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tWe review and dis
uss the stru
tural 
onsequen
es of embedding a random network withina metri
 spa
e su
h that nodes distributed in this spa
e tend to be 
onne
ted to those nearby.We �nd that where the spatial distribution of nodes is maximally symmetri
al some of thestru
tural properties of the resulting networks are similar to those of random non-spatialnetworks. However, where the distribution of nodes is inhomogeneous in some way, this
eases to be the 
ase, with 
onsequen
es for the distribution of neighbourhood sizes withinthe network, the 
orrelation between the number of neighbours of 
onne
ted nodes, and theway in whi
h the largest 
onne
ted 
omponent of the network grows as the density of edges isin
reased. We present an overview of these �ndings in an attempt to 
onvey the rami�
ationsof spatial embedding to those studying real-world 
omplex systems.1 Introdu
tionThe new s
ien
e of networks [21, 4℄ aims to generate insights into 
omplex systems by representingthem as graphs (networks) 
omprising a number of nodes (parts, elements, 
omponents, individu-als) 
onne
ted by edges (
onne
tions, intera
tions). On
e represented in this way, graph-theoreti
metri
s and analyses 
an be used to 
hara
terise the stru
tural organisation of the target 
omplexsystems. These 
hara
terisations are helpful in that they 
an suggest me
hanisms of growth [1℄,pro
esses of re
on�guration [27℄, or other explanatory a

ounts of 
omplex system behaviour.The insights, methods and measures derived from 
omplex networks s
ien
e may be applied toa vast range of potential target systems: tele
ommuni
ation networks, so
ial a�liation networks,transport networks, epidemi
s, neural networks, metaboli
 pathways and geneti
 regulatory net-works, among many others, see, e.g., [14℄. It is attra
tive to think that the impli
ations of abstra
tmodels of 
omplex networks might generalise a
ross di�erent domains. This is one of the reasonsbehind the ex
itement generated by 
omplex networks. However, it may be expe
ted that realprogress on spe
i�
 appli
ations might not just require the addition of domain spe
i�
 knowledgeto a general insight, but also sometimes will for
e resear
hers to question whether there are im-portant aspe
ts of 
omplex networks that need further investigation in order to make them morewidely appli
able. Many of the real systems mentioned present a spatial stru
ture and often thisstru
ture 
onstrains the possible 
onne
tivity and intera
tions between nodes in the network andtheir a
tivity. This motivates an investigation into the role of spa
e on 
omplex networks.1



Traditionally, one popular approa
h has been to de�ne 
lasses of random graphs, so 
alledbe
ause they are generated by a random pro
ess. By 
hara
terising the properties of a set ofrandom graphs and explaining how these properties vary with parameters su
h as 
onne
tiondensity, number of nodes, amount of random rewiring of 
onne
tions, et
., networks s
ien
e 
anreveal what the generi
 properties of su
h a graph 
an be expe
ted to be.For instan
e, Erd®s and Rényi [9, 10, 5℄ de�ned a very simple 
lass of random network in whi
hea
h pair of nodes is 
onne
ted with probability p. Amongst other things, they showed that as thedensity of network 
onne
tions is in
reased (i.e., as p grows), their networks rea
h a 
onne
tiondensity at whi
h they pass through a very rapid step 
hange in their overall organisation. Onesu
h �phase transition� involves the onset of a giant 
omponent : a sub-set of nodes that are eitherdire
tly or indire
tly 
onne
ted to one another by network paths and between them 
omprise thevast majority of the network. Below a threshold value of p = 1/n (where n is the number ofnetwork nodes) su
h a giant 
omponent is almost 
ertainly absent from an Erd®s-Rényi network,whi
h will tend to 
omprise many dis
onne
ted fragments. Above this threshold, a single giant
omponent is almost 
ertainly present.Similarly, Watts and Strogatz [27℄ show that gradually randomly re-wiring a regular latti
e
an qui
kly generate a �small world� graph that retains the high 
lustering that is 
hara
teristi
of the original latti
e (the neighbours of a node are likely to themselves be neighbours1) but alsoenjoys the relatively short path lengths separating arbitrary pairs of nodes that is 
hara
teristi
 ofErd®s-Rényi random networks.The third major random graph model is due to Barabási and Albert, who proposed a randompreferential atta
hment pro
ess 
apable of growing a network that exhibits a s
ale-free degreedistribution, meaning that the expe
ted number of neighbours of a randomly 
hosen node (itsexpe
ted degree) follows a power law distribution [1℄. Unlike both the Erd®s-Rényi and Watts-Strogatz models, where a node's degree 
an be expe
ted to be 
lose to the network's mean degree,Barabási-Albert's pro
ess ensures that many nodes have very low degree (they are peripheralnodes 
onne
ted only to a very small number of neighbours) while a few have very large degree(hubs dire
tly 
onne
ted to a large proportion of the network).There are of 
ourse many variants of these models, and alternative random graph models[5, 21, 4℄. However, in the 
ontext of the burgeoning networks s
ien
e literature, the role ofspatial embedding has, arguably, been somewhat negle
ted given that the vast majority of real-world 
omplex systems are subje
t to the 
onstraints that result from being spatially extended(in
luding the problem system identi�ed with the birth of graph theory itself: Euler's SevenBridges of Königsberg). Both the Erd®s-Rényi and Barabási-Albert models 
onsider nodes to bea-spatial, with no relationship between nodes other than whether they are 
onne
ted or not. TheWatts-Strogatz model is di�erent in that it 
ommen
es with a latti
e that 
an be thought of asa set of points arranged regularly in some spa
e and 
onne
ted to their nearest neighbours, andthen pro
eeds to erode this spatial organisation. However, little attention is paid to the spatialityof small worlds, per se.This is despite the fa
t that the small-world notion originated in a set of so
ial network exper-iments that were expli
itly geographi
al in spirit. Milgram [26℄ invited parti
ipants in his seminalexperiment to send a pa
kage to a re
ipient identi�ed by name, address and o

