
Platform-as-a-Service Architecture for Real-time
Quality of Service Management in Clouds

Michael Boniface, Bassem Nasser, Juri Papay,
Stephen C. Phillips, Arturo Servin, Xiaoyu Yang,

Zlatko Zlatev
IT Innovation Centre

University of Southampton
Southampton, UK

e-mail: {mjb,bmn,jp,scp,als,kxy,zdz}@it-
innovation.soton.ac.uk

Spyridon V. Gogouvitis, Gregory Katsaros,
Kleopatra Konstanteli, George Kousiouris,
Andreas Menychtas, Dimosthenis Kyriazis

Telecommunications Laboratory
National Technical University Athens

Athens, Greece
e-mail: {sgogouvitis, gkats,

kkonst,ameny,dkyr}@telecom.ntua.gr

Abstract - Cloud computing offers the potential to dramatically
reduce the cost of software services through the
commoditization of information technology assets and on-
demand usage patterns. However, the complexity of
determining resource provision policies for applications in
such complex environments introduces significant
inefficiencies and has driven the emergence of a new class of
infrastructure called Platform-as-a-Service (PaaS). In this
paper, we present a novel PaaS architecture being developed in
the EU IST IRMOS project targeting real-time Quality of
Service (QoS) guarantees for online interactive multimedia
applications. The architecture considers the full service
lifecycle including service engineering, service level agreement
design, provisioning and monitoring. QoS parameters at both
application and infrastructure levels are given specific
attention as the basis for provisioning policies in the context of
temporal constraints. The generic applicability of the
architecture is being verified and validated through
implemented scenarios from three important application
sectors (film post-production, virtual augmented reality for
engineering design, collaborative e-Learning in virtual worlds).

Keywords -cloud computing; service-oriented infrastructures;
platform-as-a-service; quality of service; real-time

I. INTRODUCTION
Cloud computing is one of the hottest buzzwords in

information technology today. Through the virtualization of
hardware, rapid self-service provisioning, scalability,
elasticity, accounting granularity and cost allocation models,
Clouds promise the ability to efficiently adapt resource
provisioning to the dynamic demands of Internet users. This
paper describes a novel Platform-as-a-Service architecture
being developed in the European Commission supported
IRMOS project [1]. The architecture aims to provide tools
and techniques for modelling, simulating, analyzing,
planning, provisioning and monitoring real-time service-
oriented applications deployed within clouds of virtualized
computing, storage and networking where a guaranteed QoS
is needed.

This paper reviews the emerging Cloud marketplace in
relation to the Service/Platform/Infrastructure (SPI) layered
model focusing on PaaS characteristics and support for QoS
guarantees. Requirements for real-time multimedia

applications are then presented, alongside the application
scenarios used to verify and validate the generic applicability
of the architecture across different business sectors. All
architectural concepts are then described combining service-
oriented patterns with real-time modelling techniques.

II. CLOUDS AND REAL-TIME QOS
Cloud computing is a generalized paradigm; therefore it

is impossible to consider ‘the cloud’ as a single set of
business models with a single set of Quality of Service
issues. To some extent, issues with cloud computing are
necessarily related to application characteristics and purpose.
However, it is possible to identify cloud types, common
stakeholders and their concerns. Today, there are three main
classes in the cloud services stack which are generally agreed
upon:

• Infrastructure as a service (IaaS): the provision of
‘raw’ machines (servers, storage, networking and
other devices) on which the service consumers
install their own software, usually as virtual machine
images.

• Platform as a service (PaaS): the provision of a
development platform and environment providing
services and storage, hosted in the cloud.

• Software as a service (SaaS): the provision of a pre-
defined application as a service over the Internet or
distributed environment.

