
Atomate It! End-user Context-Sensitive Automation using
Heterogeneous Information Sources on the Web

Max Van Kleek, Brennan Moore, and
David Karger

MIT CSAIL 32 Vassar St.
Cambridge, MA, 02139, USA

emax, zamiang, karger@csail.mit.edu

Paul André, and m.c. schraefel
Electronics and Computer Science

University of Southampton
SO17 1BJ, United Kingdom

pa2, mc@ecs.soton.ac.uk

ABSTRACT
The transition of personal information management (PIM)
tools off the desktop to the Web presents an opportunity
to augment these tools with capabilities provided by the
wealth of real-time information readily available. In this pa-
per, we describe a next-generation personal information as-
sistance engine that lets end-users delegate to it various sim-
ple context- and activity-reactive tasks and reminders. Our
system, Atomate, treats RSS/ATOM feeds from social net-
working and life-tracking sites as sensor streams, integrating
information from such feeds into a simple unified RDF world
model representing people, places and things and their time-
varying states and activities. Combined with other informa-
tion sources on the web, including the user’s online calendar,
web-based e-mail client, news feeds and messaging services,
Atomate can be made to automatically carry out a vari-
ety of simple tasks for the user, ranging from context-aware
filtering and messaging, to sharing and social coordination
actions. Atomate’s open architecture and world model eas-
ily accommodate new information sources and actions via
the addition of feeds and web services. To make routine use
of the system easy for non-programmers, Atomate provides
a constrained-input natural language interface (CNLI) for
behavior specification, and a direct-manipulation interface
for inspecting and updating its world model.

Categories and Subject Descriptors
H.4 [Information Systems]; H.5 [Information Inter-
faces and Presentation]

General Terms
Design, Human Factors.

Keywords
Context-aware computing, end-user programming, reactive
automation, mash-ups

1. INTRODUCTION
Most of the digital information tools we rely upon on

a daily basis are still designed to facilitate manual, user-
initiated information access and manipulation. In contrast,

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

human personal assistants, such as secretaries and admin-
istrative assistants, work on behalf of their supervisors, au-
tonomously taking calls, handling visitors, managing con-
tacts, coordinating meetings and so on. In order for personal
information management tools to approach the helpfulness
of human personal assistants, they will need to demand less
explicit attention from users and gain a greater ability to
initiate and carry out tasks without supervision.

The transition of personal information management (PIM)
tools to the web presents an unprecedented opportunity to
give these tools greater capabilities. The web is a data-rich
environment with an increasing amount of machine-readable
(semi-structured) information that systems can leverage di-
rectly to take action. In particular, the rise of social net-
working and life-tracking web sites have brought a wealth
of near real-time information about people, such as their
whereabouts, current activities, and opinions, as well as
more slowly changing information, such as people’s relation-
ships with and preferences toward other people and things.

Today, the data produced by these social networking sites
and services are geared toward human consumers, e.g., let-
ting people view each others’ updates easily in RSS news
aggregators. In this paper, we demonstrate that by treating
feeds from these services as sensor streams, the same data
feeds can also be used to drive simple adaptive, context-
reactive automation, which can be used routinely to take
care of a wide range of simple tasks without user super-
vision. To this end, we introduce Atomate, a web-based
reactive personal information assistance engine. Unlike the
personal agents portrayed in Semantic Web scenarios, Ato-
mate requires no complex inference, learning, or reasoning
– data available from the feeds can be used directly to drive
useful behaviors.

Atomate relies on two key components: the first is a uni-
form internal RDF data model that simplifies the integra-
tion of heterogeneous information. The second is an inter-
face that makes it easy for end-users to create behaviors and
to modify the data model. For the latter, we introduce an
guided-input, controlled natural language interface (CNLI) 1

designed to let non-programmers accurately and easily spec-
ify actions to be performed, and to inspect and edit the data
model. While the use of CNLs has previously been explored
for ontology authoring and semantic annotation, Atomate is

1Controlled Natural Language Interfaces apply simple gram-
mars derived from human natural language for commu-
nicating with users unambiguously. For more infor-
mation, see: http://www.ics.mq.edu.au/˜rolfs/controlled-
natural-languages



the first system that uses a CNLI for letting users specify
rules for reactive automation.

In the remainder of this paper, we first present examples
of Atomate behaviors and how they are expressed. These
examples are followed by a brief discussion of related work,
and a detailed description of Atomate’s architecture. We
then describe a user study to evaluate the creation of rules
with Atomate, and discuss results and ongoing work.

2. ATOMATE WALK-THROUGH
We present three scenarios illustrating how a user inter-

acts with Atomate to script simple reactive automation.

2.1 Scenario 1: Simple contextual reminding
There are certain household chores Xaria needs to do on

particular days of the week, but she often forgets to do them.
Since she sometimes works late, a regular calendar alarm
would interrupt her at the wrong time – either on her drive
home, or while she’s still at the office. With Atomate, she
can set up a reminder action to trigger precisely when she
gets home, delivered via a variety of mechanisms — SMS,
e-mail, or via desktop notification.

Figure 1: Atomate behavior creation interface. Ac-
tions are visible along the top row, followed by situa-
tion clause, time constraints, and optional messages.

To set up an Atomate reminder to take the trash out when
she gets home on Tuesday evenings, Xaria clicks on the Ato-
mate tab in her Firefox browser, and clicks “My tasks”. This
displays the interface visible in Figure 1. She first specifies
what she wants done: she selects “alert me” (Figure 2.1),
which defaults to a a combination of desktop notification
and an SMS message. The next two options are “whenever”
or “next time”, which let her specify recurring or one-shot
actions. Since she has to take the trash out every week, she
chooses “whenever” (2.2).