upation, but onlyvia a 
hain of people known on �rst-name basis. Results of the experiment showed that whena pa
kage arrived at its ultimate destination it had passed through on average between �ve orsix intervening people who had been able to 
ombine their so
ial and geographi
 knowledge toa
hieve a remarkably short path length between initial sender and �nal re
ipient (but see [13℄ fora 
ritique of Milgram's study).Subsequent studies of spatially embedded networks have tended to be domain spe
i�
 and1In this paper, there is s
ope for 
onfusion in the meaning of terms su
h as �neighbour� or �near� or �
lose�,ea
h of whi
h might be interpreted either with respe
t to the spatial distan
e between nodes or with respe
t to the
onne
tivity of the network. Here we will refer to a node's neighbours as those nodes that are dire
tly 
onne
tedto it on the network. When ne
essary this will be expli
itly distinguished from nodes that share the same spatiallo
ale. Similarly, a �path� between two nodes will be always be interpreted in terms of traversing 
onne
tions onthe network, rather than moving dire
tly through spa
e.2



Figure 1: Examples of spatially embedded random networks, 
onstru
ted a) uniformly on a dis
,b) uniformly on a sphere, 
) non-uniformly on a plane.aimed at modelling some spatial aspe
t of network formation [28, 3, 19, 29, 17, 16, 18, 25, 15℄or addressing somewhat restri
tive spatial embeddings [22, 8, 12, 24℄. The 
urrent paper aims,therefore, to take a more general and fundamental perspe
tive on the 
onstraints on networkstru
ture implied by spatial embedding, drawing heavily on a re
ent te
hni
al exposition [2℄.22 OverviewBy a spatially embedded network in the broadest sense we shall mean the following: network nodesreside in a metri
 spa
e and the likelihood of a pair of nodes being 
onne
ted depends in some wayon the spatial distan
e between them. The spa
e 
ould be a �real� (Eu
lidean) spa
e or perhapssome more abstra
t spa
e suggested by the problem or model domain (e.g., a politi
al spe
trumranging over far-right, right-wing, 
entrist, left-wing and far-left ideologies). We generally imaginethat network nodes whi
h are nearby in spa
e have a better 
han
e of being 
onne
ted than distantnodes; that is, 
onne
tion probability de
ays with distan
e.Spatially embedded networks in the above sense have traditionally been studied in the (re-stri
ted) form of Random Geometri
 Graphs (RGGs) [8, 22℄. In these networks, nodes are dis-tributed uniformly at random over some Eu
lidean spa
e and pairs are 
onne
ted only if they fallwithin a 
hara
teristi
 distan
e of ea
h other. Studies of RGGs have generated some insight intotheir stru
ture, in
luding the relationship between the amount of 
lustering and the dimensionalityof the spa
e, and the manner in whi
h a giant 
onne
ted 
omponent appears as the 
onne
tiondensity is gradually in
reased. The interested reader 
an �nd an overview of these results in [12℄.In [2℄, Barnett et al. introdu
ed a generalisation of RGGs, the Spatially Embedded Random Net-works (SERN) model, where the embedding spa
e is no longer ne
essarily Eu
lidean, 
onne
tionprobability de
ay is not restri
ted to a simple distan
e 
uto�3 and, 
ru
ially, the distribution ofnodes is no longer required to be uniform in spa
e. It is the latter feature�the possibility ofspatial inhomogeneity and the 
onsequent variability in the likelihood of di�erent pairs of nodesbeing 
onne
ted together�whi
h turns out to have a de
isive impa
t on the stru
ture of the re-sulting networks, e.g., �g 1. In analysing the properties of the SERN model (and in parti
ular thebehaviour of various �motif moments�, see �g 2), we were able to demonstrate that:
• Where the spatial distribution of nodes is homogeneous (i.e., there is maximal spatial sym-metry) the degree distribution of a spatially embedded random network is equivalent to that2Unless expli