A major challenge for SaaS providers wanting to exploit
the benefits of cloud computing is to manage QoS
commitments to customers throughout the lifecycle of a
service. The complexity of this problem has driven the
emergence new PaaS offerings that aim to abstract this
complexity through targeted tools and services. PaaS aims to
be a developer’s friend. The idea is simple, even if the
execution is complex: multiple applications share a single
development platform and common services, including
authentication, authorization, and billing. PaaS developers
build web applications without installing any tools on their
computer and deploy those applications without needing to
know or care about the complexity of buying and managing
the underlying hardware and software layers. A PaaS is built
on an IaaS and uses a multi-tenanted deployment and
development tools. A good example of PaaS is Facebook [3],

a venue where multiple applications share resources and user
information, subject to tight controls. PaaS stakeholders
include:

• the PaaS hoster: must provide adequate resources
(typically via an IaaS model) in order to meet
demands of its customers' needs, together with
appropriate availability contingencies.

• the PaaS provider: will provide an environment
suitable for general developers to build web
applications without deep domain expertise of back-
end server and front-end client development or
website administration.

• the PaaS user (developer): must have a browser-
based development environment, the ability to
deployment seamlessly to a hosted runtime
environment, management and monitoring tools and
pay as you go billing.

Many PaaS providers exist today such as Google
AppEngine, Microsoft Azure, Salesforce.com Force.com,
Rackspace Sites, Bungee Connect, EngineYard, Heroku,
Intuit, Cloudera, Aptana, VirtualGlobal, LongJump, AppJet,
Wavemaker, Aprenda, etc. As far as we can ascertain none
of these PaaS providers offer generalized tools and
techniques to support application providers in the
management of QoS guarantees for real-time interactive
applications hosted by IaaS providers. One challenge of
course is that IaaS providers do not offer on-demand QoS
adaptability in Service Level Agreements (SLA); Amazon
EC2 for example only provides the minimum terms for
service guarantees with an “Annual Uptime Percentage of at
least 99.95% during the Service Year” and a penalty model
based on service credits [4].

To achieve greater efficiency in utilization throughout all
cloud layers greater interaction and sharing of, for example,
QoS measurements will be necessary. A few efforts have
been made in this direction to provide QoS guarantees to
cloud computing services. Iyer et al. [5] investigate the
problem of shared resource contention in virtual machines
and propose a model to estimate the shared resources
required. One important characteristic of the virtual
machines proposed by these authors is their capability to
enforce policies to guarantee QoS parameters in SLA. They
achieve this task by adopting a class-of-service based cache
and memory allocation mechanism in a small number of
classes of service. Yu et al. [6] propose a distributed scalable
infrastructure for supporting real-time video streams. Also
related to cloud computing for real-time systems is the work
done by Kim, Beloglazov and Buyya [7], whom analyse
power-aware virtual machines architectures with a focus on
the optimization of power consumption based on the
requirements of a SLA. The QoS requirements are enforced
by a Real-time model that uses release time, worst-case
execution time, relative deadline, period of service use and
finish time as parameters to calculate virtual machine
requirements and scheduling tasks. In the area of adaptive
cloud systems, Dai et al. [8] propose a self-diagnosis and
self-healing tool using a hybrid mechanism composed by a
Multivariate Decision Diagrams and Naïve Bayes
Classifiers. The goal of their work was to provide a reliable

and dependable cloud computing platform. Finally, related to
SLA enforcement and provisioning, Hasselmeyer et al. [9]
analyse the negotiation of SLA with dynamic policies and
prices. In their work they propose an architecture for SLA
negotiation that includes an optimizer component that
maximizes the offer received by the customer by analyzing
knowledge about the resource capabilities of the provider
and a dynamic pricing component that computes the price of
the SLA according to the provider's available resources,
optimization function and resources requested by the
customer.

III. REAL-TIME INTERACTIVE MULTIMEDIA
APPLICATIONS

Traditionally, ‘real time’ refers to hard real-time systems,
where even a single violation of the desired timing behaviour
is not acceptable. However, there is also a wide range of
applications that also have stringent timing and performance
needs, but for which some deviations in Quality of Service
(QoS) are acceptable, provided these are well understood and
carefully managed. These are soft real-time applications and
include a broad class of interactive and collaborative tools
and environments, including concurrent design and
visualization in the engineering sector, media production in
the creative industries, and multi-user virtual environments
in education and gaming. In particular, we focus on
interactive soft real time applications where one or more
users interact with the application and with each other.