Clicking on “whenever” makes visible the situation spec-
ifier, visible as the “who does what” line (2.3). This inter-
face is used to easily specify the contextual and situational
conditions under which an action should occur. Such con-
straints are evaluated against Atomate’s RDF world model,
which is formed from the integration of various near-real-
time web data streams about various people, places, things

Figure 2: Top: A step-by-step montage illustrating
the construction of the reminder behavior described
in Scenario 1, using Atomate’s constrained simpli-
fied natural language UI (CNLI). Bottom: The com-
pleted behavior.



and their relationships. Since Xaria wants to be reminded
when she gets home, she clicks the “who” slot, which pro-
duces a list of all the entities with properties in the world
model, and selects the top choice, “my” which represents her
entity. Atomate displays all her entity’s properties, includ-
ing her “current activity”, “birthday”, “current location” and
so on. She selects “current location” (2.4). This moves the
entity selector to the predicate position (labeled “does”) and
displays a list of all predicates that take a Location as the
first argument, such as “is”, “is near”, “is not near”. She
selects “is” (2.5), and this moves the selector to the object
(“what”) slot, where she selects “Home” (2.6). (She could
have equivalently selected “[[my home]]” , which would refer
to the same entity via her entity’s “home” property).

At its current state, the behavior would execute whenever
she got home. To constrain the behavior to execute only on
Tuesday evenings, she selects the “on/after” button (2.7).
This produces a calendar widget, where she selects “every
Tuesday” (2.8). Finally, she specifies the reminder message
by clicking “message” (2.10) and typing “Trash day!”.

As Xaria constructed her new behavior, Atomate displayed
its partial interpretation of the rule as-completed at the bot-
tom of the screen. Now that the behavior is finished, Xaria
reads this interpretation to herself to verify its correctness:
“Alert me when my location is home on/after Tuesdays at
5pm with the message: Trash day!”. She confirms the rule
by hitting Save (2.11) and the behavior appears in her Ato-
mate’s list of tasks.

Although it is ambiguous as specified, it is more likely
that Xaria intends on having the system remind her once
on Tuesday upon reaching her home than over and over re-
peatedly while at home on Tuesday evenings. This assump-
tion is common to most kinds of behaviors that users create
in the system, and thus Atomate’s rule chainer is designed
specifically to execute once, only when the world model’s
state changes to satisfy conditions for execution. We de-
scribe this in detail in Section 4.3.

2.2 Scenario 2: Social coordination
In this second scenario, we illustrate how Atomate can be

used in a simple social-coordination task.
Ben is often overloaded with things to do and misses

events on his calendar – sometimes he’s forgotten about
them, in other cases he misses events deliberately when he’s
busy with other things. In either case, he wants to be noti-
fied which of his friends (if any) attended events he’s sched-
uled, so that he can intervene (either to to tell them he’s
coming), ask them about it afterwards, or just even to de-
cide whether or not to go.

To set up an appropriate event, Ben opens Atomate and
clicks “New task”. He selects the “notify me” action, and
“whenever” to specify a repeating action. Next, he con-
structs the first condition clause by selecting, in sequence
“[my] [current calendar event’s] [location] [is not] [my] [lo-
cation]”. Next, he adds a second clause: “[any friend’s] [lo-
cation] [is] [my] [current calendar event’s] [location]”. This
clause uses the “any” wildcard entity specifier, which is eva-
luted against all entities of the specified type. Ben verifies
that the rule looks correct by inspecting the English render-
ing and hits save.

For this rule to work, Ben needs to have provided Ato-
mate with two types of data sources: a location source for

Figure 3: Scenario 3: Sherry adding a new data
source to Atomate

him and his friends, and his calendar2. His location data
source is configured to set the “current location” property
on entities representing him and his friends in Atomate’s
world model, while his calendar is configured to update the
“current calendar event” property on the entity represent-
ing him. Section 5.4 describes how new data sources can be
configured to update properties automatically.

Since Ben did not specify a message, Atomate will tell him
about the situation that caused the rule to trigger. Atomate
uses the same mechanism for previewing rules in English to
render notifications in simplified English as well. For exam-
ple, if Ben was missing Liz’s birthday party that his friend
John is attending, the notification would appear “Ben’s cur-
rent location is not Liz’s Birthday Party location. John
Smith is at Liz’s Birthday Party.”

2.3 Scenario 3: Extending the system
The final scenario illustrates how Atomate can be easily

extended to new data sources.
Sherry prefers buying groceries from Cropz, a local organic

grocer, but the availability of produce items there changes
few every days. Cropz recently started posting the arrival
of fresh items on a simple static web page. Since she never
remembers to manually check the page before going shop-
ping, she sets up an Atomate script to inform her to not
buy available organic items whenever she arrives at the su-
permarket.

Her grocer does not publish an RSS feed, so she uses DAP-
PER(.net, the data mapper) to construct a mapper to scrape
the grocer’s site every couple days. Once she constructs the
mapper, she copies the address of the resulting RSS feed to
her clipboard, and clicks on the My Feeds section of Atom-
ate (Figure 3. She selects “Create a data source” and names
it “Cropz Feed”. She then pastes the DAPPER feed URL
into the “source” field. Atomate retrieves the feed and dis-
plays the current feed entries below. Next, she changes the
type of the entries from the default (“News Story”) to “Fresh
Produce” by clicking on the “type:” property value, select-

2Examples of services that could be used for location
include Plazes (http://plazes.com) and Google Latitude
(http://latitude.google.com). As most of these services do
not provide indoor localization, we have also created our
own WiFi-based room-granularity location-sensing service
called OIL (Organic Indoor Location). For calendaring, any
of the popular online calendaring services like Google Cal-
endar would suffice.



ing “new type” and replacing the entry value. This causes
all entries in the feed to assume the same type — a new
rdfs:Class, since Atomate had no previous record of a class
named “Fresh Cropz”. In this way, new RDF classes can be
spontaneously created from data arriving from new sources;
and multiple sources can be configured to create the same
data types. Sherry can further customize the names of the
other properties of each of the Fresh produce items, or filter
out unnecessary properties by un-selecting the row(s) corre-
sponding to the properties she wishes to filter.

