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Abstract:  The European Commission supported IRMOS 

project is developing tools and techniques that allow real-

time applications to be planned and executed on 

distributed Service Oriented Infrastructures (SOI) 

operated by third-party service providers.   The exemplar 

applications within the project are all multimedia based 

and include support for interactive and collaborative film 

post-production, the use of virtual and augmented reality 

within the engineering design process, and the use of 3D 

virtual worlds as interactive online eLearning 

environments.   In each case, there is a need for well 

defined and managed Service Level Agreements that have 

stringent Quality of Service (QoS) terms referring to 

applications hosted on third-party virtualised resources 

(storage, processing, networking).  This paper presents 

techniques developed within IRMOS for modelling and 

predicting the resource and QoS requirements of 

interactive media applications on SOIs.  These models 

have value in many stages of the application lifecycle, for 

example when estimating resource needs in advance of 

execution, when negotiating QoS with service providers, 

when assessing the probable technical and economic 

outcomes of provisioning policies and management actions 

if either the application or resources do not perform as 

expected or need to be adjusted.    
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1 OVERVIEW 

The IRMOS project [1] is developing tools and techniques for 

modelling, simulating, analysing, and planning interactive 

real-time applications on service oriented infrastructures.  

These tools and techniques support the processes involved in 

designing, developing, deploying and executing applications 

where guaranteed QoS is needed. 

This paper reviews the value-chain for real-time applications 

hosted by third-party service providers.  In the context of this 

value chain, we then analyse who might benefit from the use 

of models, how and why these models might be used, and 

when during the application lifecycle modelling is most useful.   

Techniques are then presented for building models of real-

time applications including the use of stochastic process 

algebras and finite state automata. We then focus on the use 

stochastic process algebras and finite state automata and show 

their practical application using an example real-time 

application scenario based on collaborative film post 

production.   

2 BACKGROUND 

New value chains are emerging for outsourced hosting and 

execution of interactive media applications that have strict 

requirements on quality of service in order to operate 

effectively (e.g. latency, bandwidth and jitter for video 

streaming, or processing power for interactive special effects 

rendering). Actors in the value chain emerge where value can 

be added, e.g. at the infrastructure level this might be 

providing virtualised storage, networking and compute 

resources using a Infrastructure as a Service (IaaS) model, or 

at the application level it might be offering a suite of post-

production tools on a pay-per-use basis using a Software as a 

Service (SaaS) model.   In-between these two levels, comes 

the possibility of Platform as a Service (PaaS), for example 

where a provider makes it easy for a developer to build and 

deploy new applications on top of service oriented 

infrastructures (Google Apps [3] and Microsoft Azure [2] 

being examples).   

The value chain is shown in Figure 1 highlighting where 

Service Level Agreements feature at the infrastructure and 

application levels. 
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Figure 1 Value chain for applications on service oriented 
infrastructure. 

Applications with real-time attributes (e.g. the need for 

guaranteed completion by a particular deadline) require 

careful planning when selecting service providers so that 

neither under-provisioning (likely failure of the application to 

execute) nor massive over-provisioning (unnecessarily high 

costs) occur.  This planning, especially when there is 

uncertainty involved, is not currently well supported in 

conventional tools.  From a real-time application modelling 

perspective, the important aspects of planning in these new 

value chains, and hence the need for modelling, is the 



 

separation of the resource-level (storage, processing, 

networking) parameters from the application-level parameters 

(e.g. video effects processing).   

At the application level, the parameter space can be large and 

complex, even for simple applications.  For example, as 

shown in Figure2, colour correction as a component 

application in film post production is characterised by a large 

number of parameters, including the characteristics of the film 

to be corrected, the corrections to be applied, and the use of 

colour correction within a workflow. Likewise at the hardware 

resource level the space is equally large and complex due to 

the details of architectures and configurations, e.g. buses and 

caching, memory, networking, processors, storage.  

Figure 2 Mapping of applications to resources and the role of 
virtualisation in service provision.      

The role of the SaaS provider is particularly interesting. The 

SaaS provider uses domain knowledge to abstract application-

level complexity and characterise the application execution 

requirements in terms of its need for storage, processing, 

memory and networking.  It delivers value to the client in 

terms of abstraction from how the application is resourced and 

does so through a service that is in terms that the Client 

understands (e.g. video rendering at a particular frame rate).  