Soft real-time applications are traditionally developed
without any real-time methodology or run-time support from
the infrastructure on which they run. The result is that either
expensive and dedicated hardware has to be purchased to
ensure good interactivity levels and performance, or that
general-purpose resources are used as a compromise (e.g.
commodity operating systems and Internet networking) with
no way to guarantee or control the behaviour of the
application as a result. For such applications PaaS needs to
support techniques for modelling, predicting, provisioning
and monitoring resource and QoS requirements
commitments and applying such techniques in a general way
so they can be exploited in different application domains.

The IRMOS PaaS architecture is driven by real-time
multimedia applications from business sectors including post
production, virtual augmented reality and e-Learning, each
providing QoS requirements in respect to the on-demand
provisioning of virtualized infrastructure resources. An
example from the post production scenario is shown in figure
1 based on the Digital Film Technologies Bones Digital
Dailies production system [10]. In the scenario, collaborative
and distributed colour correction is performed as part of film
post-production. A post-production house is contracted to
perform colour correction to some film shots that will be
selected by a film director during his review of the digital
dailies of a film currently under production. The number of
shots needing colour correction cannot be determined in
advance as this depends on decisions made by the director.
The director estimates that colour correction will be applied
to approximately 30 +/- 10 minutes of footage. The colour
correction and review activities occur concurrently and

consists of: (1) the colourist effects specialist downloads the
digitised video from the Bones Service provider who
provides storage, processing and networking resources
procured from the Cloud, (2) the colourist applies initial
correction to the video, by streaming it from the service
provider to the post-house so they can determine the
correction settings needed, and (3) the colourist and director
interactively review the corrections that are applied through
real-time stream processing of the video using applications
installed at the service provider.

Figure 1. Post-Production Application for Collaborative Colour

Correction

The application consists of storage for video and control
metadata, a colour correction station, a variable number of
image processing units depending upon the data rates and a
load/balancer broadcaster responsible for delivery of the
stream to the views. In the scenario shown in Figure 1, we
use 4 image processing units at 24 frames per second. Each
image processing unit queries the image processing control
for the current set of colour correction parameters and caches
these locally in order to be able to operate as quickly as
possible on any frame. The load balancer and broadcaster
component is the heart of the system with a clock ticking at
the specified frames per second and a local buffer of
processed frames. The load balancer instructs each of the
four image processing units to process frame one by one. An
image processing unit will retrieve an uncompressed frame
from the video storage at 2500 Mbps, apply the colour
correction according to its local parameter cache, downsize
the original 12.8 MB frame to the size required for streaming
(approximately 0.07 MB) and apply JPEG compression. The
broadcaster part has a separate connection to each connected
viewer through which it pushes the “current frame”
according to the clock, in this case four streams at 13 Mbps.
If the connection to the viewer is too slow then frames will
be skipped. The component also has a control channel with
each of the viewer components through which it can receive
start, stop and seek instructions. During the review process
the colourist may be asked to adjust the colour correction for
a particular section of video. The colourist will work on this
scene using the colour correction workstation in the same

way as the initial phase and publish the correction of the
parameters to the image processing control which notifies the
image processing units of the update. The image processing
units then request the updated parameters and update their
local caches accordingly.

IV. PAAS ARCHITECTURE FOR REAL-TIME INTERACTIVE
MULTIMEDIA APPLICATIONS

A PaaS architecture supporting real time interaction
between distributed set of people and resources requires the
following key features:

• Real-Time QoS Specification: specification
language and associated toolkit for the specification
of application service components considering both
structure and real-time QoS.

• Event Prediction: QoS oriented service engineering
models for predicting QoS requirements, using
temporal and probabilistic profiles of application and
resourcing events.

• Dynamic SLA Negotiation: SLA negotiation and
management services supporting the dynamic
negotiation (self-service) of Application-SLAs
considering customer requirements and dynamic
discovery of resource providers (Technical-SLAs).

