
Corresponding author: Matthew Addis, IT Innovation Centre, 2 Venture Road, Chilworth, Southampton, UK, + 44 (0) 23 80 760 834

Modelling Interactive Real-time

Applications on Service Oriented

Infrastructures
Matthew Addis, Zlatko Zlatev, Bill Mitchell, Mike Boniface

University of Southampton IT Innovation Centre, Southampton, UK

E-mail: {mja, zdz, mjb, wm}@it-innovation.soton.ac.uk

Abstract: The European Commission supported IRMOS

project is developing tools and techniques that allow real-

time applications to be planned and executed on

distributed Service Oriented Infrastructures (SOI)

operated by third-party service providers. The exemplar

applications within the project are all multimedia based

and include support for interactive and collaborative film

post-production, the use of virtual and augmented reality

within the engineering design process, and the use of 3D

virtual worlds as interactive online eLearning

environments. In each case, there is a need for well

defined and managed Service Level Agreements that have

stringent Quality of Service (QoS) terms referring to

applications hosted on third-party virtualised resources

(storage, processing, networking). This paper presents

techniques developed within IRMOS for modelling and

predicting the resource and QoS requirements of

interactive media applications on SOIs. These models

have value in many stages of the application lifecycle, for

example when estimating resource needs in advance of

execution, when negotiating QoS with service providers,

when assessing the probable technical and economic

outcomes of provisioning policies and management actions

if either the application or resources do not perform as

expected or need to be adjusted.

Keywords: real time, modelling, service oriented, interactive,

multimedia, quality of service, performance, prediction

1 OVERVIEW

The IRMOS project [1] is developing tools and techniques for

modelling, simulating, analysing, and planning interactive

real-time applications on service oriented infrastructures.

These tools and techniques support the processes involved in

designing, developing, deploying and executing applications

where guaranteed QoS is needed.

This paper reviews the value-chain for real-time applications

hosted by third-party service providers. In the context of this

value chain, we then analyse who might benefit from the use

of models, how and why these models might be used, and

when during the application lifecycle modelling is most useful.

Techniques are then presented for building models of real-

time applications including the use of stochastic process

algebras and finite state automata. We then focus on the use

stochastic process algebras and finite state automata and show

their practical application using an example real-time

application scenario based on collaborative film post

production.

2 BACKGROUND

New value chains are emerging for outsourced hosting and

execution of interactive media applications that have strict

requirements on quality of service in order to operate

effectively (e.g. latency, bandwidth and jitter for video

streaming, or processing power for interactive special effects

rendering). Actors in the value chain emerge where value can

be added, e.g. at the infrastructure level this might be

providing virtualised storage, networking and compute

resources using a Infrastructure as a Service (IaaS) model, or

at the application level it might be offering a suite of post-

production tools on a pay-per-use basis using a Software as a

Service (SaaS) model. In-between these two levels, comes

the possibility of Platform as a Service (PaaS), for example

where a provider makes it easy for a developer to build and

deploy new applications on top of service oriented

infrastructures (Google Apps [3] and Microsoft Azure [2]

being examples).

The value chain is shown in Figure 1 highlighting where

Service Level Agreements feature at the infrastructure and

application levels.

Infrastructure

as a Service

(IaaS)

Platform as a

Service

(PaaS)

Software as a

Service

(SaaS)

Client

Infrastructure

Level SLA

Application

Level SLA

Figure 1 Value chain for applications on service oriented
infrastructure.

Applications with real-time attributes (e.g. the need for

guaranteed completion by a particular deadline) require

careful planning when selecting service providers so that

neither under-provisioning (likely failure of the application to

execute) nor massive over-provisioning (unnecessarily high

costs) occur. This planning, especially when there is

uncertainty involved, is not currently well supported in

conventional tools. From a real-time application modelling

perspective, the important aspects of planning in these new

value chains, and hence the need for modelling, is the

separation of the resource-level (storage, processing,

networking) parameters from the application-level parameters

(e.g. video effects processing).

