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Executive Summary

This document is the deliverable D2.2.2 “Public report on Grid infrastructure interoperability
challenges” of the EU IST-2002-511438 SIMDAT project. The document provides an analysis of
key Grid-related interoperability specifications, with a view to defining an adoption policy for
industrial Grid developments.

The document outlines the key challenges confronting specifications initiations and vendors
wanting to develop compliant infrastructure technologies. Each specification is then described,
along with the benefits and considerations associated with their adoption. Following the analysis,
Industrial Grid Profile recommendations are defined that will be implemented in successive
SIMDAT developments.

WS-Addressing provides a standard way to encode context identifiers, and it is proposed that this be
done for all SIMDAT services. However, WS-Addressing also allows a sender to induce a recipient
to transmit a (signed) message to a third party, and to include SOAP headers of the sender’s
choosing under the signature of the intermediary. This is unacceptable in an industrial Grid
environment, and it is proposed that SIMDAT should recognise WS-Addressing specifications for
constructing and addressing messages only for a white-list of address and context identifier
elements.

WSRF uses WS-Addressing to carry context identifiers for specific server-side resources known as
WS-Resources, and specifies an XML document encoding of properties of these resources, plus get,
set and query operations on a WS-Resource. These are used to publish WS-ResourceLifetime data,
which also supports scheduled or immediate WS-Resource destruction. Finally, WS-ServiceGroup
provides a way to create collections of service endpoints characterised by their resource properties,
and to search these collections using resource property queries.

Adoption of resource properties requires security considerations: some properties should have
restricted access, but the access operations select which properties are returned based on input
arguments (query terms), meaning the security policy must be aware of the semantics of resource
properties and query languages. Unless security infrastructure exists to is addressed these concerns
(e.g. by an argument-aware and query language-aware security infrastructure), it is hard to use
WSRF except in a limited way. WS-ResourceLifetime could be adopted but without exposing the
lifetime properties (unless they are the only properties of the WS-Resource), but WS-ServiceGroup
should not be adopted.

WS-Notification (WSN) defines a collection of interfaces for transmitting notification messages
directly between a producer and a consumer using push- or pull-style transfer, plus a specification
for distribution of these messages through a broker, and for defining topics that allow subscribers to
select particular notifications of interest. These specifications use WS-ResourceProperties, and so
depend on how resource properties are secured, although only optional parts of the WSN
specifications have this dependency. The main adoption consideration with WSN defining and
enforcing access policies for notification subscription and message distribution, to prevent
unauthorised access to information through notifications, and possible misuse of notification
producers for denial of service attacks.

Finally, OGSA WSRF Profile 1.0 provides a normative profile for implementing Grid services
using WSRF and WSN, mandating the use of WS-ResourceProperties and WSN in a wide range of
situations. The security policy considerations with WS-ResourceProperties and WSN must be
solved for this to make sense in an industrial context. SIMDAT should therefore aim for basic
conformance to WSREF initially, and later WSN, using conservative security policies for WS-
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ResourceProperties and notification subscription. Each release of the SIMDAT Grid Solution
Portfolio will be accompanied by an industrial Grid profile and an explanation of how why that
profile was chosen.
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1 Introduction

1.1 Purpose

This document is the deliverable D2.2.2 “Public report on Grid infrastructure interoperability
challenges” of the EU 1ST-2002-511438 SIMDAT project.

This document provides an analysis of key Grid-related interoperability specifications, with a view
to defining an adoption policy for industrial Grid developments. The purpose is to understand how
these specifications can be used by industry and commerce where infrastructure that can support
strict but flexible export policies is critical. The document outlines the key challenges confronting
specifications initiatives and vendors wanting to develop compliant infrastructure technologies.
Each specification is described, along with the benefits and considerations associated with their
adoption. Following the analysis, Industrial Grid Profile recommendations are defined that will be
implemented in successive SIMDAT developments.

The intended audience for this document are application and technology developers building Grid-
based systems, interoperability specifications initiatives, as well as the European Commission
Services.

1.2 Scope

Interoperability between Grid infrastructures provided by different vendors is an important
requirement for both end-users and application developers. End-users want to be able to
dynamically discover and bind to services provided by other organisations without having to be
concerned with the underlying Grid technology. Application developers want to be able to provide
problem solving environments at a level of abstraction that allows for interoperation between Grid
technologies at the service interface without having to maintain complex adaptors. Interoperability
is essential if Grid technology is to achieve dynamic and ubiquitous access to heterogeneous
resources in a similar way to how the Internet has enabled the WWW.

The Grid and Web Service communities are working towards this ambitious goal through the
development of various specifications covering all aspects of service integration such as security,
trust, state, notification, etc. In most cases, the specifications are still emerging and changing
rapidly with only a few reaching relative stability through the standardisation process. Adoption in
industrial production environments is rare and initial deployment, to understand how the
specifications can support industrial inter-domain scenarios, is only just beginning.

The deluge of different, complex and sometimes competing specifications has led to various
“profiling” initiatives. A “profile” aims to improve interoperability by identifying a group of related
specifications that can be used together for a specific purpose and adding further constraints to how
the specifications are implemented. This idea originated from a group of leading vendors in the
Web Service community called WS-Interoperability (WS-1). For example, WS-1 Basic Profile 1.0
specifies that only certain transport protocols should be used (even though WSDL can
accommodate others), so that vendors don’t have to implement all possible protocols in their
frameworks. Other profiles are now emerging from the Grid community including the OGSA
WSREF profile, OGF HPC Profile and NextGRID profiles, however, both are work in progress and
compliant systems do not exist today.

In this document we describe the challenges facing businesses aiming to exploit the potential of
service-oriented IT infrastructures by looking at the evolution of standards within the Web Service
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and Grid communities. We then provide an analysis of key Grid-related interoperability
specifications including:

> WS-Addressing ['], which describes the encapsulation and use of a (possibly contextualised)
Web Service address via End Point References (EPR);

> the WSRF [?] collection of specifications, which describes a particular use of WS-
Addressing to access resources via contextualised Web Services;

> the WSN [*] collection of specifications, which builds further on WSRF to define patterns
for transmitting notifications between Web Services;

> the OGSA WSRF profile [*], which defines normative functionality expected of an OGSA-
compliant Grid, building on WSRF and WSN.

The purpose is to understand how these specifications can be used in industrial, B2B scenarios
where infrastructure that can support strict but flexible export policies is critical. Each specification
is described, along with the capabilities and adoption considerations. Following the analysis,
Industrial Grid Profile recommendations are defined that will be implemented in successive
SIMDAT developments.

The analysis provided in this document incorporates conclusions resulting from NextGRID
experiments including security issues with WS-Addressing, and scalability considerations with WS-
ServiceGroup . In SIMDAT, we have widened the analysis to include a set of specifications that
are considered important to industrial Grids, specifically examining the security, operational and
dynamic (semantic) requirements of industrial applications.

! WS-Addressing, http://www.w3.org/Submission/ws-addressing/
2 WSRF 1.2 specification, http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
% WS-Notification, http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn

* OGSA WSRF Praofile, http://www.ggf.org/documents/GFD.72.pdf
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2 Interoperability Challenges
2.1 Background

Today’s businesses need to be agile and flexible in order to adapt to changing market conditions
and increase their efficiency. The Internet has created new opportunities for business partnerships in
a wide range of sectors including engineering, finance, life sciences, media production and
healthcare. Grid computing and the underlying service-oriented architectural (SOA) concepts are
seen as the solution to making these opportunities a reality. SOA based system design promises to
deliver efficient loosely coupled network services, inter-domain business partnerships, and the
potential of new business models.

Interoperability between IT infrastructures remains the key challenge to the success of service-
oriented businesses. History is beset with failed initiatives aiming to make systems integration
between large-scale distributed systems more robust, cost-effective and scalable, for example,
Microsoft’s DCOM [°] and OMG’s CORBA specifications [°]. Both of these approaches adopted an
object-oriented RPC (Remote Procedure Call) communication model and were implemented on
various platforms. However, the reality was that unknown clients connecting to services in an inter-
domain heterogeneous environment was rarely achieved because applications built on DCOM or
CORBA were dependent upon a single vendor’s implementation for higher level services (security,
transactions, etc). Vendors were competing on implementations capabilities and therefore no
motivation existed from a business perspective to achieve interoperability ['].

Web Services first appeared in the late 1990s with the focus on making it possible to create, in
contrast to CORBA, distributed systems that span organisations connected via the Internet. Web
Services are based on a set of open standards supporting the “publish-find-bind” concept from
service-oriented architectures. Three core Web Service standards were defined to support this
process:

> UDDI [?] provides standards for publishing services and for finding them in a directory;

» WSDL [*] describes the functionality provided by the service, the message exchanges
needed to use it, and (separately) its network address and the transport protocols that must
be used for this;

> SOAP [*] describes the format of messages, including elements that describe the service
function required by the sender, and elements that convey data to and from the service.

In the early days, vendors promised interoperability through the use of vendor, platform, and
language independent XML technologies and the ubiquitous HTTP. It should be possible to use
any client framework to talk to any service, but in practice, the standards are so rich that this often

° DCOM, http://www.microsoft.com/com/default. mspx

® CORBA, http://www.omg.org/gettingstarted/corbafag.htm

7 “Is Web Services the reincarnation of CORBA?”, http:/Avww-128.ibm.com/developerworks/webservices/library/ws-arc3/
8 UDDI, http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

® WSDL, http://www.w3.0rg/TR/wsdl

10 SOAP 1.2, http:/iwww.w3.org/TR/soap/

IST -2004-511438 SIMDAT - D2.2.2 Public-1.0 8 of 37



isn’t possible. To overcome this, the leading middleware vendors formed a group called WS-
Interoperability [*'], which defines so-called “profiles” — constrained ways to use Web Service
standards. For example, WS-1 Basic Profile 1.0 [*] specifies that only certain transport protocols
should be used (even though WSDL can accommodate others), so that vendors don’t have to
implement all possible protocols in their frameworks. It also specifies that complex types should be
represented in WSDL and SOAP messages using XML Schema, so implementers can provide only
one mechanism for converting such types to and from messages, etc. The WS-1 Basic Profile 1.0
and WS-I Basic Security Profile are now the de facto specifications for developing Web Services.

