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Abstract

In this paper we extend the control methodology based on Extended Witndok-

ing (EMT) by providing the control algorithm with capabilities to calibrate and
even partially reconstruct the environment’s model. This enables us tvedhe
problem of performance deterioration due to model incoherence, éeprdaced

in all model-based control methods. The new algoritlEmsemble Actions EMT
(EA-EMT), utilises the initial environment model as a library of state transition
functions and applies a variation of prediction with experts to assemble #nd ca
brate a revised model. By so doing, this is the first hybrid control algorittan th
enables on-line adaptation within the egocentric control framework whitatdg
the control of an agent’s perceptions, rather than an agent’s envirtrstage. In
our experiments, we performed a range of tests with increasing modeleinrcoh
ence induced by three types of exogenous environment perturbatatastrophic

— the environment becomes completely inconsistent with the mdeahting —
some aspect of the environment behaviour diverges compared to duifieghin

the model, angberiodic — the environment alternates between several possible di-
vergences. The results show that EA-EMT resolved model incohegerttsignif-
icantly outperformed its EMT predecessor by up to 95%.

Keywords: hybrid control, perceptual control, dynamics based control,
Kullback-Leibler divergence

1. Introduction

Egocentric perceptual control (EPC) formulates a control problem mseaf an
agent’s perceptions, i.e. its internal interpretation of sensory input, ritheithe
actual environment state [1]. As a direct outcome of this representatigriask
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that an agent performs is expressed as a preference over panseptiol the op-
timality criteria follows suit. In fact, from this egocentric point of view, chasge
in the environment are simply a means to alter and control the agent’s pernseptio
As a technical example consider instrument flight rules (IFR), the regotatiod
procedures for flying aircraft by referring only to the aircraft instent panel for
navigation. These rules describe the instrument readings that a pildi€¢and the
auto-pilot control algorithm) has to maintain, therefore referring to thegpexd
flight parameters, rather than the factual physical state of the plane eNlotitthe
instrument readings are indeeérceptions, the interpretations of the automated
sensors, rather than the observations or measurements that they mattate,To
EPC has been used in a variety of domains, including sensory-basigtiav

of autonomous robots, where all the necessary information is reprdgenbeigh
perceptions, such as maps or landmarks (see e.g. [2, 3]). In factfdhe most
successful control approaches in robotics, the behaviour-bastebc(BBR) [4],
can be seen to be a particular instantiation of the EPC. In more detail, in BBR a
complex behaviour with desired properties is obtained by means of arbiteatébn
fusion of a set of simple mappings (basic behaviours) from perceptiotions’.
Starting from the simplest basic behaviours, that are enacted once sgmperke
ception is formed, and ending with complex arbitration of a BBR scheme, all key
features of decision making are based on perceptual information, dheredn-
forming BBR to the EPC view. Moreover, EPC is inherent to behaviour petter
found in nature or based on human intuition and psychology (e.g. [5,bledar-
ences therein). It enables, for instance, a quick design of individare\bours in
BBR, as well as the interpretation and explanation of the final outcome in human
understandable terms. Unfortunately, with a few exceptions, most ¢UERG
approaches are not universal. In BBR, for example, the elementhgyvioairs
are commonly designed off-line for a specific domain or learned frontcdtra
significant shortcoming in dynamic or only partially known environments.

On the other hand, classical control theory has been explicitly devekmped
find universal control solutions with an explicit environment model as iffjutt
was also readily extended to hybrid models, where several discret@atidupus
components interact in a non-trivial manner (see e.g. overview in [8)efied
ences therein). In particular, model predictive (or model-following) meéshave
been found to be applicable to a wide range of control problems and tdi¢ie ref
at dealing with modelling errors (see e.g. [9, 10]). These methods usdessys