Next, she constructs a rule to use the new information.
She goes to “My tasks” and creates a rule to trigger based
on her location and available fresh produce items: “Notify
me when my location is Cropz and any Fresh Cropz’s posted
date is within the past 24 hours”.

3. RELATED WORK
Architecturally, Atomate resembles work on blackboard

systems [11], early sensor-fusion architectures for pattern-
directed problem solving using heterogeneous information
sources. Atomate’s information sources (e.g., web sites), cor-
respond roughly to a blackboard’s “experts”, while its end-
user authored behaviors correspond to the pattern-directed
programs in these systems.

Context-reactive automation has been explored primarily
in the ubiquitous computing domain, such as with architec-
tures such as the Context Toolkit [8], and ReBA [7]. Re-
search exploring interfaces for end-user construction of such
automation include iCAP [9], which proposed a sketch-based
interface for programming home automation, and CAMP
[10], which explored a magnetic-poetry metaphor for the
construction of behaviors by end-users.

The design of Atomate’s rule creation UI (Section 4.4.2)
was inspired by research from the semantic web commu-
nity pertaining to simplified and constrained-input natural-
language interfaces for knowledge capture and access. In
particular, the CLOnE [5] and ACE (Attempto Controlled
English) [4] work introducing controlled language languages
(CNL), and related GINO [2] and GINSENG interfaces for
guided input interfaces for CNLs were the basis of Atom-
ate UI’s design. Since Atomate uses a rule based system
at its core, emerging Semantic Web work pertaining to rule
languages (such as SWRL and RuleML), and efficient chain-
ers for these languages are currently of great relevance and
interest to us well.

Web mash-ups have explored the potential for combining
information from multiple sources on the web. Systems for
enabling the end-user construction of such mash-ups include
MashMaker [3], while tools like Pipes (http://pipes.yahoo.com)
have focused on end-user processing and manipulation of
web feeds. A survey of 22 mash-ups [12] concluded that most
mash-ups enabled the construction of custom visualizations,
while none were designed to deliver reactive behaviors (e.g.,
actions) based upon mashed-up data. In this work, we show
that reactive actions based on mashed-up data are both eas-
ily created and useful for saving people time and effort.

4. ATOMATE
In the following sections, we describe details of Atomate’s

design, explaining at a high level how data flows through
the system, followed by a description of the data model, the
rule chainer, and the user interface.

Figure 4: Atomate data flow. Atomate pulls data
from the web and updates the world model. Model
updates are fired and picked up by the rule chainer,
which evaluates triggers for user-specified behaviors
(rules). Triggered rules that depend on changed en-
tities are fired. The effects of such behaviors can be
to update the world model (Set) or to call external
services.

4.1 Data flow
Atomate works in a reactive loop retrieving information

from the web, updating its world model, and triggering user-
specified rules. As portrayed in Figure 4, Atomate’s feeder
component periodically retrieves from Atomate’s RDF model
a list of all the data sources the user has created, and polls
each. For most data sources (corresponding to RSS/ATOM
feeds), this poll corresponds to a simple GET operation of
the particular feed in question. For data sources that pro-
vide push (asynchronous call-backs), the feeder registers a
callback on startup and waits for asynchronous notifications.

For each item retrieved from a source, the feeder updates
the corresponding entity in the world model, or creates a new
entity if no such corresponding item is found. This updat-
ing is fully deterministic as established through per-source
mappings created by the user when the user initially sets up
the data source. The process of creating such mappings is
described in Section 5. For example, a Twitter feed would
cause new Tweet entities to be created in the RDF world
model, while entries from Facebook would cause updates to
and creation of new Person entities.

Updates to entities in the world model are noticed by the
rule chainer. When such updates occur, the rule chainer re-
trieves all Rule entities from the world model. It evaluates
each rule antecedent, and fires all rules whose triggered an-
tecedents depend on the entities that changed. As described
further in Section 4.3.1, rule antecedents can be either en-
tirely time-based or based on the state of entities in the
world model.

The effects of rule firings depend on the type of rule: rules



can either cause updates to properties of entities in the world
model (if they have a “set” clause, described in Section 4.3),
trigger a message or notification to be sent to the user, or
cause a tweet or other message to be posted via a web ser-
vice. As described in Section 5 new actions can be easily
added to call arbitrary web services. If the world model is
updated as a result of this firing, the chainer is informed and
the rule trigger evaluation starts again.

4.2 Atomate’s world model
Atomate internally represents all data it manipulates as

RDF entities, including information about things in the phys-
ical world (people, places, events), digital items such as
messages, articles, tweets, and e-mails, as well as Atomate-
specific rules, predicates, and data sources. The uniform
representation reduces overall system complexity and makes
it possible for users to examine, access and update parts of
the world model using the entity inspector user interface (see
Section 4.4.1), which acts as a “global address book” for the
system. For example, users can redefine or add their own
predicates and actions by creating new entities of the ap-
propriate types, as described in Section 5. It also facilitates
integration with new external data sources, also as described
in Section 5.

4.3 Rules
Behaviors in Atomate are represented internally as rules,

consisting of an antecedent, which characterize the condi-
tions under which the rule should execute, and the con-
sequent, which specifies the action to be taken. The an-
tecedent of a rule in Atomate consists of conjunctions (“ands”)
of clauses. Each clause can consist of a either a predicate
applied to the current time (to cover temporal constraints),
or a binary relational predicate which can be applied to val-
ues in Atomate’s RDF entity database. Each argument of a
binary relational predicate can be either a simple primitive
type (number, date, or string) or a path query over Ato-
mate’s world model. Each path query originates at either
a single specific entity (node) or all entities of a particular
type. This latter situation occurs when the user specifies a
condition with the “any” expression, such as “any Person”,
“any Event”or“any e-mail”, described in 4.4, which lets users
express situations pertaining to any instances of a particu-
lar type. The tail of a path query consists of properties
which are traversed from the origin node(s). These paths
of properties can be of arbitrary length and are expressed
as chains of possessives in the CNLI. A rule is considered
triggered when an interpretation can be found that maps
entities to query expressions and satisfies all of the clauses
in the antecedent.