In addition to these core profiles defined by WS-I, Web Service standards have been proposed to
support higher-level services such as trust, federation, state, management, notification, orchestration
(workflow), etc. Most are still being discussed at W3C and OASIS. The explosion, conflict and
complexity of the specifications, makes interoperability a difficult target for most vendors.

The most significant battle has been to standardise the protocols for resources, events and
management. The Globus Alliance with IBM and others launched a new collection of standards
called the “Web Services Resource Framework” (WS-RF) in 2004, part of which (concerned with
notification) was later decoupled to become “WS-Notification”. These proposals were made to
OASIS, built on existing and emerging Web Service standards, and were seen as a key step that
allows convergence between Web Services and the Grid by supporting applications that require
services to support stateful long-running activities. However, although WSRF was ratified by
OASIS in Spring 2006 and is compatible with wider Web Services standards (and their likely future
development), it was somewhat controversial. Key vendors, Sun and Microsoft, did not back the
proposals and went another direction. Sun launched the Web Services Composite Application
Framework (WS-CAF) [**] which included WS-Context (WS-CTX) for providing a common
mechanism for managing and sharing context information between Web Services, whilst Microsoft
adopted a similar, but lightweight approach to WSRF, submitting different specifications WS-
Transfer and WS-Eventing specifications to the W3C.

The split between the different factions made developing and standardising higher-level application
services very challenging. Vendors have to understand the specifications in detail to decide how
they support application requirements but importantly they need to make a judgement of the
longevity of each initiative. For example, groups working on the OGSA [**] are defining a set of
specifications profiles for Web Service protocols to support Grid capabilities such as execution
management, data transfer, etc. The profiles are largely based on WSRF, however, there are
exceptions. For example, OGSA-BES [*] does not mandate an underlying resource specification
and tries to support both WSRF and WS-I implementations of job services. Building these higher-
level application specifications on such a fragile foundation makes interoperability of application
level services through standards compliance almost impossible.

Fortunately, the major vendors (HP, Intel, Microsoft, IBM) realised that the dispute needed to be
resolved for the greater good and published the WS-Convergence white paper detailing a roadmap

1 WS-1, http://www.ws-i.org/

12 Ws-Basic Profile, http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
13 WS-CAF, http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf

14 OGSA, http://www.globus.org/ogsa/

15 OGSA-BES, https://forge.gridforum.org/projects/ogsa-bes-wg/
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for converging these specifications over the next 24-36 months (2006 — 2009) [*°]. All four vendors
promise to deliver products that support these specifications and IBM commits to influence the
OASIS WSREF technical committee to refactor the WSRF specifications into extensions that build
on WS-ResourceTransfer and the OASIS WS-N technical committee. The white paper does not
include Sun and WS-CTX looks likely to fade away.

The road map consists of three sections covering resources, events and management. Figure 1
shows how the existing specifications stack from OASIS and W3C/DTMF will be converged. WS-
Transfer and WS-Enumeration is proposed as the base for resource management whilst two new
specifications, WS-Transfer Addendum and WS-ResourceTransfer, are proposed. In summary:

» WS-Transfer Addendum will extend WS-Transfer to add support for WS-Addressing
endpoint references

» WS-MetadataExchange v1.1 will build on WS-Transfer and WS-Transfer Addendum in
place of its current domain-specific protocol

» WS-ResourceTransfer builds on WS-Transfer, WS-Transfer Addendum, WS-Enumeration,
and WS-MetadataExchange, providing sophisticated resource management capabilities
comparable to those of WSRF

Management Specification

k WS-EventMotification
1 3
| \ WS-ResourceTransfer

ETEER WS-TransfgrAddendum
Ex ange1 1
1} T
[ WS T)ﬁmsfer ﬂWS Enh\eratlon
‘ \ {

WS NN
\ |
=\

LW |

WS:Eventing

‘ WS-ServiceGroup ‘ ‘ WS- Nol\jcat\cn |

WSRF ‘ WS-ResourceLifetime

WS-Ba SFFau\ts

‘ WS&{nagemem \1

l WS-Transfer

‘ WS-Resource ‘ ‘ WS-ResourceProperties WS-Enumeration | | WS-Eventing

‘ WS-Addressing |

WSDMWSRF (OASIS) 'WS-Management (W3C and DTMF)

Figure 1: WS-Convergence of resource, events and management specifications

The event processing roadmap proposes using WS-Eventing for event processing. A new
specification called WS-EventNotification has been proposed that integrates many of the WS-
Notification capabilities. WS-EventNotification builds on WS-ResourceTransfer to support
resource management of subscriptions. The management roadmap proposes the development of a

16 “Toward Converging Web Service Standards for Resources, Events, and Management” http://msdn.microsoft.com/library/en-
us/dnwebsrv/html/convergence.asp?frame=true
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new management specification that builds on WS-EventNotification and WS-ResourceTransfer.
The new specification will replace both WSDM and WS-Management [*'].

The Web Service and Grid communities are moving slowing towards supporting the ambitious goal
of defining open specifications that can support the demands of Internet-based service-oriented
businesses. From a technical perspective, Web Service interoperability can be divided into three
main layers transport, management, application and content:

» The transport layer is concerned with protocols for exchanging messages among
participants (e.g., HTTP, SOAP, XML).

» The management layer is concerned with enforcing policies for creating, accessing and
monitoring resources in accordance with the terms and conditions of the participants.

» The content layer is concerned with defining protocols and message structures for accessing
information resolving semantic and structural heterogeneity issues of information assets in
order to achieve integration of data formats, data models, and languages.

The early initiatives from WS-I focused on the transport layer allowing products from different
vendors to exchange XML messages using the SOAP protocol. WS-I is now widely adopted and
supported by both commercial and open source products. Interoperability matrices have been
published that demonstrate interoperability based on WS-I. Programmers can now develop clients
and services in different frameworks that can seamlessly interoperate at the Web Service transport
layer; as long as they follow a few simple coding best practices [*°].

The focus has now moved to providing open specifications for the management layer building on
the work from WSDM/WSRF and WS-Management. The fact that both camps are willing to work
together on convergence has similarities to the WS-I initiative and there should be optimism about
the group reaching a sensible conclusion even though the timescales are reasonably long.

2.2 The Future Challenges

Reviewing the lessons from history, there are important conclusions we can draw from the Web
Service and Grid interoperability efforts over recent years.

The business drivers must be right: It is essential to understand the business drivers behind any
interoperability initiative. Businesses are demanding infrastructure that can support Internet-based
business partnerships. No single solution will rule and leading technology vendors have recognised
the market-potential for products that can work together in underpinning this new economy.

The lessons from CORBA show that vendors were competing on capabilities rather than working
towards open specifications. This has similar parallels to the current status of the Grid middleware
technologies where many different open source solutions exist each claiming to support inter-
domain distributed collaborations. Even though all technologies are now based on Web Services
and many on WSRF, the differences in management and application capabilities means
interoperability cannot be achieved today. In addition, most solutions are driving for better features
(more flexible management, faster data transfer, etc) to define their market position in a period
where consolidation may be needed.

17 «“The View from the Bow”, Anne Thomas Manes, March 2006, http://atmanes.blogspot.com/2006/03/ws-convergence.html

18 http://msdn.microsoft.com/msdntv/episode.aspx?xml=episodes/en/20050210webservicessg/manifest.xml
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Many of the challenges for cost effective, secure and robust collaborative working using Grid
technologies are still a matter of research even though early adopters within industry are exploring
the potential of the technology within their business. The instability of the management layer, a key
infrastructure capability for inter-domain collaborations, will cause vendors to base medium term
developments on existing commitments to specifications such as WSRF or WS-Transfer. They are
unlikely to commit to implementing further interoperability specifications such as WSDM when
they will be superseded over the next couple of years by WS-Convergence. The current business
value proposition for interoperability is not viable for most Grid vendors who do not want to
compromise technological advances to achieve it, considering the level of instability with the
current specifications.

Interoperability requires stable standards and specifications: Many different communities are
working to solve the challenges of large-scale distributed computing (ebXML, OGF, W3C, etc).
Each community is creating proposals that address similar capabilities (trust, security, management,
orchestration) which results in standards that evolve and will continue to evolve very rapidly.
Hitting such a moving target is a difficult task for vendors trying to use these standards to achieve
interoperability between applications and processes. True compliance and interoperability testing
can only be achieved when a standard has reached stability. In the face of immature standards a
vendor should track the changes, focus on their customer requirements rather than interoperability
and implement solutions in the spirit of leading approaches.

Beware of competing proposals from major vendors: When vendors come together to create
implementations that embrace the spirit of open specifications and the correct business drivers exist,
interoperability initiatives can be successful. Where there are conflicts between major vendors
adopting specifications can be very risky and may result in expense re-factoring efforts. We see
examples such as the emergence of BPEL from XLang and WSFL and now the WS-Convergence
initiative. In such situations, there is usually a compromise allowing each group to demonstrate how
earlier initiatives contribute to the new specification(s). In most cases, competing specifications
from major vendors can be considered immature rather than de-facto standards. The likelihood of
achieving interoperability based on competing specifications is limited. Adoption should be based
on using a specification to meet the needs of customer requirements rather than interoperability.