'Notably, BBR is also inherently hybrid, since distinct behaviours can bgyded using com-
pletely different methodologies: while some of them can use fuzzy logiers may include a learn-
ing algorithm or simply be reactive. Howev&RC andhybrid are, in general, distinct properties.
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model to generate predictions on the system development, and computea contr
signal to optimise this predicted behaviour. Furthermore, the methodolody rea
ily accepts various learning techniques, both to calculate the control sigddb
adaptively calibrate the model in dynamic or partially known environments.-How
ever, the detail of the model calibration may vary according to the imposéghsys
structure and dynamics assumptions. For instance, in reinforcemennggarn
chitectures, such as Dyna [11], model corrections are local to therdwgnviron-
ment state. Dyna’s principles are also echoed by the modern Bayesiaigtexhn
where a POMDP model is recovered while finding the reward maximising policy
(e.g. [12, 13]). However, the success of these works has beelitiomed on the
domain being well factored or on the presence of an oracle to queryddrub
system state. Furthermore, these approaches can not addresshieenpod an
environment that drifts through a continuous range of models due to thigliraisg
sumptions on system structure. To address this issue, much strongat,doytirol
methods have been constructed, usually based on the model predictinedel-
following) principle (see e.g. [14-16]). Some methods even provide dfieat
guarantees [14], however at the price of requiring additional modificatio work
with discrete space domains or losing this capability entirely.

Given these complementary strengths, the fusion of EPC with model-based
control can potentially lead to an extremely powerful framework. It wooltline
the egocentric autonomous representation, i.e. dynamic system withoutadxter
control input, of a task and the capability to incorporate high level envirobme
knowledge in the form of a system model. Unfortunately, various as they ar
classic control theory approaches have an important underlying asamthe
subject of the optimality criteria are the state and the dynamics of the environment.
Be that the expected accumulated cost of the state variation (e.g. the cladsafw
Stengel [7]), be that the proximity to an ideal distribution over system trajesto
(e.g. [17]) or be that the cost of system stability (e.g. [18]), the optimalitgria
always comes back to consider the underlying system state transitionsuisitthe
source, even if the environment model contains observed quantitiesoglyX(9]).

By so doing, this assumption explicitly contradicts the EPC point of view, which
hinders the aforementioned fusion of the two control principles.

In fact, the only control algorithm that possesses a complete fusion oflth
model-based control principles and the EPC view is the Extended MarkakTr
ing (EMT) algorithm [20] and its descendants (e.g. [21, 22]). Howessrour
experiments have revealed, the standard EMT can not cope well with rimadel
coherences. To this end, in this paper we propose an extended EMTthatgo
that has all the aforementioned capabilities: it is an egocentric perceptuablc
algorithm, it is a universal model-based controller, it is adaptive to enviemt
changes by means of an on-line model calibration, it is a hybrid controletda

3
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of operating in mixed discrete-continuous domains or domains with a hierafrchic
abstraction of actions. In more detail, for each action available to the agedgw
ploy an experts ensemble [23] to learn a good estimate of an action’s effects
ensembles are known to provide highly flexible and dynamic estimates, which in
our case corresponds to fast estimation and calibration of a system marigle N
that this estimate is with respect to the predictive capabilities of the action effects
on the agent’s perceptions. Now, the expert ensemble is composed aéasén

of potential effects an action may have, mined from an initial environment inode
which are dynamically merged together into a single estimate of an action’s effec
The new control algorithm, the Ensemble Action EMT (EA-EMT) then uses the
collection of these estimates to form a complete environment model and proceeds
to follow the normal EMT flow of action selection.

To demonstrate the adaptive efficacy of the EA-EMT algorithm we have de-
vised a set of experiments with various incoherences of the initial systeraelmod
In a discrete state environment we have investigated the effects of excgpar-
turbations of three typesatastrophic — the environment becomes completely in-
consistent with the modetieviating — some aspect of the environment behaviour
diverges compared to that specified in the model, @antbdic — the environment
alternates between several possible divergences. The results sh&AtEMT re-
solved model incoherence and outperformed its EMT predecessortb®6po. To
clearly demonstrate the hybrid nature and capabilities of the EA-EMT algorithm,
we have devised an additional experiment with a continuous state envirgnmen
where a task had to be achieved by switching between several piiéiexbeab-
controllers. In this continuous state environment we have also comparefietbts
a deviating inconsistency has on EMT-based approaches (both tharstadT
and the EA-EM) and the classical model-following approach. In our rxgats,

EMT has outperformed the model-following controller under model incolveren
and both have been outstripped by EA-EMT by at least 40% in error rate.