itly indi
ated, eviden
e and/or arguments supporting the 
laims and results reported in this paper
an be found in [2℄.3While any pair of SERN nodes are either 
onne
ted, or not, in general these 
onne
tions are determined prob-abilisti
ally, not deterministi
ally, and we may be required to 
onsider expe
tations of graph properties 
al
ulatedover an ensemble of networks generated using a parti
ular distan
e de
ay fun
tion for a parti
ular spatial distribu-tion of nodes. RGG graphs are a degenerate 
ase of this s
heme in whi
h the probability of 
onne
tan
e is unityfor nodes separated by a distan
e less than some value, d, and is zero otherwise.3
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Figure 2: Examples of, respe
tively, 
hain, fan and loop motif �moments� impli
ated in the analysisof spatially embedded random networks. A motif is a distin
tive, re
urrent stru
tural networkelement. A moment is an average of a produ
t of random variables. Motif moments, averagedover an ensemble of networks, are useful and intuitive building blo
ks in terms of whi
h variousnetwork statisti
al features may be expressed. For example, the '
hain', 'fan' and 'loop' motifsillustrated appear in the expression for degree 
orrelation.of a non-spatial random graph.
• Similarly, as the number of 
onne
tions in su
h a homogeneous spatial graph is in
reased aphase transition to a giant 
omponent may be observed, as in non-spatial random graphs.
• However, if there is spatial inhomogeneity in the distribution of nodes then there is eviden
eto suggest that no phase transition to a giant 
onne
ted 
omponent o

urs; rather, we
onje
ture that the expe
ted size of the largest 
omponent will grow smoothly as more edgesare added to the network.
• Spatially embedded random networks tend to exhibit assortative degree 
orrelation, withhighly 
onne
ted nodes tending to be more likely to be 
onne
ted to ea
h other, and this
orrelation is boosted by inhomogeneity in the spatial distribution of nodes.
• Spatially embedded random networks may exhibit a s
ale-free degree distribution, but thisrequires that there exist a singularity in the spatial distribution of nodes, i.e., a point inspa
e near whi
h the density of nodes in
reases without limit.
• Under reasonable assumptions, we 
onje
ture that random geometri
 graphs (and a broader
lass of latti
e-like graphs to whi
h they belong) 
annot be small worlds. However, moregenerally, spatially embedded small worlds 
an exist, and indeed spatial rewiring s
hemes
an 
reate small world properties in arbitrary 
lustered networks.In the next se
tion we expand on these results, before dis
ussing some 
aveats and quali�
ationsthat have to be borne in mind. In this paper our intention is to expli
ate the way in whi
h spatialembedding 
onfers 
ertain properties on graphs without resorting to mathemati
al proofs (whi
h
an be found in the original paper [2℄).3 Stru
tural Properties of Spatially Embedded RandomNet-works3.1 Homogeneity vs. InhomogeneityUpon setting out to explore the general properties of spatially embedded networks, an obviouspla
e to start is a network 
onstru
ted over a random spatial distribution of otherwise featurelessnodes. For instan
e, we might s
atter nodes a
ross a square pat
h of spa
e and 
onne
t togetherthose that are 
loser together than some threshold distan
e, not 
aring about any other propertyof the nodes. Of 
ourse, points near the boundary of the square pat
h might be non-standard4



in their properties, so we might restri
t our attention to part of the spa
e that is far from theboundary. Or perhaps, rather than 
onsider a square pat
h, we might 
onsider points randomlydistributed over a sphere whi
h has no problemati
 boundaries4. We might also avoid 
onsideringspa
es that have holes in them or other in
ongruities, and we might also be sure to distribute thenodes a