Know the limits of largely academic initiatives: The centre of power in the standards space is with
the major software vendors. The influence academic initiatives can have on new standards is limited
because of the influence these large vendors have on the overall IT market is very large. Academic
initiatives can contribute to the overall progress but these contributions are largely observed by
commercial vendors rather than embraced within software products. GGF (now OGF) was a
specifications organisation working on supporting the distributed computing needs of the Grid
community, largely contributed to by academic organisations. However, few interoperable systems
exist today and significant events over the last few years have demonstrated the limits of GGF’s
power. The initial OGSA/OGSI proposals in 2003 [*] were not accepted by the wider Web Service
community and now WSRF will be superseded through commercial vendors actions. The fact that
GGF achieved ratification of WSRF by OASIS was an excellent achievement but, although some
concepts will remain, the specification is now not considered the solution. The alliance between
EGA and GGF to create OGF does bring in more commercial interests into the specifications
process but we should wait to see the levels of engagement from commercial vendors and of course
only history will judge if specifications developed are successful.

19 «A developer's overview of OGSI and OGSI-based grid computing” http://www-128.ibm.com/developerworks/grid/library/gr-ogsi/
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3 Industrial Grid Profile Analysis

The following section provides an analysis of key Grid interoperability specifications for the
purpose of understanding an adoption policy for industrial applications. With the recent WS-
Convergence announcement, the management standards space will change significantly over the
next few years and existing projects and solutions need to decide on an adoption policy that meets
current requirements and does not hold back the evaluation and adoption of Grid technologies by
business. Therefore, the following analysis should be considered relevant for adoption over the
medium term (12-18 months) whilst the new management specifications emerge.

3.1 WS-Addressing

WS-Addressing was originally designed as a way to convey connection state or context in SOAP
messages, emulating the contextualisation mechanism provided by HTTP headers in conjunction
with stored cookies. This makes it possible to contextualise message exchanges in a similar way,
independently of the transport used.

To support this, WS-Addressing provides a schema for an “endpoint reference” (EPR), which can
be used to specify where the response should be sent, and the context headers that should be
attached (specified within the endpoint reference through “reference parameters”). The endpoint
reference can thus convey a fully qualified and contextualised message destination, and is starting
to be used not only to specify the headers needed in a reply, but also to specify onward routing
destinations and headers. In this case, the reference parameters are supposed to be treated as
opaque by the initial recipient, who is obliged to simply transcribe any reference parameters into the
SOAP header of the forwarded message.

<Header <Header
To:B To:C
ReplyTo:C{v:14} v:14
Counter:27 Status:Off
> >
<Body1> <Body2>
Sender Service | Service
A B C

Figure 2: WS-Addressing using ReplyTo with reference parameters

Thus in the above figure the ReplyTo header in the message from A means B should insert the
header “<v>14</v>" into its response (abbreviated to “v:14” in the diagram), and send this response
to C (not A). Note that B can insert their own headers (e.g. “<Status>Off</Status>") if desired, but
C cannot tell that this header was chosen by B while the other was not.

Several contributors objected to this behaviour, pointing out that this mechanism can force a
recipient of a SOAP message to send a message to an arbitrary destination with arbitrary headers.
See for example the objection submitted by Anish Karmarkar and others on 19 May 2005, which
describes a number of unwanted consequences of opaque header generation in the SOAP binding of
WS-Addressing reference parameters. Suppose C in Figure 2 was a service provided by your bank,
and B was one of your trusted suppliers. If A sent a message to B including reference parameters
“<Account>YourAccount</Account><Debit>£14<Debit/>”, would you want B to construct the
WS-Addressing mandate response, sign it, and send it to your bank (Figure 3)?

IST -2004-511438 SIMDAT - D2.2.2 Public-1.0 13 of 37



<Header <Header

To:B To:C
ReplyTo: account:6
C{account:6, debit:14
debit:14} Status:Off
Counter:27 >
> <Body2>
<Body1>
A R B R C
(Not Trusted) (Trusted) (Bank)

Figure 3: Malicious use of WS-Addressing

Several solutions were proposed, but the one adopted in the Candidate Recommendation of Aug’05
simply mandated that a WS-Addressing type attribute be used to indicate header elements generated
from an EPR, and that the “must understand” attribute never be set for such headers. The
specification also allows a service to refuse to process an EPR fully if it is not satisfied that to do so
would be safe. For example, the specification suggests that this might be determined by
authenticating the issuer of the EPR, and processing it only if it comes from a trusted source.

Finally, note that WS-Addressing only forces services to construct a response from an EPR when it
is included in a WS-Addressing ReplyTo or FaultTo header element. EPR can also be conveyed to
or from a service by other means, in which case the recipient may (but is not required) to use them
for contextualised addressing of responses or subsequent messages as though they were sent in the
WS-Addressing headers. In practice, this is how WS-Addressing is most often used in Grids. Of
course, it doesn’t matter how the EPR is transmitted, the problems described here arise whenever an
EPR is used to generate context headers for an outgoing signed SOAP message.

Analysis by the NextGRID project has shown that the solution from the August 2005 specification
is not satisfactory. Firstly, allowing recipients to ignore WS-Addressing obligations at will means
the specification cannot guarantee interoperability. Furthermore, the above attack using reference
parameters can also be committed using Address elements in an EPR. For example, the address for
C in Figure 2 could be set (by A) to “https://yourbank.com/debit?amount=14", causing B to send a
message that achieves the same effect. A may even be able to gain access to protected information
by specifying C="http://yourbank.com”, causing B to send a message to C without transport-layer
security.

Unfortunately, signing over messages and headers does not really solve the problem. If A signs its
message to B, this would allow B to tell it came from A, including the ReplyTo header. B may then
decide to go ahead and construct a response as specified by A’s ReplyTo header, converting
reference parameters into full SOAP header elements and sending the resulting message to C. Only
B can then bind this header to the message by signing over it, so C can only tell that the response
came from B. C cannot tell if B understood the header elements, nor who originally specified them.
Thus B’s signature can no longer be taken to mean B intended the meaning implied by all parts of
its message, but only that B constructed the message to C, including some headers specified by a
third party whose identity cannot be verified by C.

If C wanted to know which headers B really did understand, B could insert more attributes, but this
is not specified by WS-Addressing so interoperability could no longer be guaranteed. B could
insert a second message-level signature covering only the headers it inserted, but this would conflict
with the WS-Interoperability Basic Security Profile, which says there should only be one signature
to identify the sender of a message. (Multiple signatures would in any case create a semantic
interoperability problem, as applications would have to decide the meaning of each signature). B
could of course apply a single signature covering only the headers it originated or understands.
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However, this would leave the remaining “opaque” headers from A open to tampering en-route
between B and C.

Given this, there seems to be only two “reasonable” policies to take regarding the use of WS-
Addressing:

» Recipients (B in Figure 2) can constrain where a response generated from an EPR can be
sent (e.g. only back to the original sender) so that those who trust them (e.g. C) cannot be
induced to act on messages specified by a possibly less trusted third party (e.g. A).

» Recipients can constrain which reference parameters or HTTP arguments from an EPR they
are willing to handle, e.g. by using a blacklist of “unsafe” opaque element names, or a
whitelist of “understood” element and argument names.

It is also possible to apply both policies at the same time, constraining both the destination and the
header content of any response messages dictated by WS-Addressing.

The second policy would allow A to specify some information in the message from B to C, but B
would be able to filter out elements B thought unsafe (using a blacklist) or that B did not understand
(using a white list). Clearly, a blacklist provides greater interoperability, as services and clients can
use any elements not on the blacklist. Using white lists means close coupling between provider and
consumer, as consumer needs to know before using a service which reference parameters a service
is going to use and service providers cannot easily move to a different set of reference parameters as
all clients would need to be notified. However, a blacklist is less secure as it depends on the service
operator identifying and blacklisting ALL unsafe elements, or else weakening the guarantees
implied by their signature over responses. With a white list, B could sign over the whole response
message and signify by this that they understand and vouch for its entire content. It may be
significant that in HTTP a white list is used restricting HTTP context headers to a small number of
cookie types.

Clearly, if an EPR is sent by some other means (not in a WS-Addressing ReplyTo or FaultTo
header), the recipient is not obliged by WS-Addressing to do anything with it. However, the above
policies can also be used if such an EPR were used to generate new messages in the conventional
fashion.

3.2 Web Service Resource Framework
3.2.1 Overview

The Web Service Resource Framework (WSRF) was the latest attempt by the OGSA to achieve
convergence between the Web Service and Grid communities. WSRF is a collection of related
specifications intended to define a generic and open framework for modelling and accessing stateful
resources using Web Services. WSRF 1.2 has been ratified by the OASIS technical committee.
WSRF was developed in partnership with some members of the wider Web Services community
and this has helped with acceptance of the proposals outside of the Grid community.

WSREF has been largely adopted by the Grid community with various solutions implementing either
part or all of the specifications. However, as discussed in Section 2.1, WSRF was one of several
competing proposals for treating state and stateful resources encapsulated in Web Services and,
although will remain within Grid solutions for a couple of years, WSRF will be replaced by the
results of WS-Convergence.
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3.2.2 WS-Resource

The core WSRF specification is Web Service Resource (WS-Resource), which is currently a draft
published by OASIS for public review. A WS-Resource is defined as:

» A WS-Resource is the composition of a resource and a Web Service through which the
resource can be accessed.

The basic characteristics of a WS-Resource as defined by the specification are as follows:

» references to WS-Resources are represented using WS-Addressing EPR, each of which must
refer unambiguously to exactly one WS-Resource;

» the properties of a WS-Resource must be expressed as an XML infoset described by XML
Schema and accessible according to the WS-ResourceProperties specification;

» the WS-Resource may support the WS-ResourceLifetime specification; and

» faults generated by a WS-Resource should conform to the WS-BaseFaults specification, and
use the WS-Addressing action http://docs.oasis-open.org/wsrf/fault.