To summarise, the contributions of this paper are as follows. First, we intro-
duce a new hybrid control method that is equally applicable in environments with
discrete, continuous or mixed environment state. This enables the algorithm to
serve both as a universal low level mechanism of action selection, aadigh
level switching mechanism between separate tuned controllers in a hybhid ar
tecture. In particular, the algorithm is resistant to switching noise, the ddpab
well beyond even the most modern switching methods (e.g. [14]). Seouandp-
proach provides, for first time, an adaptive controller version of theaibadsed
EPC paradigm, enabling in observable terms. Third, EA-EMT is the firstithgo
that, without sacrificing its generality with respect to its environment’s continuity
is capable of composing a good control signal even if the underlyingammient
dynamics are non-stationary, and change over time.

4
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The rest of the paper is organised as follows. In Section 2 we detail #ra-op
tion of the standard EMT Control algorithm. Section 3 follows with the description
of our new EA-EMT algorithm, detailing how it reconstructs and calibrategthe
vironment model through the use of expert ensembles. Experimentadrsdipp
the effectiveness of our approach in handling various model incnbesds given
in Sections 4, while the experiments of Section 5 are designed to exposebtie hy
nature of our algorithm. To underline the algorithm’s capability to work in envi-
ronments with changing behavioural trends, our experiments take alsjpecia
on the on-line property of the EA-EMT model calibration. Section 6 summarises
the results and gives future directions of this research.

2. EMT Control

EPC controllers are constructed around some perceptual concepteesssarily

include a subsystem that creates and maintains these perceptions by latiogmu

and interpreting the observed data. In the case of an EMT Controller thegpe

tion is that of the autonomic system dynamics, where the system state appears

to stochastically develop over time without external influence. The convemie

of this choice is made apparent by the following observation. Assume thra so

control has been plugged into the environment. The resulting overallnsyiste

autonomic, and describes the behaviour of the control-augmented eneinbm

all possible states. Furthermore, although we may not know what spemifiot

law will bring it about, we frequently can describe the autonomic dynamicswhat

would consider to be ideal or optimal. For example, in IFR, the behaviour-of in

strument gauge is described without specifying what actions the pilot halsgt®o

achieve this behaviour. This approach is adopted by the EMT contrdherspn-

trol task is described by a perception of an idealised autonomic systermabma

and the algorithm has to sequence actions to achieve the perception of #iis ide

To do so, however, the controller requires a subsystem that createsaintains

the necessary perception, and in this paper the subsystem is the Extéaided

Tracking (EMT) algorithm, that also lends its name to the entire control scheme.
Formally, the EMT algorithm produces and maintains an estimate of a stochas-

tic state transition function that models the autonomic system behaviour. It does

so by performing a conservative update, specifically it minimises the Kulback

Leibler divergence between the new and the old estimate, with the limitation that

the new estimate has to match the most recently observed system transition. In

more detail, assume that two probability distributions over the system ptated

1, are given that describe two consecutive states of knowledge aleosygtem,

andrEMT is the old estimate of the system dynamics. Then the EMT update, abbre-

viated byrENT = H [pt — Prets TFMT], is the solution of the optimisation problem

5
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depicted in Fig. 1, wher®\ is the Kullback-Leibler divergence. The optimisa-
tion can be recast as finding joint distribution with given marginals, and ddiye

an lterated Proportional Fitting (IPF) procedure [24]. In fact, the ENddlate H,

can be calculated for any practical set of distributions that desgibp.1 and

7EMT | although in more general situations approximate representations, such as
particle filters or unscented transforms, may be necessary. This edWiEs$o
uniformly treat both discrete, continuous and hybrid state spaces. ldovieease

the exposition, in this paper we concentrate on two simplest distribution families,
namely the discrete and the Gaussian distributions. For these families thedPF ha
been well studied and needs not to be proof-checked [25, 26].