ording to a uniform random distribution rather than a distribution that tends to putmore points in some areas than in others. By 
onsidering many networks 
onstru
ted over manyrandom distributions of nodes we 
an rea
h expe
tations of generi
 network properties, rather thanbe distra
ted by parti
ular pe
uliarities of spe
i�
 instan
es of an individual random distributionand its asso
iated network(s).The epitome of this approa
h is the 
onsideration of what we shall 
all homogeneous spatialnetworks: networks 
onstru
ted over a distribution of nodes that is maximally spatially symmet-ri
al. What does this mean? Consider a set of points distributed uniformly over a sphere. Fromwhi
hever angle we 
hoose to look at it, this distribution of points tends to look the same. If wewere to stand on the sphere at the lo
ation of one point and be transported to the lo
ation ofanother point 
hosen at random, we would tend not to noti
e the di�eren
e.When we 
onsider su
h networks, in some respe
ts they resemble Erd®s-Rényi random graphs(E-R graphs) 
onstru
ted over nodes that have no spatial lo
ation�in an E-R graph the 
han
eof any two nodes being 
onne
ted is equal. For instan
e, if we 
ount what proportion of networknodes have no neighbours, or only one neighbour, or two neighbours, or three or have 10 neighbours(i.e., we 
al
ulate the network's degree distribution), we �nd that, whether we are des
ribing a non-spatial E-R graph or a homogeneous spatial network, the degree values follow the same Poissondistribution5.This makes sense sin
e the Poisson distribution is known to represent the frequen
y with whi
ha number of independent events o

ur in some unit of time, or, in this instan
e, within some unitof spatial area. �Will a node have three neighbours or two neighbours, or some other number?�,turns out to be the same kind of question as �Will this week's lottery have three winners or two,or some other number?�.However, despite their 
ongruent degree distributions, homogeneous spatial networks are notequivalent to Erd®s-Rényi graphs. In an E-R graph the 
han
es that two of a node's neighbours are
onne
ted is the same as the 
han
e that one of its neighbours is 
onne
ted to any other randomly
hosen node (sin
e any pair are 
onne
ted with probability p). However, in a homogeneous spatialnetwork, sin
e nodes are 
onne
ted to those that are nearby, a node's neighbours tend to be 
losetogether and are therefore more likely to be 
onne
ted to ea
h other resulting in more 
lusteringthan in an equivalent Erd®s-Rényi graph.The properties of a parti
ular 
lass of homogeneous spatial networks and whether they areequivalent or not to properties of an E-R graph have been explored in work on Random Geo-metri
 Graphs [8, 22℄. Here we are more interested in exploring properties of the more general
lass of inhomogeneous spatial networks. This is motivated primarily by the fa
t that the vastmajority of extant real-world networks fall into this 
ategory having variously, edges, holes, more-or-less sparse/dense regions, non-uniform distributions of nodes, or other fa
tors that introdu
eheterogeneity.Moreover, inhomogeneous spatial networks o�er a se
ond important advantage in a more fun-damental sense. For homogeneous spatial networks, as was des
ribed above, there is no realdi�eren
e between one pla
e and another�every lo
ation in the spa
e is equivalent. But, a 
riti-
al property of spatial systems must surely be that there are 
onsequen
es asso
iated with whereyou are lo
ated. Even when a number of nodes are s
attered at random on a sphere, and thereis no tenden
y to preferentially s
atter them in some pla
es more than in others, the s
atteringwill tend to result in more or less sparsely populated regions �a

identally�. Of 
ourse, on averageand in the limit, all su
h nodes will tend to �nd themselves in identi
al 
ir
umstan
es. However,4In fa
t it turns out that the existen
e of a boundary is stru
turally signi�
ant only in restri
ted 
ir
umstan
es[2℄.5In fa
t (in the 
ontext of a parti
ular 
lass of spatial network) it 
an be demonstrated that a Poisson degreedistribution may only arise when nodes are distributed uniformly in spa
e. This highlights the impa
t of spatialinhomogeneity on network stru
ture. 5