An additional feature supported by the rules is the “that”
expression, which is used to refer to entities that were im-
plicitly referenced in preceding clauses. Implicit references
arise in two situations: at the end of a path queries (e.g., “my
current location”) or via the wildcard expression “any” (e.g.
“any Location”) described earlier. The subsequent use of
“that Location” in either case would allow the specific entity
(either the value of my current location) or the value being
bound to “any Location” to be applied to another predicate.
“that” binds to only the last such reference.

A rule’s consequent consists of a single action; this ac-
tion either directly changes the world model through the
Set function (which updates the property of an arbitrary

entity in the system), or calls upon an external service. The
default set of actions provided in Atomate are set, e-mail,
alert, text, post a tweet, update Facebook status and ‘Set ’.
Section 5 describes how actions can be added to the system
by advanced users. When an action is called, it is provided
as an argument to the antecedent that caused the rule to
fire. This can be used to make the action adaptive, or to
include a helpful message to the user about why the action
was taken. The convenience method toSimpleEnglish() can
be used to render path queries into simplified english. The
Set action allows users to create rules that update an entity’s
properties, as described in 5.4.

4.3.1 Triggering and scheduling
Computationally, the rule chainer is a naive forward rule

chainer that uses a brute-force approach to evaluate rule an-
tecedent clauses. For each behavior, the rule chainer deter-
mines whether predicates can be satisfied by some entity (or
entities) under the current state of the world model. This
corresponds to determining whether nodes named in each
clause, when dereferenced by the appropriate path queries,
yield values that satisfy the predicates in the antecedent. For
evaluating existential “any <type>”expressions, the chainer
searches all nodes of the appropriate type to determine sat-
isfaction.

As introduced in Scenario 1, most behaviors exhibit the
assumption that they will fire once when the rule’s antecedents
transition from not-satisfied to satisfied. Atomate’s rule
chainer implements this assumption as follows: when an en-
tity is updated in the world model, the chainer is informed
of the change, in particular the entity, property and value(s)
affected. Then, upon evaluating the antecedents for all be-
haviors, the chainer only fires rules if the values that caused
them to trigger corresponded to any of update operations.

4.4 User interface
The Atomate interface consists of two integrated inter-

faces: the delegation interface, where users construct, acti-
vate, and monitor the execution of reactive behaviors in the
system, and the entity explorer interface, where entities can
be viewed, edited, and linked.

4.4.1 “My stuff”: The Entity Explorer
The entity explorer known as “My stuff” displays all enti-

ties in the system, filtered by type. It is designed to act as a
general“global address book”for the user, a single unified in-
terface to reference information obtained from web sources
about people, places, events, articles, and so on. Clicking
on any of the type names along the top of the displays a
list of all the entities of that type. Clicking further on any
item expands the item and displays its properties. Prop-
erty values can be edited by clicking on them, which opens
an autocompleting, incremental-search entity selector box.
This box can be used to assign a primitive typed-value (an
integer, string, or date), a single, or multiple entities as val-
ues. The user can merge any redundant items by selecting
them and clicking “merge items.” Entities also be set as val-
ues of properties by dragging the entity from any list to the
property value slot.

The “me” object displays the user’s own entity object and
state, which, due to its importance, is promoted in the in-
terface to the top (type) selector. Users can use this inter-
face to quickly update properties of their own entity’s state,



which may cause relevant behaviors they have scripted to
trigger. As entity properties are changed in the world model,
the interface reflect such changes using fading animations to
make the changes clear. Users can inspect the recent change-
history of a particular property’s value by right-clicking on
the value.

4.4.2 Rule creation and management interface
Scenarios 1-3 stepped through the rule creation user in-

terface in detail. This interface was designed to be as easy,
or easier, to use than standard reminder-alarm dialog boxes
often visible in PIM calendaring tools such as Outlook, and
yet provide vastly more expressive reminder capabilities, us-
ing a constrained-input guided simplified natural language
interface as explored by the semantic web community for
ontology creation and annotation.

Scenario 1 walked through one example of using the rule
creation interface visible in Figure 2. This interface has two
sections, a section for choosing an action and a section for
stating the condition(s) required to make that action occur.
Actions consist of notifications such as “alert me” and “email
me,” social actions such as “tweet” and “update my facebook
status” and the “set” action for updating the property value
of an arbitrary entity in the world model. The user may
choose for an action to occur “whenever” the conditions are
satisfied or only “the next time” and then is guided through
crafting the “who does what” clause, shown in Figure 2:3-
6. Atomate continually modifies the displayed options such
that an invalid rule cannot be created. The user may add
additional clauses by clicking “and.” In addition to the con-
dition clauses, the user may specify a time constraint for the
action to occur; this is done using the calendar widget shown
in Figure 2:8-9 which appears by clicking the “at/on/after”
button. At any time, the user may add a message by click-
ing“with message”and entering the message in the text field
provided. While a user is creating a rule, it is incrementally
displayed next to the save button in plain English to reduce
the likelihood of error. After reviewing their rule, the user
may alter their rule or click “save” to have it recorded and
displayed below the rule creation interface in the rule man-
agement interface where it may be toggled active or inactive,
and edited or deleted.