The first of these requirements simply defines a profile for using WS-Addressing, and implies that
one can encode SOAP messages to address a WS-Resource unambiguously by inserting SOAP
headers based on an EPR according to the procedures defined in WS-Addressing. This implies that
the WS-Resource can be distinguished by the EPR address element (when only one resource is
available at the specified endpoint address), or by the address in conjunction with the EPR reference
parameters (which distinguish between different resources available through a single service at the
specified address). This is consistent with other uses of message context (including the familiar
HTTP cookie mechanism) to indicate that requests should be processed with reference to a specific
logical resource managed by a service.

The remaining requirements impose further constraints, which will be discussed in the following
sections on the WS-ResourceProperties, WS-ResourceLifetime and WS-BaseFaults specifications.

3.2.2.1 Adoption Considerations

WS-Resource EPRs must comply with the WS-Addressing profile. The need to constrain EPR
reference parameters and addresses in WS-Addressing means that the elements used to characterise
and refer to WS-Resources must also be constrained.

3.2.3 WS-ResourceProperties

The WS-ResourceProperties specification defines how properties of a resource accessed via a WS-
Resource should be described and accessed. The properties must be presented to an accessor in a
resource properties document, which is an XML infoset specified as a document type in the WSDL
describing the WS-Resource.

The WS-Resource must support access to the resource properties using operations defined in its
WSDL, and corresponding WS-Addressing action headers. The operations are shown in Table 1.
Each operation is associated with a separate PortType, and apart from GetResourceProperty each
operation is optional. The specification goes on to define a way of using WS-BaseNotification and
WS-Topics to provide notification of any resource property document changes to subscribing
notification listeners.
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Operation

Description

GetResourceProperty(name)

Returns the resource property specified by the gname
“name”, or a WS-BaseFault. This operation MUST be
supported by every WS-Resource.

GetResourcePropertyDocument

Returns the resource property document, or a WS-
BaseFault.

GetMultipleResourceProperties(name+)

Returns the resource properties specified by the list of
gnames “name+”, or a WS-BaseFault.

QueryResourceProperties(query)

Returns the resource properties whose gnames fulfil the
specified “query”, or a WS-BaseFault. The query can
be described in any suitable language, but all WS-
Resource must support XPath queries.

PutResourcePropertyDocument(infoset)

Updates the resource properties document to the
supplied “infoset”, if possible.

Returns an infoset containing the updated elements of
the resource property document, or an empty infoset if
the update was 100% successful, or a WS-BaseFault.

SetResourceProperties(insert*,
delete*)

update*,

Updates the resource properties document by inserting,
updating or deleting the specified elements. Returns an
empty response or a WS-BaseFault.

InsertResourceProperties(insert*)

Updates the resource properties document by inserting
the specified elements. Returns an empty response or a
WS-BaseFault.

UpdateResourceProperties(update*)

Updates the resource properties document by updating
the specified elements. Returns an empty response or a
WS-BaseFault.

DeleteResourceProperties(delete*)

Updates the resource properties document by deleting
the specified elements. Returns an empty response or a
WS-BaseFault.

Table 1: WS-ResourceProperties interface

3.2.31 Adoption Considerations

Resource properties break the normal encapsulation patterns found to be most successful in e-
Commerce Web and Web Service applications. Resource properties provide semantically opaque
access to stored attributes of a resource. Allowing consumers to access WS-ResourceProperties
exposes them to possible interoperability problems when their service providers make changes,
which can lead to application fragility. One solution to the application fragility problem is to simply
deny access to all resource properties except where:

> the resource property in question is defined by a stable and widely adopted Web Service
specification, such that all clients and providers can be expected to understand it; or
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» the request comes from an application that is maintained together with the WS-Resource, so
that changes in resource properties can be handled by changing the application.

Fundamentally, service providers should not change syntax and semantics of resource properties
that have been published to clients unless these changes can be encapsulated. Note that the second
criterion is not met if the application and the WS-Resource are written by the same organisation,
since different deploying organisations are unlikely to upgrade at the same instant. The application
must normally also be deployed by the same organisation as the WS-Resource. In effect, this
means WS-ResourceProperties should only be accessed by the service provider hosting the WS-
Resource.

The specification does not exclude concurrent access to a resource properties document. The
specification points out that it may be necessary to define transactional characteristics for
concurrent access, but does not say how this should be done. This means that a requesting
application must be aware of the semantics and representation of the properties of a resource,
including any mechanisms for resolving concurrent access conflicts, in order to use and set resource
properties correctly. This is important for all Web Services that have multiple operations updating
stateful resources, however, existing Web Service specifications work on the principle of “stateless”
interactions whereas WSRF is explicitly stateful and should address transaction concerns.

Access control restrictions for resource properties are undefined. If any of the stored attributes of
a WS-Resource are subject to access control restrictions, then the security mechanisms to enforce
this must also understand the semantics and representation of the properties, and possibly also of
any query language used to retrieve them. Since all resource properties are accessed via the same
WSDL operations the security infrastructure must take into account all elements of the request to
work out which properties were being requested before deciding whether the request is authorised.
No implementations exist to achieve this in a service-independent way. The only simple way to
support different access constraints for each resource property is to support only the mandatory
GetResourceProperty operation, so applications cannot insert or change the values of resource
properties, and so that the target of each request is unique and easily extracted from the request
document. Other WS-ResourceProperties access methods cause complications, and the most
general QueryResourceProperties method, which can process arbitrary queries, is the most difficult
to deal with. As no general infrastructure policy implementations exist for this operation it can only
be secured by applying the policy in the method implementation either through a database view or
by filtering the result set after the query has been executed

To address the encapsulation and access control problems identified above in a simple way, the use
of WS-ResourceProperties must be constrained. There are three basic options:

» specify that the “conversational” resources can have no resource properties, so that all the
methods return faults in all cases;

» allow access to the mandatory GetResourceProperty method of WS-ResourceProperties
only, with a fixed set of “well-known” properties for each WS-Resource, and an access
policy for each property; or

> restrict access to WS-ResourceProperties to the host provider of the WS-Resource, thus
containing any interoperability problems, and allowing a simple, uniform security policy for
all resource properties and access methods.

The first of these options is the simplest, but also the most restrictive as it precludes the use of other
specifications that build on the wider WS-ResourceProperties. The second option works by
preventing resource property insertions (so that a fixed access policy for well-known properties can
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be used), but this also prevents the use of specifications that depend on manipulating the resource
property document. The last option allows all of WS-ResourceProperties to be used, including
specifications that build on this, but only within the host provider of the WS-Resource.

3.2.4 WS-ResourceLifetime

The WS-ResourceLifetime specification defines a mechanism for destroying a WS-Resource, either
on request by a client or at a scheduled termination time:

Operation Description

Destroy Returns an acknowledgement, or a WS-BaseFault if the
resource is not destroyed or is unknown to the service.

SetTerminationTime(time | duration) Returns an acknowledgement, or a WS-BaseFault if the
termination time of the resource cannot be changed, or
the resource is unknown to the service.

Table 2: WS-ResourceLifetime interface

Each operation makes up its own PortType, and both operations are optional. In addition, a WS-
Resource that supports WS-ResourceLifetime must provide two read-only resource properties:

> the current time kept by the WS-Resource; and

» the current termination time for the WS-Resource (with a Boolean attribute indicating if the
WS-Resource has no set termination time).

3.2.6.1 Adoption Considerations

Accurate clock comparison mechanisms are not defined. The “current time” resource property is
provided so that a client can interpret the “current termination time” even if the clocks of the client
and WS-Resource service are not synchronised. However, this can only be used to detect very
gross discrepancies, due to the inevitable (and variable) network delays. WS-ResourceLifetime
does not specify any mechanism for an accurate clock comparison.

WS-ResourceLifetime depends on the adoption policy for WS-ResourceProperties. The usefulness
of WS-ResourceLifetime is constrained according to the option chosen for addressing problems
with resource property access (See section 3.2.3):

WSRF-RP Option Impact on WS-ResourceLifetime

No resource properties. | WS-ResourceLifetime could not be supported, as the mandatory current
time and current termination time properties would not be available.

It would still be possible to adopt the WSDL port types for operations to
destroy a WS-Resource, but extra operations would be needed if users
require access to the current lifetime properties of a WS-Resource.

Properties accessible to | WS-ResourceLifetime could be adopted in full, but the current lifetime
the host provider only. | properties would not be accessible outside the host provider. Extra
operations would be needed if users require access to the current lifetime
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properties of a WS-Resource.

Read-only access rights | WS-ResourceLifetime could be adopted in full.
defined per property.

Table 3: WS-ResourceLifetime adoption options

WS-ResourceLifetime does not support the full resource lifecycle. The WS-ResourceLifetime is
also said to support resource lifecycles, but this is not so. It only provides a set of destruction
mechanisms, and a way of obtaining the (approximate) scheduled termination time. Some
“custom” WSDL methods will usually be needed to support other lifetime events such as WS-
Resource creation.

3.2.5 WS-ServiceGroup

The WS-ServiceGroup specification defines a Web Service that maintains heterogeneous
information about a collection of WS-Resources. The main use of WS-ServiceGroup is the
implementation of a soft-state registry of Web Services, in which WS-Resources can also register
their resource properties. A summary of service group concepts are given below:

» ServiceGroup (identified by a ServiceGroupEPR) is a WS-Resource that aggregates
information through resource properties operations from a collection of member Web
Services, that themselves can be WS-Resources;

» ServiceGroupEntry is a WS-Resource describing the association of a member Web Service
(identified by a MemberEPR) with a Service Group;

» ServiceGroupEPR is an EPR referring to the ServiceGroup to which the member Web
Service belongs;

» MemberEPR is an EPR referring to the member Web Service itself;

» Content contains elements describing the membership of the Web Service in the
ServiceGroup.

If the member Web Service is itself a WS-Resource, the Content resource property may include an
RPDoc child element quoting the resource property document of the member service. Note that in
this case, the contents of the RPDoc child element should track any changes in the member
service’s resource property document.