However, with this comes the risk from a SaaS provider 

perspective of not provisioning the application cost effectively. 

The behaviour and execution time of applications and 

workflows is often uncertain, which ia a significant risk for 

providers who on the one hand need to meet QoS 

commitments to their Clients but on the other hand need to 

minimise their outlay on resources procured from IaaS 

providers.  The challenge is how much abstraction can be 

sustained by the SaaS provider?  The larger the abstraction 

then the more uncertainty and hence the more risk the 

provider takes when delivering guaranteed application QoS. 

To consider and manage this risk the SaaS provider needs to 

use methods that provide accurate mapping between the Client 

and the IaaS provider worlds and models that assess the 

performance of the services offered. 

The approach to performance modelling in IRMOS is based 

on discrete time stochastic finite state automata. The business 

workflows within which one or more applications are used 

(e.g. in film production a workflow might be dailies review, 

colour correction, special effects rendering and audio 

correction) are modelled as a number synchronised timed 

stochastic finite state automata, one or more per application. 

These models are to be used for estimating the completion 

time of a workflow and of the individual activities within the 

workflows, i.e. to experiment with questions of the form: ‘if I 

am constrained to use only these resources for this activity 

when what is the probability of completing the activity within 

a given time span?’ This formalism is one that can be 

analytically investigated using the PRISM model checking 

tool [5], [6]. 

The rest of this paper focuses on the proposed approach to 

performance modelling, including the worked example in the 

results, namely how can we build models that predict 

completion time of a workflow given a particular level of QoS 

for the resources used to execute the application and given 

particular users’ behaviour.   

3 APPROACH 

Process algebras, such as CCS and CSP, have been used for 

some time as an algebraic means of describing interleaving 

behaviour of communicating distributed systems at an abstract 

level that provided a mechanism for formal verification.  For 

SOI however there are some shortcomings of these original 

algebras. For example, traditional process algebras are not 

well suited to describing compensation or long running 

transactions and it is difficult to adequately handle 

composition of services in an elegant way.  Some calculi have 

been developed in an attempt to address these issues [7],[8]  

Other calculi have been developed in order to address some of 

the wider issues of service behaviour [9],[10].  Verifying 

properties of choreography of web services is also an area 

where bespoke process algebras have been developed, 

[11],[12] Another current effort along these lines is Stochastic 

COWS[13],[14] process algebra. This is one of several 

process algebras that adopt the approach of generating a 

continuous time Markov chain (CTMC) from a process 

algebra term.   In our case, we choose to use discrete time 

probabilistic finite state automata with time constraints 

defined with respect to discrete clocks.  This allows parallel 

composition of automata, e.g. so complex processes can be 

described, and also model checking that can be automated 

when the model is guaranteed finite branching.  The later is 

important as it is possible to automate model checking for 

temporal properties, e.g. to determine whether the system has 

a finite probability of completing in all circumstances.  This 

has been studied in [15], [16].  

In IRMOS we assume that the SaaS are not applications 

written specifically for operation as IRMOS services, but 



 

rather, software applications already in general use wrapped 

up as SaaS applications. As a consequence the actual internal 

operation of the application will be very difficult to be 

ascertained and used for the purposes of performance 

modelling, i.e. it is not feasible to create a performance model 

accurately representing the internal application behaviour. 

What we can do is to use background knowledge, possibly 

acquired experimentally, of the externally observed 

application behaviour, the behaviour of the execution 

environment of the application and the pattern of the user 

interactions with the application, and to create a statistical 

high level performance model incorporating the different 

behavioural aspects. We use the discrete time stochastic finite 

state machines (FSM) modelling technique to create the 

statistical high level performance model.  

For IRMOS we derived a customisable generic FSM model, 

depicted in Figure 3, to guide the service analyst in the 

process of identifying the model states and transitions. The 

states of this FSM are high-level externally observed states 

and the transitions are stochastic, i.e. are triggered according 

to   probability distributions. These distributions can be 

derived by observation or experimentation and statistical 

analysis of the transition frequencies from one observable 

state to another.  