At the application level, the parameter space can be large and

complex, even for simple applications. For example, as

shown in Figure2, colour correction as a component

application in film post production is characterised by a large

number of parameters, including the characteristics of the film

to be corrected, the corrections to be applied, and the use of

colour correction within a workflow. Likewise at the hardware

resource level the space is equally large and complex due to

the details of architectures and configurations, e.g. buses and

caching, memory, networking, processors, storage.

Figure 2 Mapping of applications to resources and the role of
virtualisation in service provision.

The role of the SaaS provider is particularly interesting. The

SaaS provider uses domain knowledge to abstract application-

level complexity and characterise the application execution

requirements in terms of its need for storage, processing,

memory and networking. It delivers value to the client in

terms of abstraction from how the application is resourced and

does so through a service that is in terms that the Client

understands (e.g. video rendering at a particular frame rate).

However, with this comes the risk from a SaaS provider

perspective of not provisioning the application cost effectively.

The behaviour and execution time of applications and

workflows is often uncertain, which ia a significant risk for

providers who on the one hand need to meet QoS

commitments to their Clients but on the other hand need to

minimise their outlay on resources procured from IaaS

providers. The challenge is how much abstraction can be

sustained by the SaaS provider? The larger the abstraction

then the more uncertainty and hence the more risk the

provider takes when delivering guaranteed application QoS.

To consider and manage this risk the SaaS provider needs to

use methods that provide accurate mapping between the Client

and the IaaS provider worlds and models that assess the

performance of the services offered.

The approach to performance modelling in IRMOS is based

on discrete time stochastic finite state automata. The business

workflows within which one or more applications are used

(e.g. in film production a workflow might be dailies review,

colour correction, special effects rendering and audio

correction) are modelled as a number synchronised timed

stochastic finite state automata, one or more per application.

These models are to be used for estimating the completion

time of a workflow and of the individual activities within the

workflows, i.e. to experiment with questions of the form: ‘if I

am constrained to use only these resources for this activity

when what is the probability of completing the activity within

a given time span?’ This formalism is one that can be

analytically investigated using the PRISM model checking

tool [5], [6].

The rest of this paper focuses on the proposed approach to

performance modelling, including the worked example in the

results, namely how can we build models that predict

completion time of a workflow given a particular level of QoS

for the resources used to execute the application and given

particular users’ behaviour.

3 APPROACH

Process algebras, such as CCS and CSP, have been used for

some time as an algebraic means of describing interleaving

behaviour of communicating distributed systems at an abstract

level that provided a mechanism for formal verification. For

SOI however there are some shortcomings of these original

algebras. For example, traditional process algebras are not

well suited to describing compensation or long running

transactions and it is difficult to adequately handle

composition of services in an elegant way. Some calculi have

been developed in an attempt to address these issues [7],[8]

Other calculi have been developed in order to address some of

the wider issues of service behaviour [9],[10]. Verifying

properties of choreography of web services is also an area

where bespoke process algebras have been developed,

[11],[12] Another current effort along these lines is Stochastic

COWS[13],[14] process algebra. This is one of several

process algebras that adopt the approach of generating a

continuous time Markov chain (CTMC) from a process

algebra term. In our case, we choose to use discrete time

probabilistic finite state automata with time constraints

defined with respect to discrete clocks. This allows parallel

composition of automata, e.g. so complex processes can be

described, and also model checking that can be automated

when the model is guaranteed finite branching. The later is

important as it is possible to automate model checking for

temporal properties, e.g. to determine whether the system has

a finite probability of completing in all circumstances. This

has been studied in [15], [16].

In IRMOS we assume that the SaaS are not applications

written specifically for operation as IRMOS services, but

rather, software applications already in general use wrapped

up as SaaS applications. As a consequence the actual internal

operation of the application will be very difficult to be

ascertained and used for the purposes of performance

modelling, i.e. it is not feasible to create a performance model

accurately representing the internal application behaviour.