4.5 Implementation
Atomate is implemented as a Firefox browser add-on, and

is written entirely in Javascript. Atomate’s RDF data stor-
age layer is kept in-browser using the MozStorage APIs,
which stores all data in an SQLite file in the user’s Firefox
profile. Atomate’s RDF-JS ORM allows RDF nodes to be
treated like other Javascript objects in the code, enabling
such objects to be serialized and inherit methods through
rdfs:subClass chains. (Code for entity instance methods are
serialized in the triple-store as string properties.) The rule
scheduler, database engine and feeder are packaged in a Fire-
fox XPCOM component, and remains a singleton per Firefox
process (which is limited by FF to one per user). The Ato-
mate UI, meanwhile resides in a web page which calls upon
the components and renders/lays out the UI using jQuery.

The advantage to having Atomate in the browser is that
the many javascript client libraries and APIs available for
letting sites access data, such as Facebook Client-Connect,
and GData JS can be readily used to obtain data.3 New data

3Atomate complies with Facebook’s TOS by tagging data

sources with custom client libraries can be added by web
developers without any need for special integration work.

5. EXTENDING ATOMATE
Since there are an enormous number of web sites that

publish potentially useful information for use in Atomate
scripts, it was impossible to anticipate and pre-integrate all
possible data sources that users might need. Instead, we
opted to make it easy for users to extend Atomate to use
arbitrary new sources and actions as they become available.

The architecture of Atomate was designed to support ex-
tension in three ways. The first is the introduction of new ca-
pabilities (actions) and relation comparison functions (pred-
icates) for user behaviors. The second is the addition of data
sources for supplying new information about types of things
Atomate already knows about. The third is to extend Atom-
ate to entirely new types of information and representations,
as illustrated in Scenario 3. In this section, we describe in
greater detail how new sources are added to introduce new
information into Atomate’s world model.

5.1 Adding predicates and actions
New predicates can be added to Atomate to add more

powerful entity comparison operators or to overload opera-
tors for new entity types, while new action functions can be
used to extend Atomate’s capabilities. Currently geared to-
wards end-users comfortable with writing Javascript, adding
a predicate or action involves merely creating a new entity
of the appropriate type (i.e. Predicate or Action), specifying
required argument types, and attaching an implementation
property with a string value consisting of the appropriate
Javascript implementation.4 Such an implementation may
call an external web service to perform the relevant action
or comparison evaluation.5

5.2 Adding new data sources
The most common form of extension is adding new data

sources to provide instances of existing types. For the pur-
poses of this discussion, we assume that Atomate had no
prior record of the schema or representation used by this
new data source.

Adding a new source requires two steps: adding the source
to Atomate’s world model, and telling Atomate how to in-
terpret retrieved data. The first step is simple: If the data
source exports an RSS/ATOM or other public XML feed,
a new Data Source entity is created with the source URL
pointing to that feed. If the data source provides its data
in a proprietary format, embedded in HTML, or using a
custom library, the user can either write a wrapper them-
selves in Javascript, or use a third-party service such as Dap-
per(.net/open), Babel (http://simile.mit.edu/babel), or Ya-
hoo Pipes to convert data into an RSS feed first.

The second step is to establish a mapping between the new
type and an existing Atomate type. We model our approach
to that of Piggybank [6], which lets the user construct a visu-
alization from multiple sources with dissimilar schemas using

obtained from FB with a 24-hour expiration date.
4We omit details on the requirements of such a function for
sake of brevity, but a tutorial geared at advanced users of
the system is included in Atomate’s online documentation
and is easily accessible from within the entity creation panel.
5As predicates are re-evaluated frequently, they should be
made efficient and properly cache computed values.



drag and drop gestures. Atomate first retrieves and displays
a selection of raw (unaligned) items from the new source.
Next, the user selects the Atomate type that best matches
the type of the entities retrieved from the new source. For
a micro-blogging service such as Twitter, for example, the
user could select the closest entity, such as Tweet. Atom-
ate then inserts in the display of each record of the new
source items the properties that are found in instances of
the chosen destination type. Atomate automatically maps
properties in the destination type that match source type
properties exactly. For the remaining properties, the user
can manually match properties by dragging property names
on top of other property names. Behind the scenes, Atom-
ate creates a mapping descriptor to the data source which is
used to structurally convert incoming items on its feed prior
to being added to the world model.

Atomate does not require all properties in either source or
target schemas to be aligned; new properties can be intro-
duced into the type by leaving source properties unpaired.
Similarly, properties of the target type can be left unpaired;
this will cause entities from the particular source to have
undefined values for these properties.

5.3 Extending Atomate’s schemas
If Atomate does not already have an appropriate class

to represent a particular type, a new class can be created
directly at the time the new source is added. To do this, the
user performs the same steps as described above for adding
a new data source. Then, when entities are retrieved from
the source and displayed as described above, the user types
the name of a new class instead of selecting an existing class
as a target destination type. The user can customize the
names of property fields and set property field destination
types as in the alignment case described above. (Atomate
initially guesses the value types by trying to coerce values in
the new feed.) The user may optionally specify an superclass
by selecting one during this process.

To complete the process of adding a schema, the user
needs to specify at least one property to uniquely identify
the entity to update when a new piece of information ar-
rives from each source. Defining inverse functional proper-
ties serves as Atomate’s simple solution the entity resolu-
tion problem, and avoids the need to deal with ambiguity
in updates to the world model. For example, for schemas
representing a person, their e-mail address and phone num-
ber could be a useful choice for such a property, as e-mail
addresses or phone numbers usually uniquely identify indi-
viduals.

5.4 Automatically updated properties
The introduction of new sources and types just described

result in the creation of new entities and classes to the Ato-
mate world model. In many situations it is useful to assign
created values as property value of some other entity in the
system. For example, if a user adds new entities of type
“GPS observation” from his car’s navigation system, hook-
ing up these values to the user’s “current location” property
would enable rules that condition on the user’s current loca-
tion property to work unmodified with this new data source.