The WS-Resource providing access to a ServiceGroupEntry must provide access to its properties.
It should also support WS-ResourceLifetime (allowing the destruction of ServiceGroup
membership associations) and the NotificationProducer interface from the WS-BaseNotification
specification with a WS-Topic for notifying changes in the Content resource property.

The ServiceGroup provides resource properties describing the group and its members:

» MembershipContentRule: specifies as attributes the list of interfaces that must be supported
by members of the ServiceGroup, and a list of XML Schema global element declarations
that must be present in the Content resource property of the ServiceGroupEntry for each
member.
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» Entry: one per member service, providing the contents of the ServiceGroupEntry resource
properties document for that member.

The WS-Resource providing access to the ServiceGroup should also support WS-ResourceL ifetime,
and implement a policy for the destruction of associated ServiceGroupEntry resources when the
ServiceGroup itself is destroyed.

Operation Description

Add(member, content, [timeout]) Creates a ServiceGroupEntry for the service referred to
by the member EPR, with an associated Content given
by the content argument, and an optional termination
time specified by timeout (if present).

If successful, the ServiceGroup should respond with an
EPR for the ServiceGroupEntry created, along with its
termination time and the ServiceGroup’s current time.

Table 4: Service Group registration interface

A ServiceGroup WS-resource may be extended by adding the ServiceGroupRegistration operation
(see Table 4). If successful, the ServiceGroup should respond with an EPR for the
ServiceGroupEntry created, along with its termination time and the ServiceGroup’s current time.
There is no “Remove” operation, presumably because this can be implemented by destruction via
WS-ResourceLifetime methods of the corresponding ServiceGroupEntry resource, or of the
ServiceGroup itself. Finally, a ServiceGroup may optionally support WS-BaseNotification to
provide notification of changes in its composition. In that case, it is obliged to support
EntryAdditionNotification and EntryRemovalNotification topics using message types defined by
WS-ServiceGroup.

3.25.1 Adoption Considerations

WS-ResourceLifetime depends on the adoption policy for WS-ResourceProperties. WS-
ServiceGroup does not specify a query mechanism but uses the QueryResourceProperties
mechanism from the WS-ResourceProperties specification that is used to submit arbitrary queries
on the resource properties document of the ServiceGroup. Consequently, WS-ServiceGroup
functionality depends on the adoption policy for WS-ResourceProperties:

WSRF-RP Option Impact on WS-ServiceGroup

No resource properties. | WS-ServiceGroup would be unusable.

Properties accessible to | WS-ServiceGroup could be supported in full, but only co-located WS-
the host provider only. | Resources could be registered, and queries could only be submitted by
the host provider.

Read-only access rights | WS-ServiceGroup can only be implemented if a security handler existed
defined per property. that could enforce policies for complex queries targeted at the
ServiceGroup resource properties documents

Table 5: WS-ServiceGroup adoption options
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Enforcing a security policy for service group content based on member’s policies cannot be easily
achieved. The service group policy infrastructure would need to enforce access restrictions on
service group content. If a policy infrastructure could be devised to understand the semantics of
QueryResourceProperties, requests policy decisions could be enforced at the service group.
However, it would be extremely difficult to enforce the security policies of member WS-Resources,
unless the service group policy was also dynamically derived from member policies.

Synchronisation strategies between service group content and member’s resource properties
documents are not specified. WS-ServiceGroup does not specify how content aggregated from a
collection of Web Services should be synchronised, or how far out of date a ServiceGroupEntry
may become, or what mechanisms (if any) should be used to minimise problems caused by any
delay.

3.2.6 WS-BaseFault

The WS-BaseFault specification defines an XML Schema type for base faults, along with rules for
how this base fault type is used and extended by Web Services. The BaseFault type contains the
following:

» asingle, mandatory Timestamp element giving the time at which the fault occurred,

» an optional OriginatorReference element giving the WS-Addressing EPR for the generating
service;

» an optional ErrorCode element providing a legacy error code, and a dialect attribute URI
denoting how this legacy code should be interpreted;

» one or more Description elements each carrying a plain language string intended to be
intelligible to the user;

» an optional FaultCause element containing another BaseFault describing the underlying
cause, allowing a causal chain of faults to be described;

» extension elements as required by the implementor.

A BaseFault does not include any “type” attributes, so faults that have distinct semantics must be
described by extending the BaseFault type. It is intended that an operation may only return faults
that have the BaseFault type defined in the WSDL, or a more refined type.

The example SOAP 1.2 encodings indicate that a BaseFault message should be encoded in the
Detail element of a SOAP fault. The BaseFault therefore provides a way to classify SOAP faults
and endow them with some meaning that can be related to the faulting service.

3.2.6.1 Adoption Considerations

Existing legacy services need to be re-factored or wrapped. The only problem with WS-BaseFault
is that all the WSRF specifications including WS-Resource indicate that a WS-Resource must
respond with a BaseFault if an error occurs. This means that one cannot easily add WSRF
functionality to a legacy service that uses other types of SOAP faults.
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3.3 WS-Notification
3.3.1 Overview

The WSN family of specifications were originally developed to fulfil the need identified by many
members of the Grid community for notification messages to be passed between components of a
Grid infrastructure. This requirement was originally motivated by the fact that Grid applications
tend to be computationally complex, and tend to require long execution times even on high-end
computing platforms. Short-lived computations can easily be wrapped in a single remote procedure
call, using the TCP/IP connection to carry the call and response between the invoker and the
service. However if a long-lived Grid applications is wrapped in this way, the interval between the
call and response is likely to exceed the lifetime of the TCP/IP connection. This may simply be
because the calling application cannot be left running that long, but it is also common for the
intervening network to kill connections if there is no activity for a reasonable period, to prevent
“dead” connections using up all the assignable ports.

Request reaches service
via firewall tunnel opened
to the host server.

\
\
i

[lemalid4/i8inoy 1vN

Firewall

-

Response blocked by
firewall, unless over a
connection initiated by
the client.

Figure 4: Firewall interference in UDP notification traffic

The original solution to this problem, which dates back to early distributed computing over local
area networks, was to pass notification messages from the service to the invoker using a datagram
transport such as UDP. This has the advantage that a stateful connection is not required between
the two ends, so the traffic is less likely to fail because of client application or network timeouts.
The down side of this approach is that the client and service must be mutually addressable over IP,
and willing to accept UDP packets sent direct from one to the other. In practice, services can
usually be configured to allow this, but client application users are often behind firewalls, as shown
in Figure 4.

Typical firewalls are configured to allow internal machines to initiate connections to external
servers, often using Network Address Translation so the client doesn’t even need an Internet-
accessible address. Because such machines cannot even be addressed from outside their local
network, it isn’t possible for the server to send back a response unless it uses an existing connection
set up by the client. Most firewalls also block incoming connections even to machines that have
Internet-reachable addresses, except to well-maintained servers that provide standard services like
email and web applications.

This is one of the reasons why Grid users often have difficulty making the software work. The
typical end user is not in a position to have an Internet-accessible address assigned to their machine
and firewalls and other gateway devices configured to allow external access to it. If this is done,
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their machine will certainly be subject to countless, mostly automated intrusion attempts. Typical
network administrators are not in a position to ensure these user-managed systems remain secure
against such attacks, which means they become weak points in the organisational security
infrastructure, and access normally has to be closed down if an intrusion is suspected.

The migration of Grid infrastructure to a Web Service platform was partly motivated by the idea
that web traffic would be more “firewall friendly”. However, opening any direct access to a user’s
workstation carries considerable risk, and cannot be done even for web traffic if the user’s machine
accesses the Internet via a NAT device. The WSN specifications are being developed within
OASIS to standardise the pattern of message exchanges needed to send notifications between
systems using Web Services, and to provide ways to do this that can work in both directions even
between NAT and firewall-protected systems.

3.3.2 WS-BaseNotification

3.3.2.1 Scope

The simplest WSN specification is Web Services Base Notification (WS-BaseNotification) which
was approved by the OASIS technical committee in July 2006. The specification defines a
“publish-subscribe” pattern for transmitting notification messages between a NotificationProvider
and a registered NotificationConsumer.

3.3.2.2 Push-style notification
The NotificationConsumer interface defines a Notify message structure, which can contain one or
more NotificationMessage elements, each containing the following information:

» an optional subscription reference giving the EPR of the service through which the
NotificationConsumer registered an interest in this notification;

» an optional topic element, defining the topic (and dialect) to which this notification message
is related,;

» an optional producer reference, giving the EPR of the WS-Resource that generated the
notification;

» amessage element containing the notification itself, whose content is application related and
not defined in the specification;

» further elements that may be inserted to support extensions to WS-BaseNotification.

A notification consumer may choose to support “raw” notification, in which application specific
messages are delivered to it in their native format, or a WSDL operation to handle receipt of the
Notify message format (with no response), or both.

Notification producers produce notification messages, and must support the NotificationProducer
interface, which provides two operations as shown in Table 6. In addition, the NotificationProducer
may support the WS-ResourceProperties specification, and if so make available the following
ResourceProperties:

» zero or more TopicExpression elements, indicating topics supported by the producer (these
are recommended to conform to the WS-Topics specification);

» zero or more TopicExpressionDialect elements, indicating the topic dialects supported;
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» an optional FixedTopicSet element, indicating whether the set of supported topics may
change (assumed not to be the case if this element is missing).

The idea here is that when a NotificationConsumer subscribes to a NotificationProducer, the
producer will set up a Subscription WS-Resource and send notifications to the specified end point,
for a specified time, subject to the specified policy and filter. These notifications are delivered to
the NotificationConsumer in Notify messages, unless the policy includes the UseRaw element, in
which case the notifications are sent “as is”, with no wrappers to the consumer defined by the
supplied endpoint reference.

It is also possible for other clients to access the current or last notification message for a given
topic, but this does not constitute delivery of the message, and does not interrupt its transmission to
registered consumers.