What we can do is to use background knowledge, possibly

acquired experimentally, of the externally observed

application behaviour, the behaviour of the execution

environment of the application and the pattern of the user

interactions with the application, and to create a statistical

high level performance model incorporating the different

behavioural aspects. We use the discrete time stochastic finite

state machines (FSM) modelling technique to create the

statistical high level performance model.

For IRMOS we derived a customisable generic FSM model,

depicted in Figure 3, to guide the service analyst in the

process of identifying the model states and transitions. The

states of this FSM are high-level externally observed states

and the transitions are stochastic, i.e. are triggered according

to probability distributions. These distributions can be

derived by observation or experimentation and statistical

analysis of the transition frequencies from one observable

state to another.

The model has three macro-states corresponding to three main

application behavioural aspects:

• Uninterrupted-fault-free application operation

• User and application interrupts

• Infrastructure faults (including critical and due to QoS

degradation faults)

The macro-states are common for all modelled applications.

Each macro-state includes sub-states (referred to just as

‘states’ from here onwards) which in general can be specific

for each modelled service application.

To keep the model with as less states as possible (the model

execution time increases exponentially with respect to the

number of states in the FSM) we suggest maximum of three

states when modelling the normal (uninterrupted-fault-free)

application behaviour, namely:

• Processing initiation

• Processing

• Processing wrap-up

Processing initiation could be e.g. setting up some footage

dirt-removal application parameters after previewing a set of

frames. Processing wrap-up could be final reviewing of the

whole footage after dirt-removal. Processing is the dirt-

removal of the whole sequence of frames assuming no fault or

interruption occurrence. Probability distributions of transitions

between states included in the normal application behaviour

macro-state are obtained by general experimentation and

benchmarking activities. Application runs can be performed

for a series of workloads, with different application setup, on a

variety of platforms in order to obtain an application

uninterrupted-fault-free completion time estimator.

For creating the states in the other two FSM macro-states an

analyst will need to use any user, system, application and

infrastructure knowledge available. In IRMOS we intend to

compile and provide lists of optional states to be included in

these macro-states. For example, for the infrastructure faults

macro-state we might suggest the states of:

• QoS degradation fault: bandwidth below required

minimum value

• Critical fault: virtual machine (VM) crash

And for the user/application interrupts macro-state we might

suggest the states of:

• User interrupt: quality assurance (QA) interrupt

• Application interrupt: additional I/O for process flow

control

It is assumed that after QoS degradation fault only a temporal

delay is encountered, but after a critical fault a new process

initiation is needed. The user and application interrupts only

introduce additional delays. From the suggested list the

analyst shall choose only the states that are relevant to the

modelled application.

The probability distributions of transitions between states

included in the faults or interrupts macro-states can be

obtained from background knowledge or by statistical

modelling of the user, the application and the infrastructure

behaviour (e.g. parametric statistical modelling and/or

Bayesian Believe Networks).

Uninterrupted-fault-free

initiation

wrap-up

processing

initiation

wrap-up

processing

User/Application Interrupts

User interupt: QA

delay

User interupt: QA

delay

Infrastructure Faults

QoS degradation: Bandwidth

Critical fault: VM_crash

QoS degradation: Bandwidth

Critical fault: VM_crash

complete

complete

complete

in_progress

in_progress

in_progress

VM_crash

resolution_in_progress
resolved

bandwidth < Bmin resolution_in_progress

resolved

QA

in_progress

OK

not_OK

done

in_progress

Figure 3 Generic service application FSM. All the events are
probabilistic and some are synchronising with a local clock FSM,
which is not depicted to avid clutter.

The timed behaviour of the FSM is facilitated by an additional

state machine that models local time. The FSM depicted in

Figure 3 will in practice have additional states and transitions

for synchronising with this local time FSM, which are not

depicted in order to avoid clutter. The synchronising states

and transitions are shown in the worked example described in

the following section.

4 RESULTS

In this section we use a simplified and hypothetical scenario

of colour correction as part of film post-production workflow.