This is where the Set action described earlier comes in.
To create properties that automatically update in response
to the arrival of new information items, a user creates a
new rule using the Set action. Set takes as argument an

entity, property, and value. The “that” expression described
in Section 4.3 is particularly useful in Set rules, as it allows
for the succinct expression of general property-update rules.
For example, for the previous scenario, the rule “whenever
[any GPS Observation’s] [user id] is [any Person’s] [gps ser-
vice username], set [that Person]’s [current location] to [that
GPS Observation’s] [location].” would connect the locations
associated with any new GPS Observations to appropriate
Person entities in the world model.

6. EVALUATION
Since a users’ understanding and use of the rule creation

interface will largely determine their success with the sys-
tem, our first goal for the evaluation of Atomate was to in-
vestigate whether users could understand and create rules.
Secondly, we were interested in users’ thoughts about the
potential value for such a system – if and how they may use
it now, and future desires for functionality. To explore these
questions, we performed two studies as follows:

Study 1: Design Review - An informal design re-
view was held with 15 user interface researchers (some of
whom have experience in designing end-user programming
interfaces) to discuss the rule creation process and interface.
Asked to think about both personal and lay-user preferences,
this discussion was used as early feedback and an opportu-
nity to alter the surfacing, presentation, or explanation of
the components before the rule creation study.

Study 2: Rule Creation - This study was designed
to test our hypothesis that a constrained natural language
input interface allows end-users to easily and quickly cre-
ate rules of varying complexity, and to enquire about the
system’s current or future value to users. Using an exam-
ple data set (consisting of locations, events, contacts and
emails) we asked users to create nine rules (see Table 1 for
a full list). These rules ranged from simple to complex, and
tested a range of possible behaviors (one-off/repeat remind-
ing, different predicates and actions, multiple clauses, etc.)

We estimated the study would take 10 minutes, at 1 minute
for each of the nine rules and another for the survey. We first
piloted the study with three colleagues in our lab, observing
as they thought-aloud through the study, before releasing it
to a wider audience online. A two minute video was available
to explain the system prior to use.

We used one of four categories to classify each created
rule: ’Correct’ – the rule does exactly what the instructions
specified; ’half-correct’ – the rule would work but may fire
too often as the result of it being inadequately specific, or
it was obvious what the participant was trying to achieve;
’incorrect’ – the rule would not achieve the role as set out in
instructions; or ’missing’ – the participant did not complete
a rule (or due to technical error we are missing it). While
accuracy was of course desirable, one of the goals of this
study was the process participants went through to create
rules, and the (potentially creative or misunderstood) solu-
tions they may come up with, in order for us to refine the
system for extended use. Thus, we were particularly inter-
ested in the ’half-correct’ and ’incorrect’ rules as these would
point to areas or concepts that participants found difficult
to comprehend or input, allowing future improvement.

An exit survey measured quantitative response to how
easy the system was to use and how useful it was deemed
to be, qualitative feedback on the ease of use of the system,
and thoughts as to how and when participants would like to



Rule 1 You have a meeting with a colleague tomor-
row at 3pm. Set a reminder.

Rule 2 You have to provide a work status report ev-
ery Thursday at 2pm. Set a reminder.

Rule 3 Set up an alert that notifies you whenever
anyone you know is near your house.

Rule 4 Set an alert that notifies you when your boss,
John von Neumann, arrives at his office.

Rule 5 You often forget to bring your shopping list
with you to the store. Have atomate text you
your new shopping list (1. eggs. 2. bread. 3.
milk) to you when you arrive at your local
grocery store (Cropz).

Rule 6 You have been buying too many books from
Amazon.com. Remind yourself every time
you visit amazon.com to check your local
public library for the book.

Rule 7 You are working on an urgent project with
Vannevar Bush and want to make sure to
not miss new e-mails about it. Have Ato-
mate alert you when you receive a new email
from him containing the word “MEMEX” in
the subject line.

Rule 8 Have Atomate automatically update your
facebook status when you are at a concert.

Rule 9 Have Atomate send you a text message when
you have an activity scheduled in 5 minutes
that is not close to where you are.

Table 1: The nine rules participants were asked to
create in the evaluation.

use it now or in the future.

7. RESULTS
Study 1: Design Review. - Feedback from the design

review resulted in a number of changes to the interface to
make the rule creation process clearer and more intuitive.
These included: labeling the three autocomplete boxes with
examples and simplification of the time and date entry fields.

Study 2: Rule Creation. - Three colleagues performed
the rule creation study in our lab, talking aloud so we could
get feedback on what was confusing or unclear about the
system. Positively, the feedback mostly concerned minor
improvements as opposed to higher level concerns about
the grammar or interface. Based on those concerns, we im-
proved feedback on what an alert or e-mail would display, on
whether a rule was one-time or to be repeated, and clarified
our instructions before advertising the study online.

In total, 33 participants began the study, but because of
time limitations or technical issues with smaller screens, 26
participants fully completed all rules and the final survey.
The group’s age ranged from 25-45, 14 of whom had some
previous programming experience. In the sections below, we
first examine how participants used the system, including
measures of accuracy and ease of use, and discuss how these
results suggest design changes and secondly, look at whether
and in what ways participants thought such a system would

Figure 5: Percentage of created rules that were cor-
rect, half-correct, incorrect, or missing.

be useful to them.
Accuracy and Ease of Use
As described in the previous section, we classified each

answer into one of four categories: correct, half-correct, in-
correct or missing. Figure 5 details these scores as a per-
centage of all answers. The first six rules were correct over
75% (and mostly over 85%) of the time. The final three were
more problematic and raised some interesting issues. Rule 7
(Memex mail): Many participants achieved ’half-correct’ an-
swers on this rule, leaving out one of the two clauses needed
(either ’from V Bush’ or ’subject contains ’Memex”). Rule
8 (concert): This was an intentionally tricky rule, and open
to interpretation and how each person would set up their
Atomate system. The ’correct’ way was to specify a ‘cur-
rent activity’ type of ‘concert’, but many participants used
‘current activity’s description contains ‘concert”. This could
feasibly work, but only if when setting up the concert feed,
they make sure to precede each description with the word
‘concert’, The incorrect rules here were varied, and in feed-
back participants said when they could not quite grasp the
correct way to do it they just moved on with whatever they
had. Rule 9 (event in 5 minutes): The half and incorrect
rules for rule 9 mainly missed out the second desired clause
(‘and that event’s location is near me’), meaning the rule
would fire for all events starting soon, regardless of location.