The model has three macro-states corresponding to three main 

application behavioural aspects:  

• Uninterrupted-fault-free application operation 

• User and application interrupts 

• Infrastructure faults (including critical and due to QoS 

degradation faults) 

The macro-states are common for all modelled applications. 

Each macro-state includes sub-states (referred to just as 

‘states’ from here onwards) which in general can be specific 

for each modelled service application.  

To keep the model with as less states as possible (the model 

execution time increases exponentially with respect to the 

number of states in the FSM) we suggest maximum of three 

states when modelling the normal (uninterrupted-fault-free) 

application behaviour, namely: 

• Processing initiation 

• Processing 

• Processing wrap-up 

Processing initiation could be e.g. setting up some footage 

dirt-removal application parameters after previewing a set of 

frames. Processing wrap-up could be final reviewing of the 

whole footage after dirt-removal. Processing is the dirt-

removal of the whole sequence of frames assuming no fault or 

interruption occurrence. Probability distributions of transitions 

between states included in the normal application behaviour 

macro-state are obtained by general experimentation and 

benchmarking activities. Application runs can be performed 

for a series of workloads, with different application setup, on a 

variety of platforms in order to obtain an application 

uninterrupted-fault-free completion time estimator.  

For creating the states in the other two FSM macro-states an 

analyst will need to use any user, system, application and 

infrastructure knowledge available. In IRMOS we intend to 

compile and provide lists of optional states to be included in 

these macro-states. For example, for the infrastructure faults 

macro-state we might suggest the states of: 

• QoS degradation fault: bandwidth below required 

minimum value  

• Critical fault: virtual machine (VM) crash 

And for the user/application interrupts macro-state we might 

suggest the states of:  

• User interrupt: quality assurance (QA) interrupt 

• Application interrupt: additional I/O for process flow 

control 

It is assumed that after QoS degradation fault only a temporal 

delay is encountered, but after a critical fault a new process 

initiation is needed. The user and application interrupts only 

introduce additional delays. From the suggested list the 

analyst shall choose only the states that are relevant to the 

modelled application. 

The probability distributions of transitions between states 

included in the faults or interrupts macro-states can be 

obtained from background knowledge or by statistical 

modelling of the user, the application and the infrastructure 

behaviour (e.g. parametric statistical modelling and/or 

Bayesian Believe Networks). 
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Figure 3 Generic service application FSM. All the events are 
probabilistic and some are synchronising with a local clock FSM, 
which is not depicted to avid clutter. 

The timed behaviour of the FSM is facilitated by an additional 

state machine that models local time. The FSM depicted in 

Figure 3 will in practice have additional states and transitions 

for synchronising with this local time FSM, which are not 

depicted in order to avoid clutter. The synchronising states 

and transitions are shown in the worked example described in 

the following section. 

4   RESULTS 

In this section we use a simplified and hypothetical scenario 

of colour correction as part of film post-production workflow.  

Imagine that a post-production house is contracted to perform 



 

colour correction to some film shots that will be selected by a 

film director during his preview of the digital dailies of a film 

currently under production. The footage length needing colour 

correction cannot be determined in advance as this depends on 

the output from the shooting session.  It is estimated that 

colour correction will be applied to approximately 40 +/- 10 

minutes of footage. The director needs to preview the footage 

1, 2 or 3 times in order to make a decision on the manner of 

colour correction, with number of previewing iterations 

assumed to be equally probable. An IaaS provider provides 

storage, processing and networking resources for the post-

production workflow. The footage is stored in IaaS storage 

and is streamed to the director for a preview. If the link 

bandwidth drops below a critical value, streaming is not 

possible and previewing stops. After a streaming failure the 

director will need to go back and preview on average about 5 

minutes of footage and it takes another about 5 minutes to 

recommence previewing, i.e. there is on average 10 minutes 

delay. From experience we know that the streaming failures 

occur with rate of 2 per hour. The colour correction is 

performed on an application installed on an IaaS computing 

resource. The colourist has a client side application 

component which enables real-time interaction with the colour 

correction application running on the IaaS resource. The 

colour correction is done in real-time and the corrected 

footage is streamed to the director for in-time feedback. It is 

estimated that on average the director will ask for colour 

correction interrupt every 30 minutes and colour regarding of 

the last 5 minutes will need to be done, where it takes the 

colourist another 5 minutes to reset the application. 