EMT Controller l_ Reference (Dynamics) Signal .
P P T,
EMT t Lel Action Selection Model
EMT H EMT EMT &
To1 —arg nJmDKL(T X prliTg X pr) it Belief Update 2
S.L pa(X) = 2(r X p)(X, X) etion
X
— Environment
and pt(x) - Z(T X pt)(X/’ X) Observation
%
Figure 1: The EMT Update Figure 2: The closed loop of EMT Control

To complete the EMT control loop, however, we still need to describe how the
observation data is accumulated to form the perception of the system dyndmics
this end, we have to address the type of environment models we will be wgorkin
with. Although EMT can work with more general environmental descriptisas (
e.g. [22]), it has been more commonly used with a discrete Markovian @aviro
ment with partial observability, described by a tupleEnv =< S, 5, A, T, 0, Q >,
where:S is the set of all possible environment statgse A(S) is the initial state
distributions of the environment, whet&S) is a family of distributions oveg; A
is the set of all actions applicable in the environmént; S x A — A(S) is the
environment’s probabilistic transition function, wherés'|a, s) is the probability
that the environment will move from stasdo states’ under actiors; O is the set
of all possible observations) : S x Ax S — A(O) is the observation probability
function, where(0|s’, a, ) is the probability thab will be observed given that the
environment moved from stasto states’ under actiora.

This naturally connects with the EMT algorithm, as knowledge about the sys-
tem is summarised by a distribution vector over the system sgatesA(S), in
which case the system dynamics estimator created by EMT has the formiof a co
ditional probabilityr : S — A(S).

Given this, the overall control algorithm, termEMT Control, forms a closed
loop control with a reference signal [7]. Fig. 2 depicts the resultingreeh& hree
sub-modules form th&MT Controller that interacts with afEnvironment by ap-
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plying actions in and receiving observations from it: kedel, theEMT estimator,
and the decision making module Aétion Selection and Belief Update. TheModel
module is queried for the effects, of an actiona on the real system state. These
effects are used both in predicting future perceptions, and in filteringltbereed
data to maintain system state beliefs. BMT module is used to estimate the per-
ceived dynamicsEMT that explain the change in beliefs about the system fppm
at timet to p1 at timet + 1. The central, decision making module, interconnects
the Model and the EMT estimator, and implements the EMT Control algorithm,
the detail of which we describe below. Finally, the reference sigrialencodes
the task to be performed and formally takes the form of the conditional pilitha
1S > A(S).

Notice thatr* represents the ideal autonomic system dynamics we would like
to obtain by exercising control. From the EPC point of view, this is the target
perception that we would like to achieve and maintain, hence the standard EMT
Control (see Fig. 3) can be described as a greedy one-step loot etveaction
action selection, and it follows a closed loop structure. In more detail, ay eve
point in time, the algorithm attempts to predict the reaction of an estimation algo-
rithm (EMT in this case) to the changes induced by an action (lines 12-1&of th
algorithm), and then chooses the action that shifts the EMT estimator closest (lin
17) to the reference dynamie$. Once the action has been applied, the response
of the EMT estimator to the changes in the environment is registered (linerzD), a
the control loops to make its next decision.