Imagine that a post-production house is contracted to perform

colour correction to some film shots that will be selected by a

film director during his preview of the digital dailies of a film

currently under production. The footage length needing colour

correction cannot be determined in advance as this depends on

the output from the shooting session. It is estimated that

colour correction will be applied to approximately 40 +/- 10

minutes of footage. The director needs to preview the footage

1, 2 or 3 times in order to make a decision on the manner of

colour correction, with number of previewing iterations

assumed to be equally probable. An IaaS provider provides

storage, processing and networking resources for the post-

production workflow. The footage is stored in IaaS storage

and is streamed to the director for a preview. If the link

bandwidth drops below a critical value, streaming is not

possible and previewing stops. After a streaming failure the

director will need to go back and preview on average about 5

minutes of footage and it takes another about 5 minutes to

recommence previewing, i.e. there is on average 10 minutes

delay. From experience we know that the streaming failures

occur with rate of 2 per hour. The colour correction is

performed on an application installed on an IaaS computing

resource. The colourist has a client side application

component which enables real-time interaction with the colour

correction application running on the IaaS resource. The

colour correction is done in real-time and the corrected

footage is streamed to the director for in-time feedback. It is

estimated that on average the director will ask for colour

correction interrupt every 30 minutes and colour regarding of

the last 5 minutes will need to be done, where it takes the

colourist another 5 minutes to reset the application.

The above scenario is modelled with three state machines

which are grouped in two workflow macro states that indicate

the activities of Director Preview and Colourist Colour

Correction that are to be performed. Figure 4 depicts the

model in the form of a UML state machine diagram.

Note that the Preview and Colour Correction finite state

machines are customisations of the generic finite state

machine as depicted in Figure 3. In addition, there is an

implicit time clock state machine to model local model time,

which executes in parallel with the activities state machines.

The time clock state machine is not included in the diagram as

the only event we are interested in is the clockTick event

which signals the end of each elapsed time unit. Each activity

state machine is synchronised with the clockTick event of the

time state machine in order to count the activity elapsed time.

The synchronisation is facilitated by the transitions denoted by

the <<synchronising>> stereotype. The stochastic behaviour

of the state machines is facilitated by the transition denoted by

the <<stochastic>> stereotype, i.e. these transitions are

triggered according to some probability distribution as a

function of time. For example, when previewing footage the

probability to have more footage to preview at time t is P{Tpr

> t| Tpr > t-1}, where variable Tpr denotes the preview time

(similarly, Tbf is the time to come out of a bandwidth fault, Tcg

is the time to change colour grading after a in-time director

feedback, Tcc is the colour correction time). Transitions

depicted by the <<probabilistic choice>> facilitate a

probabilistic choice behaviour by probabilistic assignment

occurring during the transition, e.g. assign the preview

iterations number to be 1, 2 or 3 with probability of 1/3 for

each assignment.

Director Preview
<<workflow macro state>>

Preview
<<FSM>>

Idle

Processing Bandwidth fault

Initialisation
<<FSM>>

Idle Iterations

Preview
<<FSM>>

Idle

Processing Bandwidth fault

Idle

Processing Bandwidth fault

Initialisation
<<FSM>>

Idle IterationsIdle Iterations

Colourist Colour Correction

<<workflow macro state>>

Colour Correction

<<FSM>>

Processing

Idle

Change grading

Colour Correction

<<FSM>>

Processing

Idle

Change grading Processing

Idle

Change grading

start

startCorrection

finish

start
<<syncronising>>

startPreview: iterations=1:P{iterations=1}, 2:P({terations=2}

<<synchronising>> <<probabilistic choice>>

startPreview
<<synchronising>>

clockTick
<<syncronising>>

clockTick: P{Tpr>t|Tpr>t-1}

<<syncronising>> <<stochastic>>

clockTick: P{Tbf>t|Tbf>t-1}

<<syncronising>> <<stochastic>>

bandwidthFault: P{bandwidth_fault}

<<stochastic>>

resolved: (1-P{Tbf>t|Tbf>t-1})

<<stochastic>>

startPreview

clockTick

<<syncronising>>

startCorrection: (1-P{Tpr>t|Tpr>t-1})