• On-Demand Resource Provisioning: provisioning
services for application service components on
virtualised infrastructures through combination of
workflow and service-based management wrappers.

• QoS Event Monitoring: monitoring services for
measuring quality of service at both application and
technical levels.

Figure 2. PaaS Architecture

The PaaS architecture is shown in figure 2 and shows the
core components and interactions with both SaaS and IaaS.
The architecture consists of two main elements, service
engineering and service management, which are described in
more detailed in the subsequent sections.

A. QoS oriented Service Engineering
Quality of Service oriented Service Engineering (QoSSE)

supports two important features for real time systems: real-
time specification for applications and event prediction. The
activities in service engineering are shown in figure 3. Real-
time specification is related to how an application is
represented to the PaaS architecture and event prediction is
associated with the procedures and mechanisms needed to
model an application and determine the appropriate
infrastructure requirements.

The QoSSE interact with application’s developers and
with the application itself through a Development Interface.
It would be very difficult to monotonically describe
applications; instead applications are broken into application
components (AC) developed by an application component
developer. These components are referred as Application
Service Component (ASC). In order to use ASC, these need
to be described and registered (at the Application QoS/QoE
repository in figure 2). Quality of Experience (QoE) allows a
service provider to make observations that may differ from
the QoS guarantees owing to factors outside of the service
provider’s control. The consumer may use QoE
measurements to validate the QoS reported to it by the
service provider, but must recognise that any discrepancy
may be due to factors outside of the terms of the SLA (e.g.
local network latency). The Application Service Component
Description (ASCD) comprises the definition of the input
and output interfaces of an ASC as well as the required
computing and network resources, which may be depending
on the input and output formats actually used as well as
timing constraints. ASCD are based in QoS specifications
modelled using UML. In particular the UML Profile for
Modelling and Analysis of Real-time and Embedded
Systems (MARTE) [11] and UML for Modelling Quality of
Service and Fault Tolerance Characteristics and Mechanisms
[12] are used.

Benchmarking

Application Component
Development &
Packaging

Service
Component
Description

Application
Development

Service
Design

Modelling,
Analysis,
Planning

Design Tools

Figure 3. Service Engineering

The QoSSE interfaces with Service Management through
a Performance Estimation Interface that is used to calculate
resource provisioning policies from customer requirements
and application constraints (i.e. image resolution, required
video streaming parameters, maximum completion time,
etc.) in the form of SLA. To calculate the appropriate
resources such as processing, memory and network required
by the SLA requested, the QoSSE uses a variety of

performance evaluation mechanisms such as parameter
mapping and statistical modelling tools.

The purpose of the parameter mapping process is to
produce mapping rules that can be used to translate the high-
level parameters described in the ASCD to QoS
requirements. To produce this mapping, benchmarking
techniques and Artificial Neural Networks (ANNs) are used.
The purpose of benchmarking is to gather a set of data that
will come from the test executions of an ASC with different
high level parameters on different platforms, characterized
by a benchmark index. This index is used to train an ANN
that generates mapping rules and provides algebraic
functions that allow low level resource parameters (such as
CPU cycles, disk usage or network traffic) to be calculated
from high level ASC terms (such as fps, resolution, etc)
without actual knowledge of the internal source code of the
ASC. These functions provide basic knowledge about the
behaviour of the ASC and can then be used by subsequent
models to calculate completion time probabilities. A detailed
description of this process is provided in [13].

The resource requirements generated by parameter
mapping do not consider the user’s interaction with the
application. It would be very difficult to accurately create a
model representing the internal application behaviour.
However, we can use the knowledge about externally
observed behaviour of the application, the behaviour of the
execution environment and the pattern of user interactions to
build a statistical high level performance model
incorporating the behavioural aspects found in real time and
interactive systems. This is done by using Finite State
Machine modelling techniques [21], specifically we use
discrete time stochastic finite state automata and the PRISM
model checking tool [14]. PRISM accepts specifications in
probabilistic temporal logic that allows us to express
probabilistic properties answering questions such as: “The
probability to finish task X in Y time”, “the probability of a
system interruption after Z minutes”, etc. The result of these
properties is further used in the calculation of the ASC
requirements. Details on how we use of this modelling
mechanism in a video post-production application scenario
can be found in [15].