Figure 6(a) details responses to the question ‘After read-
ing and understanding the instructions for each rule, how
easy was it to create the rule?’. Feedback suggests (as we in-
tended) that the rules were of varying complexity, but overall
it was encouraging that with only 2 minutes training in the
form of a video, 65% of participants found it easy to cre-
ate rules. However, 35% said they found it difficult, and we
discuss improvements in Section 8.

The half-correct and incorrect answers, along with feed-
back from the survey, suggest a number of both simple de-
sign changes to improve the system, as well as interesting
directions for future work.

Simple improvements were implemented to address some
of the issues we observed. These included an easier and more
prominent way to “and” clauses together to form a rule and
alterations to the language displayed in the interface, such



Figure 6: Results from the rule creation survey. (a)
How easy was it to create each rule? (b) Do you
think Atomate would be useful to you?

as changing “at” to “on / after” for adding dates and and
“if” to an option of “whenever” or “the next time” for adding
clauses.

We are working on several improvements to the rule cre-
ation process described in Section 8.2, including rule sharing
and approaches at specifying rules by demonstration. As a
specific example, to mitigate the problem of clause omission,
which causes rules to act too often (e.g., with insufficient
specificity), we are working on a rule simulation environ-
ment which will let the user immediately see the effects of a
rule on the user’s recent past.

Usefulness
The second goal of our study was to explore how helpful or

useful participants would find the current implementation,
and what other uses they would like Atomate to perform.

After completing the example rule creation, users were
asked ‘Do you think Atomate would be useful to you?’ (Fig-
ure 6(b)). On a scale of 1 (Not Useful) to 7 (Very Useful),
the mean response was 5.5. Participants valued a number
of uses of Atomate, such as forwarding certain e-mails to
a phone, e-mail me the weather forecast when I am in a
new location, or reminders at certain dates (pay credit card
when due) or for certain events and locations (bring earplugs
to a concert, remind me to thank people for gifts when in
their vicinity). A number of participants also reported they
thought it may encourage more social uses of the web, easing
the barriers for acts of sharing. One participant said:

“When done manually, letting your friends know every
time you’re at a bar could be tedious. . . but with automation
it would be more of a friendly standing invitation and may
actually drive me to use social networking sites more.”

A number of creative future uses for Atomate were also
posited. The ability to add sensors to other objects was
widely desired, such as a Roomba vacuum cleaner, a mi-
crowave, a fridge, or even toilet paper! Integration with
cellphones was also seen as valuable, declining calls if in a
certain location, or replying to missed calls when in transit.

In summary, the majority of participants found it easy to
create rules, and thought the system would provide value,
positing potential supported uses. A number of rule creation
mistakes and feedback suggested both short and long term
design improvements. We discuss some of the longer term
improvements in the following section.

8. ONGOING WORK
In this section, we describe our current work towards ex-

tending Atomate to make it easier to use and more versatile.

8.1 Extending the rule language
Ternary and higher-arity predicates are often useful for

expressing value-modified predicates such as “within N min-
utes of” or “within N miles of”; thus we are adding support
for such predicates in the chainer and UI. Second, to realize
an initial goal of better supporting message filtering/routing
applications, we will support “engageable” actions through
“while” rules. Unlike the “next time”/”whenever” rules de-
scribed earlier, “while” rules will engage an action when a
rule triggers, and disengage the action when the rule ceases
triggering. For example, “while my location is home, send
notifications through my computer” would allow Atomate’s
notification policy to change based on the user’s location.

8.2 Simulation and by-demonstration UI
To reduce the likelihood of errors at rule creation time, we

are developing an interface that will immediately simulate,
when a rule is specified, the conditions under which it will
fire. This simulation will display and replay a recent history
of the user’s world model, to demonstrate what caused the
behavior to fire. Such a simulation we believe would help
users identify, for example, when they’ve left out a clause in
a rule antecedent that would cause it to fire more frequently
than desired, or if their antecedent is too restrictive. In addi-
tion to firing simulation, we wish to provide a“programming
by demonstration” approach to start specifying rules. The
idea is to use the visualization idea just mentioned to let the
user select situations in which they wish they want the new
behavior to execute.

8.3 Sharing behaviors and activity feeds
While advanced users and enthusiasts may extend the sys-

tem to new data sources and property-updating rules in the
ways described, casual end-users are unlikely to bother. To
allow the effort of the few “power-users” of Atomate to ben-
efit the casual users, we are building a online community
repository where users can upload entities of their choice,
and publish them with descriptors so that they can be eas-
ily found, reviewed, revised, and re-used.

To make it easy for users to connect their Atomates, we
plan to add functionality to let Atomate publish state changes
as an RSS 1.0 feed known as your peRSSona. Each Atomate
will support publishing multiple peRSSonas providing differ-
ent degrees of disclosure/privacy for different consumers –
controlled simply via behaviors that invoke “post to feed”
actions based on particular state changes.

8.4 From pull to push: PubSubHubbub
Atomate’s current method of polling of ATOM/RSS feeds

is inefficient because feeds are pulled repeatedly, which causes
entries previously seen entries to be repeatedly parsed. Be-
cause the current architecture requires that Atomate sub-
scribe to a potentially large number of feeds – hundreds,
for example, if the user is to track the location and activity
state changes of all her friends. To reduce load on clients,
we are adding support for PubSubHubbub6 with which feed
clients register for change notifications at “hubs” for a num-

6http://code.google.com/p/pubsubhubbub/



ber of feeds. New information is pushed to clients only when
changed.