At this point, we would like to underline the strength of the task representation
by the autonomic system dynamies First, while deterministic dynamics are a
way to concisely represent feasible sequences of states, probabilistimits can
also engender a preference over such sequences. Thus, sysgmiakr* can en-
code a richer variety of preferences and tasks for EMT control, foamstance,

a reward function over states would. Second, in Markov chains, sysyeiam-

ics completely determine the system state in the long run. As an outcome, the
knowledge about the initial system state is not essential to EMT contrchtipey
expanding its applicability. Furthermore, although over the given state ghac

7* transition is Markovian, the task it describes needs not be Markovian within
environment itself. This is due to the fact that the model’s state space isabstra
and each state can serve as a tag for complex, time extended events. INmtice,
ever, that the controller action selection in lines 12-16 is heavily depewdethie
environment model, as it uses the mappiRdo predict action effects. However, if
the model is incoherent the reaction of EMT can not be estimated correbityhw

in turn, will lead to selection of a suboptimal action. Thus, in what follows, we
modify the action selection process to vary the environment model it uses.
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Require:
Set the system state estimatpg(s) = s € A(S)
Set the system dynamics estimatef™T () = prior(s)
Set time tat = 0.

11: loop

12: for all ae A do

13: Set Ta = Tq {usetransition model T directly}
14: Setpf; = Ta* Pt

15: SetDa = H [pr - B2, 7EMT|

16: SetV(a) = (DkL (Dall™)) p,

17: Selecta* = arg n;inV(a)

18: Apply a*, receive observatioo € O

19: Computep,1 due to the Bayesian updatgy,1(s) « Q(0ls, a) ¢ T(sia, §)pi(s)
20: ComputerEMT = H [pt - pt+1,TFMT]
21-25: {no model update}

26: Sett:=t+1

Figure 3: The standard EMT control algorithm. Note: EA-EMT will modifydi13,21-25.

3. Ensemble Action EMT

Although the standard EMT Control is attractive in its combination of the ego-
centric control perspective and the task description by the percejstdns dy-
namics, our experiments (see Section 4) have revealed that its perferanc
teriorates significantly if the environment model is incoherent. Howevehave
lieve (and will subsequently demonstrate) that, by providing the algorithm with
an additional method to correct model incoherences, it is possible to reatify th
deterioration. Now, there are many incoherences a Markovian mtiehy =<
S, 5,A,T,0,Q >, may have. Specifically, while the choice of the state, action
and observation spaces, as well as the observability function, may beeditia
subjective considerations (e.g. to make it more readable for the human domain
designers), the transition functidnis always dictated by the environment. Thus,
in this work we choose to concentrate on the quality of the transition fun@tion
This function maps actions into stochastic matrices, so that for each actioh
the matrixT, = T(:|,a) models the effects of that action on the system state.
The difference between the matihg and the true effects of the actieane A is
the incoherence type we have resolved in the EA-EMT algorithm (Fig. Bus,T
while the standard EMT Control views the transition mappmeg; T, to be con-
stant, the EA-EMT algorithm modifies its transition mapping over time, reducing
the mapping’s incoherence. However, before we go into the details ofthoas
implemented, we need to explain the principles of the approach taken by ER-EM
EA-EMT assumes that, although the mappihg A — A(S)S is incoherent,
the set of matrice3a = {Ta = T(|-,a)}aca represents feasible effects that the
actions may have. The algorithm then attempts to assemble a better mapping,
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T:A> A(S)S, based on the séta. More specifically, for each actiom € A
the transition matrixT, is a weighted linear combination of matrices in the set
Ta, that isTa = Ypea To * Wa(b). Intuitively, the weightw,(b) represents the
similarity between the matriX, € Ta and the effects that the actiane A has on
on the environment state. As the interaction between the EA-EMT algorithm and
the environment progresses, the weighié) are updated, modifying the mapping
T : A — A(S)S to reduce its incoherence with the environment.