in every single instan
e of su
h a system, some nodes will tend to �nd themselves in a relativelydense pat
h of neighbours, while others will �nd themselves more spatially remote from theirnearest neighbours. This inhomogeneity in the distribution of nodes is thus fundamental to spa-tially distributed systems, and it will tend to be re�e
ted in the network of 
onne
tions betweennodes if spatial distan
e between them in�uen
es the likelihood of a 
onne
tion being formed andmaintained.3.2 Giant ComponentsOne respe
t in whi
h introdu
ing inhomogeneity in the spatial distribution of nodes has a signif-i
ant impa
t is the onset of a giant 
omponent in the network as the density of network edges isin
reased.If we start by 
onsidering a population of nodes with no edges between them, an empty network,and gradually in
rease the number of edges that the network 
ontains, tending to 
onne
t togethernodes that are 
loser together, we initially see a growing number of 
onne
ted pairs of nodes. Aftera while we begin to see network �fragments� ea
h 
omprising a small number of sparsely 
onne
tednodes. Over time these fragments tend to grow in size and eventually 
oales
e as edges are addedthat link together previously dis
onne
ted fragments. If the initial distribution of nodes in spa
e ishomogeneous, then there 
omes a 
riti
al value of edge density when the network transitions from
omprising a large number of isolated fragments to 
omprising a single giant 
onne
ted 
omponentthat 
ontains the vast majority of nodes: i.e., there is a �phase transition� in the onset of a giant
omponent. This result was originally shown in the 
ontext of E-R graphs, and has been shownto generalise to homogeneous spatial networks in simulations [8℄.However, our simulations support a 
onje
ture that there will be no su
h phase transition tothe extent that there is initially any inhomogeneity in the spatial distribution of nodes. Rather,as edge density in
reases, the size of the largest 
onne
ted 
omponent of the network grows moresmoothly, and the giant 
omponent does not arise abruptly, but arrives more gradually. This 
anbe understood by noting that the phase transition relies on 
oales
en
e to happen at the samerate a
ross the entire population.In order for the size of the largest 
omponent to remain initially small while the �rst edges areadded but then to rapidly transition to a giant 
omponent of mu
h larger size, network fragmentsmust �rst grow in size without be
oming 
onne
ted to ea
h other, rea
hing a point at whi
h a fewadditional edges inter-
onne
t a large number of su
h fragments. In order to rea
h su
h a point nonetwork parts 
an be easier to 
onne
t together than others as this would smooth out the growthof the largest 
omponent and prevent the phase transition.Consider a multiple-
hoi
e test being taken by a 
lass of identi
al student �
lones� that areidenti
ally 
apable and identi
ally well-prepared and identi
ally well-rested, et
. We might expe
tthem all to 
omplete the exam at roughly the same time. As we wat
hed the 
lass at work, wewould see an abrupt transition in the number of students that had 
ompleted the test�beforethe rapid transition most would be working on the test, and just afterwards the vast majoritywould have stopped work. However, in a real 
lassroom students vary in many ways and we seea mu
h smoother rate of 
ompletion�not a phase transition. A spatially inhomogeneous networkexhibits just this kind of variability in the propensity to be
ome well-
onne
ted with some partsbene�tting from the e�e
ts of the inhomogeneity and some parts su�ering from it.The impli
ations are signi�
ant. E-R graphs and homogeneous spatial networks of varying sizeand edge density are likely to be observed to fall into one of two 
lasses: either they 
omprisemany small fragments, or they feature a single giant 
omponent. Sin
e the transition betweenthese two 
lasses of network is very abrupt we are unlikely to see networks that fall in between thetwo 
lasses. However, where real-world networks are spatially embedded and inhomogeneous, weshould expe
t to en
ounter networks that do fall between the two 
lasses: networks that feature anumber of dis
onne
ted 
omponents that vary in size, the largest of whi
h may variously be small,moderately sized, or giant. 6