B. On-Demand Service Management
Following the outcomes of the QoSSE tools, IRMOS

service management proposes the so-called “Online Process”
(as depicted in Figure 4) that includes application concretion
(during which the application template is populated with
concrete QoS parameter values), discovery & negotiation
(referring to IaaS providers), reservation (the IaaS resources
are reserved from the PaaS provider), service instantiation
(referring to the setup of the virtual service network of the
IaaS and the virtual machine units that contain the ASCs),
service component configuration (during which the
instantiated ASCs are configured according to the
application’s configuration), execution & monitoring
(referring to the execution of the ASCs and monitoring of
them as discussed previously in this paper) and cleanup
(where the ASCs are stopped and the virtual service network
of the IaaS is torn down).

The service management components are responsible for
on-demand SLA negotiation, resource reservation, service
instantiation, execution and monitoring of Quality of Service
for application provisioned at an IaaS provider. In IRMOS
the IaaS is provided by ISONI (Intelligent Service Oriented
Network Infrastructure) which is described in more detail in
[16][17][18]. The service management components are
shown in figure 2: (i) SLA Management, (ii) Orchestrator,
(iii) Event Monitoring and Provisioning Rules and (iv)
Application Wrapper. Each component is now described in
more detail in the following sections.

SLA Management: consists of the SLA negotiator,
Application-SLA (A-SLA) management and Techincal-SLA
(T-SLA) management. The SLA negotiator aims to provide
valid SLA offers to the service customer prior to the
execution of the services so that the service level
requirements can be guaranteed whilst meeting customer’s
satisfaction. There are two different negotiations involved:
(i) A-SLA negotiation between the customer and the SaaS
Provider, and (ii) T-SLA negotiation between SaaS provider
and IaaS provider. All of these are orchestrated by the SLA
negotiator in an automatic manner using resource
provisioning policies derived from application models
defined during service engineering. The A-SLA manager is
responsible for the management of A-SLAs, which includes
query, publishing, creation and update SLA templates and
mapping commitments to IaaS resources. Furthermore,
monitoring information is relayed to the A-SLA manager to
detect violations. The T-SLA manager is responsible for the
management of T-SLAs which specify resources procured
with IaaS providers. T-SLAs are being offered by the IaaS
providers as a reply to requests from the PaaS providers. The
aforementioned request, namely Virtual Service Network
Description (VSND), has been modelled within IRMOS and
encompasses information related to the virtual machine units
and the network links interconnecting them. This
information includes QoS annotations as requests towards
the IaaS providers. One of key functionalities of the T-SLA
Manager is reporting the SLA violation to the SaaS provider
through a notification mechanism that can then be used to
trigger events for mitigating management actions. When
violation events occurs, the violation information will be sent
out to the subscribed party. The implementation of the
notification mechanism employs WS-Notification [19].

Orchestrator: The orchestrator is a controller
responsible for configuring, starting and stopping the
applications. The role of the orchestrator can be two-fold:
Firstly, it is responsible for configuring the applications prior
to execution, which is achieved by receiving a configuration
command from the A-SLA manager. Secondly it executes
the workflow based on a real-time enhanced process
description based on BPEL4WS. The enactor is aware of
temporal constraints for activities within the workflow in
addition to current control and dataflow constructs [20].

Event Monitoring and Provisioning Rules: The
monitoring service is responsible for collecting the run-time
information generated by applications and the IaaS
respectively. Functionalities of the monitoring service
includes aggregating and storing the acquired data to the

historical database (for offline usage - providing input to the
QoSSE), and detecting on-the-fly any A-SLA violations
(online usage - providing input to the A-SLA manager).