The intuition behind this approach stems fr&otytopic Linear Models (PLM)
with continuous state, where a complex non-linear system is represeraetas
bination of a finite set of simpler linear sub-systems [15]. Similarly, in our for-
malism, an actiora € A may be more than a primitive operation. Rather, it may
represent a subsystem with a complex underlying controller, whichdaheesys-
tem to follow dynamics described . In fact, by enriching the séia, one can
guarantee that environment incoherences of interest will be well @ptés an
utterly extreme example consider a dynamic system with a discrete state space.
By settingTa to be the set of permutation matrices, we essentially aligo be
any matrix from the polytope of stochastic matrices, and endow EA-EMT with the
capability to capture any environment disturbance, be it a randomly reotgu
one or be it a disturbance localised to a particular system state. Althougb-the r
lationship between the composition B and its expressiveness needs not be this
extreme, and in practice only small sizéd is required, its exact properties are
non-trivial. In fact, it forms a separate branch of research, wheravtdrks by An-
gelis [15] and Cesa-Bianchi [23] are only few representatives afsh hterature,
that falls out of scope of this paper. Nevertheless, we can safelynasthatT s
forms a sufficiently large polytope that includes all relevant system dyrsamic

Now, the update of the weightg,(-) is based on the approach of predictions
with expert ensembles [23]. The intuition behind this approach is that, whkn ma
ing a prediction or a decision, a readily available set of feasible altersatitie
expert ensemble) can be merged together to form a prediction which igiptiyen
better than any of the alternatives standing alone. The dynamic propdrttés o
merger are such, that it can be readily applied even if the best predictidghg
best decision) is not stationary, but rather changes over time. This neadedite
of expert ensembles particularly attractive to maintain a system model in garyin
unstable environments. Specifically, in our algorithmekgert ensembleis the set
Ta, Where each expert attempts to predict the effects an action would hate on
environment state. From this point of view, the weightb) expresses how much
the expertly € Ta is trusted to capture the effects of the actir A correctly.
Once EA-EMT has applied an actioat,, it measures the discrepancy between the
effecta” had and the effect predicted by exp&gt The lower the discrepancy, the
higher will be the weightv,-(b) when the next control decision is made.

9
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Given the above principles, we have modified the standard controller algo-
rithm. Specifically, line 13, previously directly substituted into the calculations the
transition function from the provided model. Whereas now it uses a weightad
bination of the matrices i o, which is continually tuned by the expert ensemble
to improve its representation of an action’s effects. The rest of the cotigmga
proceed as before until the EMT estimatE)", of the action outcome is com-
puted in line 20: the algorithm predicts the effects of each action on the EMT
estimate, chooses the action that would bri*ﬁg'T closest to the reference signal
7*, applies the action and receives an observation. At that point, the alpgdrib
to measure the performance of each expert, and update the weights.rédal,
that the algorithm operates in terms of subjective beliefs, the relevanteé
the action are thus those expressed in the EMT estimfé‘lﬁé. This means that
the performance of each expert can be expressed by the distanaehdtve es-
timaterEYT and the estimate that would have been obtained based on the expert
prediction. This distance is computed in lines 22-24, and the weight of tleztegp
updated accordingly. Specifically, the old weight of the expert is multiplie®by
whereg € (0,1) is the parameter of the update ahi the distance above. Once
all weights are updated, they are normalised to sum to 1, s@ ilattthe next step
will be a stochastic matrix. Notice that all these operations take time polynomial in
the model parameters, such as the size of state, action and observaties Jgas
makes EA-EMT a computationally efficient and scalable algorithm, an attractive

property systems where environment models tend to be large.

Require:

Set action weight vectorsu;(a’) o §a(a’) + €
Settime tat = 0.

11: loop

13: SetTa = Yo T * Wa(&)

21: for allae Ado

22: Setpd; = Ta* pt

23: SetDa =H [pr - B, 7FMT|
24: SetV(a) = (DkL (Da||75’\f-r)>pt
25: Setwg: (a) o We: (a)8V@

26: Sett :=t+1

Figure 4: The EA-EMT control algorithm: only changes to the standard Ebhtrol are shown.