Operation Description

Subscribe(consumer, [filter], [policy], | Registers interest from a NotificationConsumer at the
[time]) EPR “consumer” to receive notifications that match the
pattern specified in “filter” until the specified (absolute
or relative) “time”.

The filter can refer to notification topics, other message
elements, or the ResourceProperties of the producer.
The “policy” argument defines other constraints, such as
the notification message rate, and whether notification
messages should be wrapped in the Notify schema, or
delivered “Raw”.

The response contains the EPR for the Subscription
resource that will deal with the registered consumer. If
the EPR supports destruction via WS-ResourceL ifetime,
then the response should also contain the current time
and the termination time.

GetCurrentMessage(topic) Retrieves the last notification published on the specified
topic. This is a non-destructive read, designed for use
by actors other than subscribed consumers.

The NotificationProducer may choose not to retain or
provide the last notification, in which case it should
return a fault message indicating no current message is
available on that topic.

Table 6: WS-BaseNotification interface

3.3.2.3 Pull-style notification

WS-BaseNotification goes on to specifies a pull-style message delivery mechanism, designed for
use by consumers to which notifications cannot be delivered, e.g. because they are behind a
firewall. Two interfaces are defined to support this: the CreatePullPoint port type and the PullPoint
port type. The CreatePullPoint interface supports a method for creating a PullPoint as shown in
Table 7.
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Operation Description

CreatePullPoint() Creates a pull point, returning an EPR for the pull point
itself.

Table 7: CreatePullPoint interface

The specification says that the creation request must be sent to an end point that supports the
PullPoint interface, suggesting that both interfaces are supposed to be combined in one service.
This would imply that the CreatePullPoint would return the EPR of that service, though possibly
with a different reference parameter to contextualise the PullPoint interface. The specification thus
appears to rule out the possibility that somebody (e.g. a firewall administrator) may wish to set up
several PullPoint facilities perhaps using different transports (HTTP, SMTP, IMAP, etc), and
provide a separate CreatePullPoint service through which users can be assigned to different types of
PullPoint depending on their role, status or security clearance.

In any case, the PullPoint obtained should support the NotificationConsumer functionality
described above, through which it receives notification messages that need to be delivered. The
PullPoint interface then specifies two further operations as shown in Table 8.

Operation Description

GetMessages(N) Retrieves up to N notification messages from the pull
point interface, if available. The response contains a
collection of NotificationMessage elements, similar to
the Notify message used for push-style delivery.

Messages retrieved from a pull point are considered
delivered to the client consumer.

Destroy() Terminates the PullPoint resource.

Table 8: PullPoint operations

The workflow for using a PullPoint is not spelled out by the specification, but it seems clear that a
user should first obtain a PullPoint EPR, and pass this as the “consumer” field in a Subscribe
message to a NotificationProducer. This will deliver any notifications to the PullPoint, and the user
can retrieve them from there using the GetMessages operation.

The specification also says a PullPoint may or may not be a WS-Resource, but if it is it must
support the WS-ResourceLifetime immediate destruction, and may support scheduled destruction.

3.3.24 Subscription management

At this point, it seems that the functionality of WS-BaseNotification is complete: if a
NotificationProducer exists, consumers can subscribe to it and retrieve a Subscription EPR, using a
PullPoint if required. The PullPoint may not be a WS-Resource, but it can be destroyed using the
WS-BaseNotification Destroy operation in any case. The Subscription is a WS-Resource, so that
can be destroyed when the subscription is no longer needed. In addition to all this, any client can
retrieve the current (i.e. last) message from a NotificationConsumer.  However, WS-
BaseNotification also specifies subscription management services, apparently so that (like
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PullPoints) Subscriptions need not be WS-Resources, even though the NotificationConsumer

specification suggests that they should be.

The SubscriptionManager interface is divided into two parts; the BaseSubscriptionManager (See
Table 9) and the optional PausableSubscriptionManager (see Table 10) interfaces:

Operation

Description

Renew(time)

Allows a requestor to specify a relative or absolute
termination time for a subscription. The response
includes the subscription manager’s current time and the
new termination time of the subscription.

Unsubscribe() Allows a requestor to instruct the subscription manager
to terminate the subscription resource. If it can’t do this
it must throw a fault.

Table 9: BaseSubscriptionManager interface

Operation Description

PauseSubscription()

Allows a requestor to pause a subscription. This means
notifications will not be delivered to the consumer as
long as the subscription is paused.

ResumeSubscription()

Allows a requestor to resume a subscription that was
previously paused. This means notifications will start
being delivered again. The producer may then deliver
all notifications or just the last notification that arose
while the subscription was paused, or simply resume
delivery with the next notification that arises.

Table 10: PausableSubscriptionManager interface

The Renew and Unsubscribe operations reproduce the functionality of WS-ResourceLifetime, but
presumably this is not used because (a) Subscriptions are not obliged to be WS-Resources, and (b)
the BaseSubscriptionManager operations are not optional.

If Subscriptions are WS-Resources, then they are obliged to include the following resource

properties:

» ConsumerReference: the EPR of the NotificationConsumer specified in the subscription;

> Filter: the filter on which notifications are to be sent to the consumer;

» SubscriptionPolicy: the policy defining the rate of notifications, etc;

» CreationTime: the time at which the subscription was created.

The values of these resource properties are initially set by the NotificationProducer that created the
Subscription (in response to a Subscribe request). They may subsequently be changed via WS-
ResourceProperties update operations, if the Subscription supports this.
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3.3.25 Adoption Considerations

Avoiding dependency on WSRF produces ambiguities in the specification. The specification states
that a PullPoint may or may not be a WS-Resource, but if it is it must support the WS-
ResourceLifetime immediate destruction, and may support scheduled destruction. This duplicates
the functionality of the WS-BaseNotification Destroy operation, which is not the same as the
Destroy operation in WS-ResourceLifetime (the messages are distinct). This may be because
support for destruction is mandatory, while Destroy is an optional method in WS-ResourceL ifetime.

For the SubscriptionManagement interface it is clear that the operations relate to a particular
Subscription. Presumably, a SubscriptionManager service relates to a single Subscription service, or
to a collection of Subscriptions accessed via contextualised requests, as would be the case if
Subscriptions were WS-Resources.  However, the specification does not explain how
contextualisation could be achieved if Subscriptions are not WS-Resources.

It is also possible that the developers of WS-BaseNotification wanted to avoid making the use of
WSRF mandatory for implementers, although this has not been done in all parts of the specification.

If implementations depend on WSRF then WS-Notification depends on the adoption policy for
WS-ResourceProperties. Although, WS-Notification states that producers and consumers do not
have to be WS-Resources, if they are then WS-ResourceProperties need to be considered.

WSRF-RP Option Impact on WS-BaseNotification

No resource properties. | WS-BaseNotification could be used, but with restrictions on some of the
optional functionality:

NotificationProducers could not expose the topics on which they can
produce notifications as resource properties.

Subscriptions could not use resource properties to expose subscription
details or support WS-ResourceL.ifetime.

PullPoints could not be WS-Resources, or use WS-ResourceL ifetime.

Properties accessible to | WS-BaseNotification could be used “in full” between co-located services
the host provider only. | hosted by the same service provider, but would otherwise be subject to
the above restrictions.

Read-only access rights | WS-BaseNotification could be used, except for the optional functionality
defined per property. for changing subscription details by updating exposed Subscription
resource properties.

Table 11: WS-Notification resource properties adoption

Security policy enforcement strategies to protect against inappropriate information disclosure or
denial of service attacks via notification messages need to be considered. WS-BaseNotification
includes the usual remarks about the need for security policies to protect WS-Resources. This
means access to the Subscribe operations of a NotificationProducer should be protected by a
security policy that prevents an unauthorised person gaining access to information by means of
notification messages. It is important to realise that the Subscriber who calls the
NotificationProducer Subscribe operation need not be the same entity specified as the
corresponding NotificationConsumer. This provides an indirect mechanism whereby information
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could be leaked to an unauthorised party via notification. It also makes the NotificationProducer
potentially exploitable as a denial of service agent, by subscribing to receive very frequent
notifications, and providing the DoS target’s EPR instead of a legitimate consumer. Since the
notification messages do not have a response, and need not even be wrapped in a Notify message
giving the originator’s EPR, the target would be unable to tell the NotificationProducer that its
notification messages are not welcome.

Given this, the current WS-BaseNotification specification is dangerous. It is clearly necessary to
restrict access to the Subscribe function of a NotificationProducer, but defining a policy for this is
non-trivial, since:

» all subscription attempts go via the same WSDL operation, so it is not possible to
discriminate via simply defined and enforced constraints on access to this operation;

» the information revealed in notifications depends on the (potentially complex and optional)
filter argument — the interface doesn’t use a simple identification of subscription topics;

» the destination may not be acceptable to the NotificationProducer, even if the Subscriber
were accepted — e.g. they may have been induced to specify a consumer EPR provided by a
malicious third party.

It is also difficult to enforce a suitable policy, even if one could be defined. Any enforcer would
have to inspect the whole subscription request, and decode the implications of a request (including
the filter) in order to determine whether access should be granted. This means the policy could not
reasonably be enforced by a service-independent security layer, but would have to be (at least
partially) encoded by the specific NotificationProducer implementer.

The only simple constraint that could easily be implemented is to insist that subscriptions can only
be established, and notifications only be delivered to services hosted by the same provider as the
NotificationProducer. If this constraint is imposed, it would also be possible to adopt a similar
constraint on the use of WS-ResourceProperties, allowing all WS-BaseNotification functionality to
be used within the service provider environment.