3.3 Degree CorrelationWe have already mentioned that spatial graphs 
an expe
t to exhibit a higher degree of 
lusteringthan equivalent non-spatial graphs, i.e., a node's neighbours have an in
reased 
han
e of being
onne
ted together in a spatial graph. But 
an we say more about the 
hara
ter of a node'sneighbours? In parti
ular, if a node has many neighbours, will that make it more or less likelythat its neighbours are also well-
onne
ted?The 
orrelation between a node's degree (its number of neighbours) and the average degree ofthose neighbours is 
alled degree 
orrelation or assortativity. In a positively assortative network,high-degree nodes tend to be 
onne
ted together. In a negatively assortative (or disassortative)network high-degree nodes tend to be 
onne
ted to low-degree nodes. Both kinds of assortativitymay be observed in real-world networks. For instan
e, 
ollaborative networks su
h as 
o-authorshipgraphs and a
tor-
ollaboration graphs may exhibit positive degree 
orrelation, while some te
h-nologi
al and biologi
al systems su
h as the Internet, world-wide-web, protein networks, neuralnets, and food webs may exhibit negative degree 
orrelation [20℄.By 
ontrast, Erd®s-Rényi random graphs, Barabási-Albert preferential atta
hment graphs andWatts-Strogatz small worlds all have zero degree 
orrelation, there being no 
onsistent relationshipbetween the degree of 
onne
ted nodes. The same is not true of spatial networks, whi
h tend toexhibit positive (assortative) degree 
orrelation even when they are homogeneous. In the simplesthomogeneous 
ase, the magnitude of this 
orrelation is equal to the degree of 
lustering in thenetwork. Moreover, introdu
ing inhomogeneity into su
h spatial networks boosts this 
orrelation,with in
reasing inhomogeneity leading to in
reasingly positive assortativity.It is easy to see why spatial graphs would exhibit assortative degree 
orrelation. In orderthat a node a
hieve higher than average degree, it must tend to be the 
ase that it is 
loser to itsneighbours than is the average node�it is in a well-populated pat
h. Sin
e the nodes to whi
h it is
onne
ted will tend to be 
lose by, they will tend to also bene�t from the lo
al population densityand will themselves tend to have a higher than average degree as a 
onsequen
e. Conversely, alow-degree node will tend to be found in a low-density pat
h, 
onne
ted to a small number ofsimilarly disadvantaged nodes. As a result, a node's degree will tend to be a good estimate forthat of its neighbours. Of 
ourse, to the extent that a spatial network is inhomogeneous, therewill be more disparity between its dense and sparse pat
hes, exa
erbating this assortativity e�e
t.It would be interesting to relate this theoreti
al result to the empiri
al �ndings mentionedabove. To what extent might the impa
t of spatial 
onstraints on network formation and main-tenan
e a

ount for the observed positive and negative degree 
orrelations in natural, so
ial andengineered systems?3.4 S
ale-Free and Small-World Spatial NetworksCan a set of nodes that are identi
al save for their lo
ation in spa
e be 
onne
ted together solelyon the basis of the distan
es between them in order to arrive at a graph that exhibits s
ale-freeor small-world stru
ture? In both 
ases the answer is no if we limit ourselves to 
onsidering the
lass of random geometri
 graphs but yes if we are 
onsidering the more general 
lass of spatiallyembedded random networks.First, 
an a s
ale-free degree distribution arise purely as a 
onsequen
e of nodes tending to be
onne
ted when they are 
lose in spa
e? Re
all that a degree distribution is said to be s
ale-freewhen the probability that a randomly 
hosen node has a parti
ular degree follows a power law. Insu
h 
ases, many nodes have very low degree, but a small minority have extremely high degree. It
an be shown that a random geometri
 graph (where nodes are distributed uniformly at randomin spa
e) 
annot exhibit this type of stru
ture�where nodes tend to be equi-distant from theirneighbours, there tend to be no large disparities in 
onne
tivity.However, s
ale-free spatial networks are possible where node distribution is inhomogeneous. Inparti
ular, 
onsider nodes that are arranged su
h that node density in
reases at an a

eleratingrate as we approa
h a parti
ular point in spa
e, and the density at that point is in e�e
t in�nite.If we generate a population of nodes a

ording to this distribution and then 
onne
t together pairs7



of nodes that are 
lose together in spa
e, then a s
ale-free network 
an result.This is an example of �power law in, power law out�. The s
ale-free degree distribution re�e
tsour deliberate 
hoi
e to distribute the nodes in spa
e in a parti
ular �s
ale-free� manner. It mayof 
ourse be possible to generate a s
ale-free spatial network without demanding a singularity inthe distribution of nodes if we allow a more sophisti
ated method of 
onne
ting nodes, perhapsone that makes some use of the �ri
h get ri
her� dynami
 that is brought about by �preferentialatta
hment� [1℄.What of small-world networks, in whi
h, simultaneously, there is signi�
ant 
lustering (like alatti
e, or spatial network) but also the path between any two randomly 
hosen nodes tends toinvolve only a small number of intervening edges (like a totally random graph)? First, we 
an showthat, as for s
ale-free networks, small worlds 
annot o