<<syncronising>> <<stochastic>>

clockTick
<<synchronising>>

startCorrection

<<synchronising>>

finish: (1-P{Tcc>t|Tcc>t-1})

<<synchronising>> <<stochastic>>

userInterrupt: P{user_interrupt}

<<stochastic>>

done: (1-P{Tcs>t|Tcs>t-1})

<<stochastic>>

clockTick: P{Tcc>t|Tcc>t-1}

<<synchronising>> <<stochastic>>

clockTick: P{Tcs>t|Tcs>t-1}

<<synchronising>> <<stochastic>>

Figure 4 State chart of the FSMs for the preview and colour
correction post-production workflow activities.

To perform the model analysis we used the PRISM model

checking tool [5], [6]. The UML diagrams are directly

mapped to the PRISM modelling language. The PRISM

modelling language is a state based language based on the

Reactive Models formalism [17]. A model described in

PRISM is compiled into a Markov chain (one of the following:

CTMC, DTMC or MDP) and analysed using PRISM temporal

logic algebra based on PCTL [18], CSL [19] and LTL [20].

We analyse the completion time probabilities of the different

workflow activities and the workflow as a whole. We

performed a number of experiments to demonstrate the use of

the proposed modelling technique. See Table 1 for the

experiments setup. The experiments are performed in time

steps of 10 minutes in order to constrain the model state space

and the overall execution time. This coarse quantisation is

sufficient for understanding the main features of the processes

and the experiments can be repeated with finer granularity if

more accuracy is required. For the experiments described here

it take about 5 minutes to complete on a Dell Latitude with

Intel Core2Duo 2.4GHz T8300 4GB DDR2-667 SDRAM.

E
x
p
er

im
en

t

F
o
o
ta

g
e

L
en

g
th

[m
in

.]

P
re

v
ie

w

It
er

at
io

n
s

P
ro

b
ab

il
it
y

S
tr

ea
m

in
g

F
au

lt
 R

at
e

[p
er

 h
o
u
r]

D

el
ay

 a
ft

er

S
tr

ea
m

in
g

F
au

lt
 [

m
in

.]

C
o
rr

ec
ti
o
n

In
te

rr
u
p
t

R
at

e
[p

er

D
el

ay
 a

ft
er

C
o
rr

ec
ti
o
n

In
te

rr
u
p
t

[m
in

.]

1 30 to 50 P(1)=1/3, P(2)=1/3, P(3)=1/3 2 10 2 10

2 30 to 50 P(1)=0.6, P(2)=0.3, P(3)=0.1 2 10 3 10

3 30 to 50 P(1)=0.6, P(2)=0.3, P(3)=0.1 1 10 3 10

Table 1 Experiments setup.

For the first experiment we executed the model set as per the

scenario described at the beginning of this section (see

experiment number 1 in Table 1). We obtained the completion

time probability density functions (PDFs) of the preview

activity, colour correction activity, and the workflow (the

sequence of the two activities), depicted in Figure 1, and the

completion time cumulative distribution function (CDF) of the

workflow, depicted in Figure 6 (the graph marked with

circles).

P(Completion Time = t)

0

0.05

0.1

0.15

0.2

0.25

1 4 7 10 13 16 19 22 25 28 31 34 37 40

t [in 10s of minutes]

Correction - Exp. 1

Preview - Exp. 1

Workflow - Exp. 1

Figure 5 Workflow and individual activities completion times
PDFs for experiment 1.

P(Completion Time ≤ t)

0

0.2

0.4

0.6

0.8

1

1.2

1 4 7 10 13 16 19 22 25 28 31 34 37 40

t [in 10s of minutes]

Workflow - Exp. 1

Workflow - Exp. 2

Workflow - Exp. 3

Figure 6 Workflow completion times CDF for the different
experiments.