4. Experimental Evaluation: Discrete State Space

To test the effectiveness of the EA-EMT algorithm, we have devised af sen-
parative tests with the standard EMT Controller. The latter is a natural baselin

10



a7 as it is the only other universal control algorithm capable of complete riusio

s  the EPC and the model-based paradigms. In discrete state systems this is also the

a9 only baseline, as no other control algorithm can reproduce the actiartisalse-

20 quence of EMT. Fortunately, in the environments with a continuous state,spac

321 Which we tend to in Section 5, the sequence of actions selected by EMT @dn be

322 least partially reproduced by model-following control algorithms, and we imme-

323 diately use it to provide an additional baseline comparison. In all caseBavee

324 preferred a simulated system so that the true effects of our controitaigowill

325 Not be confused with the properties of an embodied physical system.

326 Now, to support comparability with previous work on EMT variations, all tests

327 were based on modifications of the Drunk Man (D-Man) domain: a controlled

328 random walk over a linear graph (see Fig. 5 for the principle structuith) ac-

320 tions weakly modulating the probability (only a small discrete set of probabilities

30 1IN the range £, 1 — €) with ¢ > 0 is attainable) of the left and the right steps.

31 The domain is also partially observable, namely, instead of its true position on the

32 graph, an agent receives as an observation a random position withindrstep

sz neighbourhood of agent’s location. In turn, a task within the domain is septed

332 by a conditional probability*(s'|s), the reference signal for the controller, spec-

a5 ifying what sort of motion through the state space has to be induced. Daning

33 experiment run, the control algorithm was provided with a Markovian enuirent

7 model,MEnv =< S, 55, A, T, O, Q >, incoherent with the true behaviour of the do-

333 Main. The incoherences were created by introducing exogenoushadioms to

339 the behaviour of the D-Man domain. In particular, three perturbationsingatke

a0 model of the standard D-Man domain increasingly incoherent with the amtual

31 ronment behaviour, were useDeviating, where an additional deterministic step

a2 (to the right) was dond?eriodic, where the direction of an additional deterministic

a3 Step changed over time; a@@tastrophic, where a random permutation of actions

as  Was selectedr : A — A, so that when the controller applied actiare A, the
environment responded insteadt(a). Three baselines where obtained in various

“(j D@C ..... E@

Figure 5: Principle structure of the Drunk Man domain.

345
a6 combinations: standard EMT Control algorithm operating in a perturbeidozrv

7 ment, standard EMT Control operating within an unperturbed environmedt, a
as  standard EMT Control operating in a perturbed environment with its model co
as rectly encoding the environment perturbation. At least two baselinesrasent
350 IN each experimental setting to provide comparative performance bouddba
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99.5% confidence envelope is depicted in all plots. In all our experiments the re
erence dynamics for the controller is given BYs'|s) « §s(S) + €, wheree > 0

is small. In other words, the target prescribes that the environment shimudbt
surely move to the ideal stas® from any other state. In our experiments the state
space wa$ = {0, ...,12}, and the ideal statg" = 6. Notice that, due to the prob-
abilistic nature of the domain, any reasondlgentrol scheme set to accomplish
the task would result in a bell shaped empirical distribution of the system state.
Success of the control scheme can then be readily appreciated visuétlg tif-
ference of the expected value and the ideal system state, as well asntiardta
deviation of the empirical state distribution. The empirical distribution was taken
over a 200 decision stepiding window, to obtain statistically significant distri-
bution shape. In turn, the overall length of experimental runs was theseah

to be sufficiently large to enable analysis of stable trends of the empirical 200
step distribution. In particular, for thmtastrophic and thedeviating perturbations
each experiment run was 1000 steps. The necessity to obtain statistidfi# sign
cance while preventing the algorithm from completely stabilising, has also led to
the choice of the 500 step period for theiodic perturbation experiments, accom-
panied by the 5000 step total length of each experiment run. Although diterna
experimental setups were also run, varying both the sliding window size and th
experiment length, their results were similar, we, therefore, omit them dpate s
limitations. Nevertheless, the aforementioned sequence of choices isagfiec
the way our experimental results are presentigiating, catastrophic and then
periodic perturbations. Furthermore, to present an overall evaluation of aotontr
scheme’s performance, rather than a comparison of multiple parameteatsave
measured the distance between the empirical distributiodandingl; norm.