ur in random geometri
 graphs. Re
allthat for this 
lass of graph, nodes are only 
onne
ted if they are separated by a distan
e less thansome threshold. As su
h, �long-range� 
onne
tions are outlawed. While 
lustering is signi�
antin su
h graphs, the average path length separating network nodes tends to be long�some pairsof nodes are separated by a signi�
ant spatial distan
e and 
onsequently getting from one to theother requires a large number of network �hops�.We 
an understand that this is prohibitive of small-world stru
ture by noting that the 
lassi
alway to 
onstru
t a small world is to start with something like a random geometri
 graph (a latti
e)and alter it (by randomly rewiring a few edges) su
h that it 
ontains new edges that would beillegal under the original RGG wiring s
heme�they tend to break 
onne
tions between pairs ofnear-by nodes and introdu
e 
onne
tions between arbitrary pairs of nodes that, at least for the�rst few rewirings, tend to be separated by a mu
h longer distan
e.However, it is possible to 
onstru
t spatial small worlds for the less restri
tive 
lass of spatiallyembedded random networks. Spe
i�
ally, we must 
onsider graphs where, rather than using adistan
e threshold to trun
ate 
onne
tivity, we allow 
onne
tivity to de
ay with distan
e proba-bilisti
ally. For example, we 
ould 
onstru
t a s
heme where there is a base probability q that anypair of nodes are wired together, but also an additional probability 1 − q that nodes are wiredtogether if they are separated by a distan
e less than some threshold d. For this s
heme, as we
onsider larger and larger networks, we see signi�
ant 
lustering and low mean path length�i.e.,small worlds. It is possible to interpret this s
heme as a spatial analogue of the original Watts-Strogatz model with latti
e-like lo
al 
onne
tivity ensured by the 1 − q term and longer-range
onne
tions introdu
ed by the q term.Interestingly, it 
an be shown that this approa
h to generating a small world 
an be used for anylatti
e-like network (i.e., a network with strong 
lustering but long path lengths) and that it bringsabout small world properties while preserving many stru
tural aspe
ts of the original network, su
has s
ale-free or Poisson degree distribution, for instan
e. By introdu
ing just enough arbitrary
onne
tions to any spatial network, short path length 
an be a
hieved without 
ompromising
lustering, and without radi
ally altering the network's 
onne
tivity stru
ture. In some sense, thisemphasizes the essentially spatial nature of the original Watts-Strogatz model.4 Caveats and Quali�
ationsThe results des
ribed above are true for various idealised mathemati
al representations of real-world systems. To what extent should we understand these results as transferring to the realworld? Unfortunately, several 
aveats and quali�
ations must be borne in mind.First, unlike the mathemati
al obje
ts explored here, the stru
ture of any real-world spatialnetwork is not wholly determined by the spatial organisation of its nodes. The presen
e andabsen
e of relationships amongst the parts of a real-world system 
an be in�uen
ed by more thanthe distan
e between these parts. Shared a�nities, shared histories, and other 
ontingen
ies willalso play a part. In the models explored here we are interested in understanding what might beexpe
ted to 
ome about purely as a 
onsequen
e of spatial proximity between nodes in�uen
ingtheir 
onne
tivity. Whatever stru
tures tend to arise in these models 
an be understood as a kindof baseline organisation that we 
an expe
t to arise �for free� in spatially embedded networks [6℄.8



Where real-world spatial networks reveal the kind of stru
tures exhibited in these models, it is insome sense unremarkable. Conversely, where su
h networks depart from this type of organisationit may be at signi�
ant 
ost, or as a result of signi�
ant (and possibly interesting) organisingpro
esses that are not 
aptured in the models presented here.Se
ond, in order to rea
h the results reported in the previous se
tion, it has been ne
essary toidealise spatial networks in various ways. For mathemati
al tra
tability, we have followed othersin sometimes 
onsidering a spa
e to be populated uniformly or by an in�nite number of nodes.It is 
lear that real-world networks are not like this. There are two main issues here, one morete
hni
al and one more pra
ti
al. First, we have made di�erent kinds of idealisation at di�erentpoints in order to a
hieve parti
ular insights. For instan
e, in this paper, we have only tendedto distinguish between �homogeneous� and �inhomogeneous� spatial networks, whi
h has tendedto disguise the more subtle distin
tions made between di�erent ways of idealising homogeneityin terms of, e.g., uniformity, 
ontinuity, and spatial homogeneity, and the ne
essity to restri
tanalyses to spe
ial 
ases su
h as generalisations of random geometri
 graphs. In order to fullyunderstand the s
ope of ea
h result, a �rm grasp of these idealisations is ne
essary. Perhaps moresigni�
antly, any and all of these idealisations will mean that, to some extent, the relatively 
leanstatements that we are able to make about the ideal mathemati
al obje
ts will not 
arry over toreal-world networks. Unfortunately, it is inherently di�
ult to know how these idealisations playout in terms of the transferability (or not) of mathemati
al results to the real world.6 For a fulla