9. DISCUSSION AND CONCLUSION
We have presented Atomate, a system to allow end-users

to utilize web-based data sources to create reactive automa-
tion. The system comprises a uniform internal data model,
and a constrained-natural-language interface to create rules.
Through initial evaluation we have demonstrated that the
majority of participants found it easy to create rules, and
thought Atomate would provide value in a number of per-
sonal information related settings.

Some of the reactive behaviors demonstrated in this pa-
per bear resemblance to scenarios proposed by Berners-Lee
et al. in the original vision for the Semantic Web [1]. How-
ever, there are a number of differences between Atomate and
these Semantic Web agents. First, unlike the agents in the
Semantic Web scenarios, which can“roam from page to page
to carry out sophisticated tasks for users”, Atomate acts di-
rectly based on the state of its model and information on
incoming feeds, and lacks a sophisticated DL inference en-
gine, or capacities to learn, search, or act on the user’s behalf
beyond the rules set up by the user. However, the compara-
tive simplicity of Atomate’s approach makes it easier to un-
derstand, and potentially more predictable than approaches
that use more sophisticated reasoning mechanisms.

The web of today that Atomate works with is very differ-
ent from the web portrayed in Semantic Web scenarios. Very
few of today’s“Web 2.0”RSS/ATOM feeds employ RDF; in-
stead, they “shoehorn” data into simpler schemas intended
for news article syndication, often embedding HTML into
fields and overloading field semantics. This has not been a
problem until now, as feeds have been consumed exclusively
by humans through feed aggregators. But these behaviors
cause a wealth of challenges for Atomate, directly compli-
cating the process of adding new data sources to the system.
As described in Section 5, the lack of semantics forces users
of Atomate to have to manually assign, for each new data
source, mappings between fields and the schemata used in
the rest of the system. Further, due to the “embedding” be-
havior exhibited in many RSS feeds, feeds often have to be
first “scraped” to separate data and eliminate presentation
markup from overloaded fields using a tool such as Yahoo
Pipes, prior to being added to the system. Finally, users
have to grapple with abstract concepts such as unique IDs
(inverse functional properties) in order to make it possible
for the system to identify corresponding entities to update
provided the arrival of new information along any particu-
lar feed. These tasks raise the barrier of letting end-users
extend and appropriate the system to their needs.

However, given the positive responses surrounding the
perceived usefulness of the system from study participants,
we anticipate that reactive automation driven by data from
web feeds and APIs will soon emerge in various forms. To
make use of feeds for such applications easier, content pub-
lishers and designers of content delivery and publishing plat-
forms for the web should consider ways to improve the qual-
ity of feeds to make them more suitable for such applications.

First, data feeds should avoid the schema overloading, ap-
propriation, and presentation markup embedding practices
just described, as this creates the need for an additional
“scraping/extraction” step to syntactically clean up and un-
pack feeds prior to use. Second, meta-data could be added to

facilitate the process of schema integration. Life-logging ser-
vices in particular could add meta-data describing what it is
that the feed represents - the type of activity or state (loca-
tions, music listening, web page viewing, hours slept), and,
even more importantly an identifier of the person or agent
that is the subject of observation. Of additional benefit for
interfaces supporting constrained natural language expres-
sion of entities would be natural-language labels (common
names) to use to described observed entities or observations
in the interface. Finally, the use of URIs, or an indication of
the inverse functional properties to use in the schema of a
feed would eliminate the need for users to specify this man-
ually in the interface.

We note that such recommendations would be easy to im-
plement using RSS 1.0/RDF which seemingly has fallen out
of favor among content publishing platforms and feed read-
ers. The richer RDF representation would allow data items
to be presented in their original schemas, since RDF permits
a natural incorporation of definitions and properties from ex-
ternal schemata within a RSS-schema structure documents.
With RSS 1.0, information about different subjects could be
combined in the same feed, reducing the fragmentation that
occurs with the more restrictive feed types.

10. REFERENCES
[1] T. Berners-Lee, J. Hendler, and O. Lassila. The

semantic web: Scientific american. Scientific
American, May 2001.

[2] A. Bernstein and E. Kaufmann. GINO - a guided
input natural language ontology editor. In ISWC
2006, pages 144–157, 2006.

[3] R. Ennals, E. Brewer, M. Garofalakis, M. Shadle, and
P. Gandhi. Intel mash maker: join the web. SIGMOD
Rec., 36(4):27–33, 2007.

[4] N. E. Fuchs, K. Kaljurand, and T. Kuhn. Attempto
controlled english for knowledge representation. pages
104–124, 2008.

[5] A. Funk, V. Tablan, K. Bontcheva, H. Cunningham,
B. Davis, and S. Handschuh. CLOnE: Controlled
language for ont. editing. In The Semantic Web,
volume 4825 of LNCS, pages 142–155. Springer, 2008.

[6] D. Huynh, S. Mazzocchi, and D. Karger. Piggy bank:
Experience the semantic web inside your web browser.
Web Semant., 5(1):16–27, 2007.

[7] A. Kulkarni. Design Principles of a Reactive
Behavioral System for the Intelligent Room. 2002. To
appear.

[8] D. Salber, A. K. Dey, and G. D. Abowd. The context
toolkit: aiding the development of context-enabled
applications. In CHI ’99, pages 434–441, 1999.

[9] T. Sohn and A. Dey. icap: an informal tool for
interactive prototyping of context-aware applications.
In CHI ’03, pages 974–975, 2003.

[10] K. N. Truong, E. M. Huang, and G. D. Abowd.
CAMP: A magnetic poetry interface for end-user
programming of capture applications for the home. In
UbiComp 2004, pages 143–160, 2004.

[11] T. Winograd. Architectures for context.
Hum.-Comput. Interact., 16(2):401–419, 2001.

[12] J. Wong and J. Hong. What do we “mashup” when we
make mashups? In WEUSE ’08, pages 35–39, 2008.