3.3.3 WS-BrokeredNotification

The Web Services Brokered Notification 1.3 specification builds on WS-BaseNotification to define
an intermediate notification broker that acts as both a NotificationProducer and a
NotificationConsumer. The idea is that the NotificationBroker subscribes (as a consumer) to
notifications from other producers, and accepts (as a producer) subscriptions from other consumers
to which it distributes the notifications it receives. This provides two main benefits:

» it improves scalability: if N consumers want to receive notifications from P producers, the
NP direct interactions between them can be replaced by N + P interactions with the broker;

» it allows notification topics to be organised into hierarchies by the broker, making it easier
to subscribe to complex subsets of the notification messages produced.

WS-BrokeredNotification is intended to support enterprise-scale notification messaging using a
“publish-subscribe” pattern similar to that found in other technologies such as JMS [*].

2 3MmS
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The NotificationBroker specification asserts that notifications will originate from Publishers, which
may be NotificationProducers supporting the Subscribe functionality, but may also be arbitrary
sources of raw notifications. Notifications will be sent to NotificationConsumers who have
subscribed to the relevant topic(s). The NotificationBroker acts as a go-between, and must support
the following interfaces:

» the Notify message exchange patterns for receiving notifications from Publishers and for
sending notifications to NotificationConsumers;

» the Subscribe and GetCurrentMessage operations of a NotificationProducer, allowing end-
consumers to subscribe to receive messages via a consumer EPR;

» the CreatePullPoint operation, allowing end-consumers to create a PullPoint for “passive”
message retrieval.

The last of these implies a stand-alone CreatePullPoint capability, even though the WS-
BaseNotification specification implies this must always be combined with the PullPoint interface.
In fact, the specification is clear that a NotificationBroker need not support PullPoint message
retrieval, but it must support CreatePullPoint and respond with a fault if it does not also support the
PullPoint interface.

In addition, a NotificationBroker must support the RegisterPublisher interface as shown in Table
12.

Operation Description

RegisterPublisher([publisher], [topics], Registers a publisher (EPR), providing notifications on a
list of topics until a specified initial termination time.
[demand], [time], ...)
The response is a PublisherRegistrationManager (EPR)
that includes a reference parameter corresponding to the
specific PublisherRegistration created.

Table 12: RegisterPublisher interface

There are two models for the interaction between a Publisher and NotificationBroker once the
publisher has registered. In the simple model, the publisher simply starts to transmit notification
messages to the broker, allowing it to forward them to any of its consumers that subscribe to it to
receive these notifications. The alternative is the demand-based model, specified through the
optional “demand” registration argument, in which the publisher does not start sending until the
broker has subscribed to it as a consumer. Whenever the broker has no consumers for the specified
notifications, it sends a PauseSubscription message to the publisher, so that the publisher doesn’t
have to send notifications to the broker when the broker has no customers that want them. Note that
if the Publisher does not specify a “publisher” EPR when it registered, it means it is not a
NotificationProducer or does not wish to receive messages from the NotificationBroker. In either
case it may not specify the demand-based model on registration.

The PublisherRegistrationManager then supports a further operation:

Operation Description

Destroy Destroys a PublisherRegistrationManager.
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Table 13: PublisherRegistrationManager interface

It appears that a PublisherRegistration may be a WS-Resource, and may support destruction via
WS-ResourceLifetime. However, as with the Subscription resource in WS-BaseNotification, the
destruction operation is mandatory, and so is provided by the PublisherRegistrationManager. The
Destroy operation is supposed to destroy the PublisherRegistrationManager, but the intention seems
to be that it also terminates the associated PublisherRegistration.

The PublisherRegistration may be a WS-Resource, and so may support WS-ResourceProperties
access requests for the following Resource Properties:

» an optional PublisherReference, giving the EPR of the registered publisher;
» zero or more Topic elements, giving the topics for notifications produced by the publisher;

» a Demand element indicating whether the registered publisher uses the demand-based model
of interaction with the broker; and

» an optional CreationTime, giving the time the publisher registered.

3.3.3.1 Adoption Considerations

Avoiding dependency on WSRF produces ambiguities in the specification. The specification isn’t
very clear about the relationships between a PublisherRegistrationManager and a
PublisherRegistration. This may be because the authors see the PublisherRegistration as a WS-
Resource accessed via a PublisherRegistrationManager service, but want to avoid making WSRF
mandatory for implementers.

If implementations depend on WSRF then WS-Notification depends on the adoption policy for
WS-ResourceProperties. WS-BrokeredNotification is constructed from WS-BaseNotification
specifications, except for the RegisterPublisher interface, and the PublisherRegistration and
PublisherRegistrationManager services and functionality. Therefore, like WS-BaseNotification,
WS-BrokeredNotification does not require the use of WSRF, but there is some loss of optional
functionality if WS-ResourceProperties are constrained.

WSRF-RP Option Impact on WS-BrokeredNotification

No resource properties. | PublisherRegistrationManagers cannot expose resource properties giving
the registered publisher, creation time, interaction model and topics, or
use WS-ResourceL ifetime.

The NotificationBroker will also be unable to use some optional
functionality of WS-BaseNotification, e.g. exposing
NotificationProducer topics as resource properties, etc.

Properties accessible to | WS-BrokeredNotification could be used “in full”, but only for sending
the host provider only. | notifications between co-located services hosted by the same service
provider.

Read-only access rights | PublisherRegistrationManagers could not use resource properties to
defined per property. allow update of their publisher registration details.

Table 14: WS-BrokeredNotification resource properties adoption
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Security policy enforcement strategies to protect against inappropriate information disclosure or
denial of service attacks via notification messages need to be considered. As with WS-
BaseNotification, the WS-BrokeredNotification specification includes a discussion of security. The
specification demands that a broker should only allow registration by authorised publishers, should
only accept messages of the registered types from these publishers, and should prevent any
modification or termination of PublisherRegistration resources except by the authorised principals.
In addition, it may control which producers can publish on a topic, impose security measures on
messaging routed through the broker, and provide security management based on topics. However,
it does not say how any of these should be implemented.

The specification does discuss the need to manage access to notifications, and suggests that this can
be done by using a topic hierarchy. However, as we have seen, it is very difficult to enforce
subscription policies that depend on topics in a general way. A more sensible option is for each
NotificationBroker to decide which topics they wish to handle, given the access criteria they impose
on subscribers. The NotificationBroker should then refuse publisher registrations and drop
notification messages for topics they don’t wish to handle.

The main problem with this is that publishers have to trust the NotificationBroker to refuse
registrations or messages that their subscribers should not see. For this reason it may be appropriate
for publishers to use only co-located NotificationBrokers. This constraint must be implemented by
the publishers, as if a publisher doesn’t trust the consistency of a broker’s topic handling and
subscriber policies, then it shouldn’t trust the broker to refuse registrations from remote publishers.

Note that there is no risk that a publisher could be forced into a DoS attack if the NotificationBroker
is not co-located with it, because in WS-BrokeredNotification the publisher initiates the
relationship, and hence controls where it sends its messages. Of course, both the broker and the
publisher are also NotificationProducers, and still have to defend against malicious subscriptions
using their underlying WS-BaseNotification functionality (see Section 3.3.2.5).

3.3.4 WS-Topics

The WS-Topics specification describes a mechanism for unambiguous definition of “Topic
Spaces”: collections of topics with hierarchical (parent-child) relationships, and optional
equivalence relationships (known in WS-Topics as aliases). Topics can then be associated with
notification messages, and WS-Topics used to infer how these messages relate to other topics in the
hierarchy.

WS-Topics thus provides a standard way to manage the distribution of notification messages, which
is most useful in WS-BrokeredNotification where publishers can explicitly register the topics on
which they will produce notifications.

3.34.1 Adoption Considerations

This specification does not pose any security risks. It simply provides a means to define a topic
hierarchy that can be used when interpreting the scope of subscription or publisher registration
requests. There is no need to constrain or profile the use of WS-Topics as a notification topic
schema.
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3.4 OGSA Profiles
3.4.1 OGSA WSRF Basic Profile

The OGSA WSRF Basic Profile 1.0 mandates that endpoint references to WS-Resources must
conform to the WS-Addressing 1.0 specification. It then defines four resource properties that must
be provided to support a level of introspection:

» ResourcePropertyNames: giving the element Qnames of all available resource properties;

» FinalWSResourcelnterface: giving the “final” portType supported by the WS-Resource;

» WSResourcelnterfaces: giving a list of all known portTypes supported by the WS-Resource;
» ResourceEndpointReference: giving the endpoint reference for the WS-Resource.

The profile goes on to mandate that two optional features of WS-ResourceProperties also be
supported:

» the GetMultipleResourceProperties method must be supported, for access to
ResourcePropertyNames;

» the QueryResourceProperties method should be supported, with the X-Path 1.0 query
language.

It then asserts that “OGSA services fundamentally rely on the ability to understand changes in other
OGSA services”, and that ResourcePropertyValueChangeNotification be supported, through the use
of the WS-BaseNotification producer functionality. It isn’t clear that this really is necessary, unless
one is using WS-ServiceGroup, which is NOT part of the profile (see below).

Resource lifetime is then covered: OGSA WSRF Basic Profile requires support for both immediate
and scheduled destruction as specified by WS-ResourceLifetime. Next, the use of WS-
BaseNotification is constrained by requiring that the “UseRaw” element must not be used in the
Subscribe request — thus forcing all WS-BaseNotification to be carried via a Web Service message
using the Notify message schema.

There are some constraints on WS-BaseFaults, specifically that any extension must not introduce
any new child elements to the sequence in the BaseFaultType element, so as not to violate the
Unique Particle Attribution constraint.

There is no reference to WS-ServiceGroup in the OGSA WSRF Basic Profile. It should be recalled
that WS-1 Basic Profile mandates UDDI as the basis for a service registry implementation. OGSA
WSREF Basic Profile aims to extend the WS-I Basic Profile, and this may be why WS-ServiceGroup
has been left out.