The above scenario is modelled with three state machines 

which are grouped in two workflow macro states that indicate 

the activities of Director Preview and Colourist Colour 

Correction that are to be performed. Figure 4 depicts the 

model in the form of a UML state machine diagram.  

Note that the Preview and Colour Correction finite state 

machines are customisations of the generic finite state 

machine as depicted in Figure 3. In addition, there is an 

implicit time clock state machine to model local model time, 

which executes in parallel with the activities state machines. 

The time clock state machine is not included in the diagram as 

the only event we are interested in is the clockTick event 

which signals the end of each elapsed time unit. Each activity 

state machine is synchronised with the clockTick event of the 

time state machine in order to count the activity elapsed time. 

The synchronisation is facilitated by the transitions denoted by 

the <<synchronising>> stereotype. The stochastic behaviour 

of the state machines is facilitated by the transition denoted by 

the <<stochastic>> stereotype, i.e. these transitions are 

triggered according to some probability distribution as a 

function of time. For example, when previewing footage the 

probability to have more footage to preview at time t is P{Tpr 

> t| Tpr > t-1}, where variable Tpr denotes the preview time 

(similarly, Tbf is the time to come out of a bandwidth fault, Tcg 

is the time to change colour grading after a in-time director 

feedback, Tcc is the colour correction time). Transitions 

depicted by the <<probabilistic choice>> facilitate a 

probabilistic choice behaviour by probabilistic assignment 

occurring during the transition, e.g. assign the preview 

iterations number to be 1, 2 or 3 with probability of 1/3 for 

each assignment. 
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Figure 4 State chart of the FSMs for the preview and colour 
correction post-production workflow activities. 

To perform the model analysis we used the PRISM model 

checking tool [5], [6]. The UML diagrams are directly 

mapped to the PRISM modelling language. The PRISM 

modelling language is a state based language based on the 

Reactive Models formalism [17]. A model described in 

PRISM is compiled into a Markov chain (one of the following: 

CTMC, DTMC or MDP) and analysed using PRISM temporal 

logic algebra based on PCTL [18], CSL [19] and LTL [20]. 

We analyse the completion time probabilities of the different 

workflow activities and the workflow as a whole. We 

performed a number of experiments to demonstrate the use of 

the proposed modelling technique. See Table 1 for the 

experiments setup. The experiments are performed in time 

steps of 10 minutes in order to constrain the model state space 

and the overall execution time.  This coarse quantisation is 

sufficient for understanding the main features of the processes 



 

and the experiments can be repeated with finer granularity if 

more accuracy is required. For the experiments described here 

it take about 5 minutes to complete on a Dell Latitude with 

Intel Core2Duo 2.4GHz T8300 4GB DDR2-667 SDRAM.  
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1 30 to 50 P(1)=1/3, P(2)=1/3, P(3)=1/3 2 10 2 10 

2 30 to 50 P(1)=0.6, P(2)=0.3, P(3)=0.1 2 10 3 10 

3 30 to 50 P(1)=0.6, P(2)=0.3, P(3)=0.1 1 10 3 10 

Table 1 Experiments setup. 

For the first experiment we executed the model set as per the 

scenario described at the beginning of this section (see 

experiment number 1 in Table 1). We obtained the completion 

time probability density functions (PDFs) of the preview 

activity, colour correction activity, and the workflow (the 

sequence of the two activities), depicted in Figure 1, and the 

completion time cumulative distribution function (CDF) of the 

workflow, depicted in Figure 6 (the graph marked with 

circles). 
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Figure 5 Workflow and individual activities completion times 
PDFs for experiment 1. 
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Figure 6 Workflow completion times CDF for the different 
experiments. 