ount of the idealisations that we have made please see [2℄.A third set of more more generi
 
on
erns are also asso
iated with the networks s
ien
e ap-proa
h to 
omplex systems exempli�ed here. First, real-world networks are not stati
 obje
ts inthe way that we (and many other networks s
ientists) have treated them here. Real networksarise as a 
onsequen
e of pro
esses that take pla
e in the real world. Typi
ally these pro
essesdo not stop on
e a 
ertain number of edges or nodes are in pla
e. Rather, real-world networksare 
onstantly being brought about by ongoing pro
esses. They are thus inherently dynami
 andany 
onsistent stru
tural properties that they exhibit are dynami
ally maintained in the fa
e ofperturbation and erosion, an aspe
t whi
h has not been treated in this paper (or in many of thepapers that we 
ite, e.g., [5, 27, 1℄). Furthermore, the empiri
al basis for 
omparing results fromnetworks s
ien
e with those from experimental studies of real-world networks is somewhat suspe
tsin
e we 
an only sample real-world networks, and report the properties of the samples. If oursampling method is biased in some way that our samples will not be a

urate re�e
tions of theunderlying real-world network. They will be distorted. At times it has not been re
ognised that afair 
omparison between the properties of a model network and eviden
e from real world networksmust address this issue of sampling, see, e.g., [11, 7℄ for a treatment of this issue in the 
ontextof so
ial networks. Finally, it must be remembered that �networks� do not ne
essarily exist in thereal world. Cables exist in the real world, 
onne
ting power stations, sub-stations, et
., but the�power network� is not a

ounted for by a network of nodes and the edges between then, sin
ethe relevant te
hnologi
al infrastru
ture is stru
turally 
oupled with a wider 
ontext of inputs,outputs, poli
ies, drivers, and adja
ent �networks�. To equate the power network with a graphrepresenting the lines of power distribution is to idealise and simplify the real world. Similarly,
hildren in a playground exist, but the so
ial network representing their relationships is a 
on
ep-tual framework, a theoreti
al postulate, or, more plainly, just an idea. Of 
ourse the promise ofnetworks s
ien
e is that there will be many 
ases in whi
h a parti
ular network idea will play akey role in how we make sense of the phenomena asso
iated with it, to the extent that we startassigning it some kind of 
ausal e�
a
y. In su
h a 
ase the network idea is no di�erent from otherideas that only seem more 
on
rete be
ause of their identi�
ation with material stru
tures (e.g.,
ables and power stations).6The same problem is true for 
omputational approa
hes. While parti
ular idealisations might be side-steppedby using numeri
al methods, or simulations, the issue of idealisation itself 
annot be avoided.
9



5 Con
lusions and Future WorkWe have aimed to elu
idate the 
ontribution that spatial embedding makes to the stru
ture ofnetworks, taking as our starting point a tradition of analysing the properties of random graphensembles. By 
onsidering a more general model of spatial networks that allows for di�erentrelationships between proximity and 
onne
tivity and for inhomogeneous distributions of nodes inspa
e, we have been able to show some of the ways in whi
h spatial networks 
an be expe
ted todi�er from their non-spatial 
ousins. One motivation for su
h analysis is to a
hieve a new 
lassof null models of graph stru
ture that 
ontrol for the (extremely pervasive) in�uen
e of spatialembedding. Another is to a
hieve a more profound understanding of the role of spatial 
onstraintsin enabling 
omplex organisation.In a
hieving these results we have been able to demonstrate 
ir
umstantial eviden
e that ourapproa
h (in terms of identifying the �right statisti
s� to analyse spatial networks, i.e., motif mo-ments, 
onditional mean degree, et
., [2℄) is on the right tra
k. However, there are signi�
ant gapsin the analysis that are worth �agging here. First, we have so far 
onsidered graphs that are �rst
onstru
ted and then analysed as stati
 obje
ts, rather than addressing the relationship betweenspatial pro
esses and the dynami
 network stru
ture that they bring about. Se
ond, we have sofar 
onsidered spatial distributions of nodes that do not themselves exhibit signi�
ant stru
ture, interms of, for instan
e, separate 
lusters (something that might be remedied by generating spatialdistributions of nodes using spatial point pro
esses, [23℄). A satisfying treatment of these twoissues would perhaps relate them to o�er an understanding of how spatial and network stru
turemutually inform one another over the lifetime of a real-world spatially embedded system.Referen
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