From the workflow CDF, for example, it can be seen that the

probability of completing the workflow within 3 hours is 60%,

i.e. the probability of the film director being involved with the

colour correction activity for too long (arbitrary accepted to be

3 hours) is too high, i.e. 40%. To moderate this issue we could

attempt to change the overall workflow strategy. Looking at

the PDFs of the individual activities we note that the longest

and most uncertain activity is the footage preview. We can

propose that the film director should spend less time during

this activity and proceed to the colour correction activity. This

would mean that the probabilities of the footage preview

iterations will change, and let assume that the new estimated

iteration probabilities are 0.6, 0.3 and 0.1 respectively for 1, 2

and 3 iterations. This will most likely have an effect on the

colour correction activity in a way that more interrupts for

colour re-grading will be needed. Let assume that now there

will be 3 interrupts per hour instead of 2. We performed a

second experiment with the so amended scenario (Table 1,

experiment 2). The workflow completion time CDF is

depicted in Figure 6 (the graph marked with squares). Now

the probability of completing the workflow within 3 hours is

about 70%. Further, we know that we can improve the

workflow completion time if we opt for paying extra for a

better IaaS network resource for the footage preview activity.

Let assume we can hire a link with more stable bandwidth so

that the streaming failures are down to 1 per hour instead of 2.

The workflow completion time CDF of the so amended

scenario (Table 1, experiment 3) is depicted in Figure 6 (the

graph marked with triangles). Now the probability of

completing the workflow within 3 hours is about 80%.

The above ‘what-if’ experiments demonstrate how one can

use the proposed modelling techniques to optimise practices

employed in business workflows. Additionally, if the costs of

the IaaS resources and the cost of the human resources are

known, one can perform workflow const optimisation

experiments to derive an optimal workflow cost. In the

IRMOS project we intend to use this modelling technique to

derive the optimal IaaS resource allocation for given

workflow completion time constrains and workflow cost

constraints, i.e. the technique will be facilitating optimal

infrastructure QoS derivation when negotiating a SLA

between a SaaS provider and an IaaS provider.

The results presented so far can be put to use in yet another

way. Suppose a SaaS provider agrees a hard deadline for the

completion of an activity, then the probability of meeting this

deadline can be calculated. If there is scope to negotiate with

the IaaS provider, then the trade-off between resources cost,

completion time and possible penalties can be analysed. For

example, Figure 7 shows how a SaaS provider might use a

cost model when determining the optimum provisioning

strategy for clients. Given the various levels of uncertainty

that exist as discussed in previous sections, the most common

way to be sure of meeting the obligations is through simple

over-provisioning of resources, e.g. booking resources that it

will have to pay for but might never get used. This can be

expensive. On the other hand, if the SaaS Provider reduces its

cost by reducing the resources reserved/used from IaaS

providers then it increases the risk of not meeting obligations

to its clients and hence incurring penalties. Somewhere in

between is an optimum solution, which will depend on many

factors, some of which may not technical e.g. customer

relationship management.

C
o
s
t

Figure 7 Trade-off between cost and risk used to identify optimum
strategies.

Predictive models as presented earlier in this section clearly

have an important role to play when the SaaS provider

assesses the probability that a commitment to a client will be

met against the cost of provisioning the application for that

client and for any penalties if the resource is under

provisioned.

5 CONCLUSIONS

This paper has discusses how models can be constructed to

analyse interactive real-time applications on service oriented

infrastructures. The techniques applicable are varied and

include the use of stochastic process algebras and finite state

automata.

We have emphasised the need to give particular attention to

modelling uncertainty surrounding real-time applications.

This includes modelling variation in the inputs to an

application (e.g. data) and in performance of resources (e.g.

bandwidth), and also modelling the user behaviour, all of

which affect the probability of the application executing

successfully, i.e. according to given constraints. The

techniques used have been demonstrated using a specific

application scenario, which provides valuable insight into the

level of detail needed when developing meaningful models.

The key features of the modelling approach we have taken are:

1) Separate the application level parameters from the

infrastructure level parameters and use mapping functions

or statistical estimators to quantify the application

performance (which in itself can be very challenging!).

2) Explicitly model uncertainty/variability at all levels using

probability distributions.

3) Use stochastic modelling techniques as the basis of

experiments to explore the range of possible outcomes.