ASC Wrapper: IRMOS involves different type of
ASCs (e.g. transcoding, colouring), each of which has its
own specific features. In order to decouple the specific ASC
from the PaaS services, an ASC Wrapper is developed to
‘wrap’ the specific ASC binary and provide a unified
management interface. The ASC wrapper itself is generic. In
order to self-adapt to the different ASCs, it is designed to
support three different functionalities: (i) Configuration of
the ASCs upon instantiation, (ii) Execution control of the
ASC through predefined commands (e.g. start, stop, pause,
and resume), and (iii) Acquiring monitoring and state
information from the ASCs.

Online

Application
Concretion

Discovery
Negotiation

Reservation

Service
Instantiation

Service
Configuration

Execution &
Monitoring

Cleanup

Figure 4. Service Management

 The usage sequence of the ASC wrapper is described as
follows: (i) upon instantiation of the virtual machine units
the ASC wrapper starts automatically (ii) the ASC Wrapper
waits to receive a request message from the service
management (iii) the ASC wrapper invokes the given
command (e.g. configure, control, monitor) and returns back
the response (e.g. error code or monitoring data) received as
the output of running the application (iv) the wrapper stays
inside this ‘wait-receive-response’ loop to receive
subsequent control commands.

V. EVALUATION
We are currently developing the prediction models and

provisioning infrastructure needed for our empirical
evaluation work. We intend to evaluate application
performance models through (1) 'ground truth' benchmarking
for specific applications of estimated QoS vs measured QoS
and (2) comparison of low level models (e.g. neural
networks) with 'close to infrastructure' inputs, such as CPU
cycles, to higher level models (e.g. PRISM models) that
factor in probabilistic human interactive behaviours. We will
(3) simulate business-level eco-systems to evaluate different
provisioning strategies, providing evidence regarding
optimal strategies that improve customer QoE and provider
quality of business (QoBiz) and (4) quantify performance of
specific strategies by running instrumented applications on
existing cloud infrastructures (e.g. Microsoft Azure).

VI. CONCLUSIONS AND FUTURE WORK
This paper has described a PaaS architecture for

provisioning of real-time service-oriented application in
clouds. The paper has presented two key aspects of PaaS,
namely service engineering and service management,
showing how the combination of methods, tools and services
can be used to improve the usability, maintainability,
efficiency of services targeting clouds with strict QoS
constraints.

Our architecture and demonstrators will no doubt identify
requirements and opportunities for new PaaS capabilities due
to the need to evolve to support increasingly dynamic
platforms that can align demand with resource provisioning
whilst maintaining guaranteed levels of QoS. PaaS solutions
provide an integration layer between SaaS and IaaS, and as
such need to mediate concerns and resolve tussles between
different vendor viewpoints. This tussle resolution covers all
architectural aspects including SLA negotiation, level of
sharing of monitoring information, benchmarking
abstractions, business and economic aspects, etc.

Key future challenges include addressing the need for
dynamic uncertainty management (tracking and decision
making) for workflow event probabilities based on event
monitoring and runtime adaptation of resource provisioning
policies. Here the control loop between service engineering
and service management becomes increasingly important
and will result in a continued blurring between service
design and execution activities.

ACKNOWLEDGMENTS
IRMOS is a collaborative research and development

project supported by the European Commission under the
Seventh Framework Programme FP7/2007-2011, ICT-
2007.1.2. IRMOS started in February 2008 and runs for 3
years.

REFERENCES
[1] IRMOS Project, http://www.irmosproject.eu, 2010
[2] R.Clark, “A Break in the Clouds: Towards a Cloud Definition”, ACM

SIGCOMM Computer Communication Review, Volume 39 , Issue 1
(January 2009),pp. 50-55.