Finally, the OGSA WSRF Basic Profile mandates that in addition to its conformance criteria, any
implementation must also conform to an OGSA Basic Security Profile.

3.4.2 OGSA Basic Security Profile

The OGSA Basic Security Profile builds on the WS-1 Basic Security Profile 1.0 (for using transport
and message-level security) and the WS- SAML Token Profile 1.0. The OGSA Basic Security
Profile comes in two flavours:
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» the Anonymous Channel profile for use in “safe” environments such as secure LANS; and
» the Secure Channel profile for use in “unsafe” environments such as the Intranet.

The only significant difference between the two is that the Anonymous Channel does not require
mutual authentication between message senders and recipients, on the basis that this could be
provided safely by other means in a LAN or Intragrid environment. We therefore focus on the
Secure Channel profile, while noting that in some circumstances the Anonymous Channel profile
may be relevant.

The profile specifies the following conformance criteria:

» transport security (HTTP or non-HTTP transport using TLS) is mandatory, as defined in the
WS-I Basic Security Profile, and must use mutual authentication;

» message-level security is optional, but if used must include both signature and encryption as
defined in the WS-I Basic Security Profile, and incorporate an X509 certificate (or other
authentication token) in the security header;

» any endpoint using message-level security must include its encryption key within a meta-
data element in its WS-Addressing Endpoint reference;

» other assertions may be made by a message sender by attaching security tokens to the
message, which must be either X509 attribute certificates or SAML tokens.

Nothing in the Basic Security Profile discusses authorisation, except to note that authorisation
depends on authenticated identity and other assertions conveyed in security tokens.

3.4.3 Adoption Considerations

WS-Notification depends on the adoption policy for WS-ResourceProperties. OGSA WSRF Basic
Profile requires exposure of resource properties via GetMultipleResourceProperties as well as
GetResourceProperty methods, and recommends that QueryResourceProperties with XPath 1.0
queries should be supported as well. To do this safely would require a security policy and
enforcement mechanism that recognises the semantics of resource properties and query language.

The introspection properties required by the Basic Profile do not cause any new problems in
themselves. If the resource properties are read only, then they will be the same for all WS-
Resources accessible via a given service, and so cannot be considered security critical. If a user has
any access to a WS-Resource, it is reasonable that they can read these introspection properties. This
could be enforced, but only by adopting the “per property” security policy.

OGSA Basic Security Profile does not consider access policies for resource properties and
notification messages. It confines itself to defining how transport and message level security
should be implemented, and does not consider what access policy should apply to resource
properties or notification messages mandated by the OGSA WSRF Basic Profile.

OGSA Basic Security Profile also defines a rather “non-standard” mechanism for key exchange,
encoding keys into EPR, rather than using profiles on existing specifications such as WS-Policy,
WS-Trust or WS-SecureConversation. The apparent requirement to use encryption and signature
together or not at all in message-level security is also odd, since the profile mandates authenticated
transport-level security, and encryption at both transport- and message level represents a significant
overhead that is only needed if transporting confidential data via an intermediary.
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4 Industrial Grid Profile Recommendations

4.1 Purpose

From the analysis of the Grid-related specifications, it is clear that for industrial application
requirements there are many adoption considerations. However, some aspects of the specifications
are relevant to industrial needs and it is worth adopting these aspects where we can do so safely.
SIMDAT can then demonstrate a commitment to making the technology accessible to the wider
community, and make it more likely that these communities will adopt SIMDAT results. Clearly,
SIMDAT should only adopt these specifications when to do so would not unduly compromise
project objectives.

The recommendation is to design an Industrial Grid Profile to meet the security and operational
requirements that are important to industry, and implement it in successive SIMDAT developments.
SIMDAT will publish profiles with each of its solution portfolios, along with associated white
papers justifying the choices made when defining them.

The initial industrial profile is based on three levels of conformance recommendations taking into
account the maturity and understanding of how the specifications can be adopted:

1. Basic WSRF conformance;
2. Wider WSRF conformance;
3. OGSA WSREF Profile conformance.

The following recommendations address each of these aspects in more detail. It should be noted that
the specifications are changing rapidly, as OGSA develops its architectural vision and that we will
continue to revise the conformance analysis considering amendments to specifications and lessons
learnt through industrial deployments.

4.2 Basic WSRF conformance recommendations

It is recommended that SIMDAT SHOULD adopt WS-Addressing, using EPR to encapsulate
conversation IDs. We should avoiding using ReplyTo and FaultTo headers, and impose a white list
defining EPR reference parameters that are understood and can be elevated to full headers in
messages addressed using EPR, and on the HTTP arguments included in EPR Address elements.

It is recommended that SIMDAT conforms to the WSRF specification, as follows:

a. Adopt the WS-Resource specification, but choosing a single context identifier
element (e.g. ResourcelD) for all services, and retaining a minimal white list
containing only this chosen identifier element when processing WS-Addressing
EPR.

b. Implement the GetResourceProperty operation only from WS-ResourceProperties,
but declaring no resource properties in the first instance. To ensure this operation
cannot be used to probe for meaningful ResourcelD, the security policy should deny
access to this operation for all users who don’t have other access rights to the same
ResourcelD.

c. Define a BaseFault to be returned whenever a user attempts to access a
contextualised service using a ResourcelD for which they are not authorised or
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which does not exist. Using the same fault response in both situations ensures no
disclosure of information about resource identifiers.

d. Convert all other Faults into BaseFaults

4.3 Extended WSRF/WSN conformance recommendations

It is recommended that WS-ResourceProperties MAY be used, but that resource properties must be
a fixed set of “well-known” properties accessible published by the service provider and updated
only to clients and services hosted by the same service provider as a WS-Resource. This limits
possible interoperability problems from the un-encapsulated use of resource properties, and the
need for complex security policies and associated policy enforcement and management
mechanisms.

It is recommended that WS-ResourceLifetime SHOULD be adopted, subject to security restrictions
on direct access to its resource properties. This is an optional part of WSRF, but is mandatory
under the OGSA WSRF Basic Profile.

It is recommended that the WS-ServiceGroup specification SHOULD NOT be adopted. It is not
part of the OGSA WSRF Basic Profile, and requires the implementation of a complex security
policy infrastructure that does not exist today. These drawbacks suggest that WS-ServiceGroup,
although one of the first WSRF specifications, may be subject to significant changes or even
deprecation in future.

It is recommended that WS-BaseNotification, WS-BrokeredNotification and WS-Topics SHOULD
be used as follows:

» all notification messages should use the Notify message format; and

» subscription should be accessible only to services and clients hosted by the same service
provider as a NotificationProducer; and

» publisher registration should only be allowed for publishers that are hosted by the same
service provider as a NotificationBroker.

The co-location restrictions eliminate the possibility of a notification producer being used by a
malicious third-party subscriber for denial of service attacks or to leak data, but without requiring
complex security policy and associated policy enforcement and policy management mechanisms.

4.4 Full OGSA WSRF Basic Profile conformance recommendations

To fully conform to the OGSA WSRF Basic Profile is difficult, because it forces SIMDAT to
support the full WS-ResourceProperties functionality and WS-BaseNotification. This means we
would have to solve the security issues associated with the corresponding operations, as well as
implementing the rather complex WS-BaseNotification components and workflows.

There are some obvious questions we should analyse in detail before conformance
recommendations can be made:

» If we deny all access to all WS-ResourceProperties operations, or restrict access only to the
service provider of each WS-Resource, which features of the OGSA WSRF Basic Profile
can be implemented and made useful, if any?
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> If we restrict access to GetResourceProperty only, then a single Qname would be the query
argument in each request, and the set of available resource properties will be fixed. Could
we support authorisation policies easily in that case? If so, how much OGSA functionality
could be implemented securely with this restriction in place?

» Can we identify a fixed set of non-sensitive resource properties and notification topics that is
sufficient to implement OGSA? If so, does it make sense to specify a profile that only uses
these? Does this make sense if we assume that any other resource properties or topics are
inaccessible to any but the service provider?

» If we allow free access to all WS-ResourceProperties operations, which OGSA WSRF Basic
Profile features would become dangerous or unacceptable to industrial users?

» Given any reasonable security policy with respect to resource properties, can we infer the
security policy that should apply to WSN components and topics required by OGSA?

What is clear is that we should not adopt OGSA WSRF Basic Profile at present. To do so may be
possible following wider testing and discussion of OGSA WSRF Basic Profile, leading to
consensus on how to handle the security concerns through changes to the profile or identification of
appropriate and realisable security policies for OGSA functionality.

5 Conclusions

In this document we have presented an analysis of key emerging Grid-related specifications and
adoption considerations in the context of industrial, B2B applications. We have described a strategy
for incrementally defining an Industrial Grid Profile that constrains the specifications, so that they
can be safely adopted by industry considering security requirements, operational requirements and
the stability of current drafts. The publication of Industrial Grid Profiles will enable SIMDAT to
engage and influence the future development of these specifications.

The first Industrial Grid Profile to be implemented and justified was the basic WSRF profile
described in Section 4.2. This profile has been implemented in GRIA 5 and has been validated by
SIMDAT application activities during the Interoperability Phase of the project.

The second Industrial Grid Profile to be implemented would be the Extended Profile described in
Section 4.3. This is probably the first for which we could make a reasonable comparison with the
OGSA profile, though the analysis would have to be revisited with reference to the then current
OGSA draft and changes as a result of WS-Convergence. The concern with OGSA at this stage is
clearly the security policy and enforcement challenge of making a very wide range of properties
accessible through a single mechanism in an industrial context. We would have to fully understand
this security problem before making recommendations to industry and the OGSA working group.

Clearly, the specifications will carry on changing rapidly, as OGSA develops its architectural
vision. We will continue to monitor and analysis these amendments feeding back to the SIMDAT
consortium on adoption options for industrial Grid deployments.

IST -2004-511438 SIMDAT - D2.2.2 Public-1.0 37 of 37