4) Use the results of these experiments to quantify the

resources that will be required to execute the application,

including the performance needed (QoS).

5) Use cost models to make quantitative evaluation and

comparison of options in order to make decisions on where

the trade-offs can be made most effectively.

Acknowledgements

IRMOS is a collaborative research and development project

supported by the European Commission under the Seventh

Framework Programme FP7/2007-2011, ICT-2007.1.2. More

information can be found on the IRMOS website

www.irmosproject.eu

References
[1] www.irmosproject.eu

[2] http://www.microsoft.com/azure/default.mspx

[3] http://code.google.com/appengine/
[4] Web Services Business Process Execution Language Version 2.0,

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[5] PRISM web site http://www.prismmodelchecker.org
[6] Kwiatkowska, M., Norman, G., Parker, D., and Sproston, J.

Performance analysis of probabilistic timed automata using digital clocks.

Form. Methods Syst. Des. vol 29, no 1, pp 33-78, 2006, DOI=
http://dx.doi.org/10.1007/s10703-006-0005-2

[7] R. Bruni, H.C. Melgratti, and U. Montanari. Theoretical foundations for

compensations in flow composition languages. In POPL, pp. 209–220. ACM,
2005.

[8] L. Bocchi, C. Laneve, and G. Zavattaro. A calculus for long-running

transactions. In FMOODS, LNCS 2884, pp. 124–138, 2003.
[9] C. Guidi, R. Lucchi, R. Gorrieri, N. Busi, and G. Zavattaro. SOCK: a

calculus for service oriented computing. In ICSOC, LNCS 4294, pp. 327–338,

2006.
[10] Formalizing languages for Service Oriented Computing, Claudio Guidi,

Technical Report, Department of Computer Science, University of Bologna,

UBLCS-2007-07, March 2007.
[11] A Formal Model of Services, M. Broy, I. Krugger, M. Meisinger,

ACMTransactions Software Engineering and Methodology,Vol. 16,No. 1,

Article 5, Publication date:February 2007
[12] Li, J., He, J., Zhu, H., and Pu, G. 2007. Modeling and Verifying Web

Services Choreography Using Process Algebra. In Proceedings of the 31st
IEEE Software Engineering Workshop (March 06 - 08, 2007). SEW. IEEE

Computer Society, Washington, DC, 256-268. DOI=

http://dx.doi.org/10.1109/SEW.2007.105
[13] Lapadula, A., Pugliese, R., Tiezzi, F.: Calculus for Orchestration of

Web Services. In: Proc. ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer,

Heidelberg (2007) (full version available at), http://rap.dsi.unifi.it/cows
[14] Stochastic COWS, Davide Prandi, Paola Quaglia, Proc. 5th International

Conference on Service Oriented Computing, ICSOC~'07. LNCS vol. 4749.

2007.
[15] A. Bianco and L. de Alfaro, Model checking of probabilistic and

nondeterministic systems, in P. Thiagarajan, editor, Proc. Foundations of

Software Technology and Theoretical Computer Science, LNCS 1026, pp
499–513, Springer Berlin/Heidelberg, 1995.

[16] C. Baier and M. Kwiatkowska, Model checking for a probabilistic

branching time logic with fairness, Distributed Computing, 11:125–155, 1998
[17] R. Alur and T. Henzinger. Reactive modules. Formal Methods in System

Design, 15(1):7-48, 1999.

[18] H. Hansson and B. Jonsson. A logic for reasoning about time and
reliability. Formal Aspects of Computing, 6(5):512-535, 1994.

[19] C. Baier, J.-P. Katoen, and H. Hermanns.

Approximate symbolic model checking of continuous-time Markov chains.
In J. Baeten and S. Mauw, editors, Proc. 10th International Conference on

Concurrency Theory (CONCUR'99), volume 1664 of LNCS, pages 146-161.

Springer, 1999.
[20] C. Baier. On algorithmic verification methods for probabilistic systems,

1998. Habilitation thesis, Fakultät für Mathematik & Informatik, Universität

Mannheim.

