty and fluc- °" Market-Based Control (GR/T10664/01).
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