[3] http://www.facebook.com/apps/directory.php, 2010
[4] Amazon SLA http://aws.amazon.com/ec2-sla/, 2010
[5] R. Iyer, R. Illikkal, O. Tickoo, L. Zhao, P. Apparao and D. Newell,

“VM3: Measuring, modeling and managing VM shared resources”,

Computer Networks, Volume 53, Issue 17, Virtualized Data Centers,
December 2009, Pages 2873-2887

[6] T. Yu, B. Zhou, Q. Li, R. Liu, W. Wang and C.Cheng, “The design of
distributed real-time video analytic system”, Proceedings of the first
international workshop on Cloud data management, Cloud-DB 09,
Hong Kong, 2009

[7] K. Kim, A. Beloglazov and R. Buyya, “Power-aware provisioning of
Cloud resources for real-time services”, In Proceedings of the 7th
International Workshop on Middleware for Grids, Clouds and e-
Science, MGC 09, Urbana Champaign, Illinois, 2009

[8] Y. Dai, Y. Xiang and G. Zhang, “Self-healing and Hybrid Diagnosis
in Cloud Computing”, Lecture Notes in Computer Science, Volume
5931/2009, Pages 45-56, Springer 2009

[9] P. Hasselmeyer, B. Koller, I. Kotsiopoulos, D. Kuo and M. Parkin,
“Negotiating SLAs with Dynamic Pricing Policies”, In Proceedings
of the SOC@ Inside’07, 2007

[10] http://www.dft-film.com/software/bones_dailies.php, 2010
[11] S. Gérard, D. Petriu and J. Medina, “MARTE: A New Standard for

Modelling and Analysis of Real-Time and Embedded Systems” by,
19th Euromicro Conference on Real-Time Systems (ECRTS 07),
Pisa, Italy, July 3rd, 2007.

[12] "UML Profile for Modelling Quality of Service and Fault Tolerance
Characteristics and Mechanisms", Object Management Group, 2004

[13] G. Kousiouris, S. Gogouvitis, D. Kyriazis and T. Varvarigou,
Intellegent Mapping of High-Level Application Terms to Resource
Level Attributes In Service Oriented Infrastructures, “unpublished”

[14] PRISM web site http://www.prismmodelchecker.org, 2010
[15] M. Addis, Z. Zlatev, B. Mitchell and M. Boniface, “Modelling

Interactive Real-time Applications on Service Oriented
Infrastructures”, 2009 NEM Summit, ISBN 978-3-00-028953-8

[16] ISONI Whitepaper
http://irmosproject.eu/Files/IRMOS_WP6_7_ISONI_White_Paper_A
LUD_USTUTT_v2_0.pdf, 2010

[17] M. Kessler, S. Braun, K. Oberle and D. Lamp, “Network
Virtualization: Towards a fully virtualized Service Infrastructure”,
Proceedings of International Supercomputing Conference, ISC’09,
Hamburg

[18] T. Cucinotta, G. Anastasi, and L. Abeni, “Real-Time Virtual
Machines”, 19th IEEE Real-Time System Symposium, RTSS 2008

[19] WS-Notification, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsn, 2010

[20] S. Gogouvitis, G. Kousiouris, K. Konstanteli, T. Polychniatis, A.
Menychtas, D. Kyriazis and T. Varvarigou, “Realtime-enabled
Workflow Management in Service Oriented Infrastructures”,
Proceedings of AREA2008 workshop of ACM International
Conference on Multimedia

[21] S. Balsamo, A. Di Marco, P. Inverardi and M. Simeoni, "Model-
Based Performance Prediction in Software Development: A Survey",
IEEE Transactions on Software Engineering, Vol. 30, No. 5, May
2004

http://www.irmosproject.eu/
http://www.facebook.com/apps/directory.php
http://www.dft-film.com/software/bones_dailies.php
http://www.prismmodelchecker.org/
http://irmosproject.eu/Files/IRMOS_WP6_7_ISONI_White_Paper_ALUD_USTUTT_v2_0.pdf
http://irmosproject.eu/Files/IRMOS_WP6_7_ISONI_White_Paper_ALUD_USTUTT_v2_0.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn

	Introduction
	Clouds and Real-Time QoS
	Real-Time Interactive Multimedia Applications
	Paas Architecture for Real-Time Interactive Multimedia Appli
	QoS oriented Service Engineering
	On-Demand Service Management

	EVALUATION
	Conclusions and Future Work
	Acknowledgments
	References