From the workflow CDF, for example, it can be seen that the 

probability of completing the workflow within 3 hours is 60%, 

i.e. the probability of the film director being involved with the 

colour correction activity for too long (arbitrary accepted to be 

3 hours) is too high, i.e. 40%. To moderate this issue we could 

attempt to change the overall workflow strategy. Looking at 

the PDFs of the individual activities we note that the longest 

and most uncertain activity is the footage preview. We can 

propose that the film director should spend less time during 

this activity and proceed to the colour correction activity. This 

would mean that the probabilities of the footage preview 

iterations will change, and let assume that the new estimated 

iteration probabilities are 0.6, 0.3 and 0.1 respectively for 1, 2 

and 3 iterations. This will most likely have an effect on the 

colour correction activity in a way that more interrupts for 

colour re-grading will be needed. Let assume that now there 

will be 3 interrupts per hour instead of 2. We performed a 

second experiment with the so amended scenario (Table 1, 

experiment 2). The workflow completion time CDF is 

depicted in Figure 6 (the graph marked with squares). Now 

the probability of completing the workflow within 3 hours is 

about 70%. Further, we know that we can improve the 

workflow completion time if we opt for paying extra for a 

better IaaS network resource for the footage preview activity. 

Let assume we can hire a link with more stable bandwidth so 

that the streaming failures are down to 1 per hour instead of 2. 

The workflow completion time CDF of the so amended 

scenario (Table 1, experiment 3) is depicted in Figure 6 (the 

graph marked with triangles). Now the probability of 

completing the workflow within 3 hours is about 80%. 

The above ‘what-if’ experiments demonstrate how one can 

use the proposed modelling techniques to optimise practices 

employed in business workflows. Additionally, if the costs of 

the IaaS resources and the cost of the human resources are 

known, one can perform workflow const optimisation 

experiments to derive an optimal workflow cost. In the 

IRMOS project we intend to use this modelling technique to 

derive the optimal IaaS resource allocation for given 

workflow completion time constrains and workflow cost 

constraints, i.e. the technique will be facilitating optimal 

infrastructure QoS derivation when negotiating a SLA 

between a SaaS provider and an IaaS provider.  

The results presented so far can be put to use in yet another 

way. Suppose a SaaS provider agrees a hard deadline for the 

completion of an activity, then the probability of meeting this 

deadline can be calculated.  If there is scope to negotiate with 

the IaaS provider, then the trade-off between resources cost, 

completion time and possible penalties can be analysed. For 

example, Figure 7 shows how a SaaS provider might use a 

cost model when determining the optimum provisioning 

strategy for clients. Given the various levels of uncertainty 

that exist as discussed in previous sections, the most common 

way to be sure of meeting the obligations is through simple 

over-provisioning of resources, e.g. booking resources that it 

will have to pay for but might never get used.  This can be 

expensive.  On the other hand, if the SaaS Provider reduces its 

cost by reducing the resources reserved/used from IaaS 

providers then it increases the risk of not meeting obligations 

to its clients and hence incurring penalties. Somewhere in 

between is an optimum solution, which will depend on many 



 

factors, some of which may not technical e.g. customer 

relationship management.  
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Figure 7 Trade-off between cost and risk used to identify optimum 
strategies.   

Predictive models as presented earlier in this section clearly 

have an important role to play when the SaaS provider 

assesses the probability that a commitment to a client will be 

met against the cost of provisioning the application for that 

client and for any penalties if the resource is under 

provisioned. 

5 CONCLUSIONS  

This paper has discusses how models can be constructed to 

analyse interactive real-time applications on service oriented 

infrastructures. The techniques applicable are varied and 

include the use of stochastic process algebras and finite state 

automata.  

We have emphasised the need to give particular attention to 

modelling uncertainty surrounding real-time applications.  

This includes modelling variation in the inputs to an 

application (e.g. data) and in performance of resources (e.g. 

bandwidth), and also modelling the user behaviour, all of 

which affect the probability of the application executing 

successfully, i.e. according to given constraints.  The 

techniques used have been demonstrated using a specific 

application scenario, which provides valuable insight into the 

level of detail needed when developing meaningful models. 

The key features of the modelling approach we have taken are: 

1) Separate the application level parameters from the 

infrastructure level parameters and use mapping functions 

or statistical estimators to quantify the application 

performance (which in itself can be very challenging!). 

2) Explicitly model uncertainty/variability at all levels using 

probability distributions. 

3) Use stochastic modelling techniques as the basis of 

experiments to explore the range of possible outcomes.   

4) Use the results of these experiments to quantify the 

resources that will be required to execute the application, 

including the performance needed (QoS). 

5) Use cost models to make quantitative evaluation and 

comparison of options in order to make decisions on where 

the trade-offs can be made most effectively. 
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