To further the intuition of this domain, consider once more the IFR example
where the pilot has to maintain flight level within the air corridor prescribethby
ground control. If we discretise the space of possible flight levels we bidio a
linear graph depicted in Fig. 5. The transitions between the states arelieshtro
but are also subject to random changes in the air density or wind guséslyldhe
auto-pilot will need to actively return the airplane to the ideal, centre fligtat lev

4.1. Deviating Perturbation

In this experiment we introduce a deviating perturbation. That is, bey@nasial
probabilistic step, the environment has also deterministically shifted in one direc
tion along the linear graph. For example (referring to Fig. 5) if the systachexd

2Unreasonable, for instance, would be choosing a constant action &tiseqthe left and the
right step probabilities, as this would result in an almost uniform distributitterly defeating the
controller purpose.
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Figure 6: EA-EMT performance under (a) deviating and (b) catakicqerturbations

statek € {0, ...,n — 1}, the additional step will shift it to state+ 1. In this con-
text, Fig. 6(a) shows the empirical distribution of system states under thntekt
strategies: the EA-EMT controller and the standard EMT Controller eqdipjite

the standard D-Man model (thus excluding the shift modelling), and theas@nd
EMT Controller equipped with the environment model that explicitly captures the
additional shift. The figure shows the complete empirical distribution of the EA-
EMT obtained during the first 200 control choices made in this experimedt, an
marks a definitive improvement in performance. This can be seen fronathe f
that the standard EMT Control fails to enforce the reference dynamjowith

the system spending the majority of its time away from the ideal stite, 6,
while EA-EMT manages to force the state distribution to concentrate closér to
In fact, the distance betweeg and the EA-EMT distribution induced in the first
200 steps is 40% less than the comparable distance for the EMT controllsy. Th
however, does not fully reflect the adaptability of EA-EMT. To this enid, F(a)
shows how the mean of the empirical distributions of the 200 step windowsdeha
The distributions induced by EMT Control do not change over time, resuking
straight horizontal lines depicting the constancy of the mean. On the othdr ha
the data shows that EA-EMT quickly adapts, the algorithm induces the entpirica
state distribution with the mean approaching the ideal state6. In this respect,
EA-EMT even slightly surpasses the performance of the standard ENbFitialg

with the correct environment model. This is due to the adaptive portion of EA-
EMT contributing to the tie breaking when considering similar actions — this tie
breaking is rigid in EMT Control. Similar pictures occur with respect to the vari-
ance of the empirical distributions. This means that EA-EMT overcomes thelmod
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incoherence and increasingly concentrates the state empirical distribcmiomda
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Figure 7: EA-EMT adaptation to various perturbations. Notice the log-eddhe Y axis in (b).

4.2. Catastrophic Perturbation

The action space of the D-Man domain has a simple intuitive interpretation — the
action sets how quickly the system state will shift left or right. The deviating pe
turbation did not exceed this interpretation, it simply meant that the system will
naturally move in one direction faster than the other. In a way it also meant that
the perturbation induced a very mild model incoherence — principally the medel
mained correct. However, EA-EMT can adapt to much more severe madéien
ences. In fact, in the next set of experiments the environment model is deiyple
incorrect. For each run in this experiment set a random permutatiodh — A
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was selected. Then, when actiar A was applied, the environment reacted as if
the action wasr(a).

In more depth, Fig. 6(b) shows the empirical distributions obtained in the first
200 steps of decision making. Permuting the action breaks any connediigeeine
what EMT Control expects the action to do and what actually occurs in thean
ment, essentially the actions are scrambled and the EMT Control chooseara
action. This results in the algorithm’s failure — the empirical state distribution is
equivalent to that of applying no control at all, with higher probability ofrteral
states due to the failure of the respective left and right steps. In coriEra€EMT
easily adapts and performs increasingly well, as can be seen in Fig Fo(lw-
ing the development of the empirical distribution within a 200 step sliding window,
the figure shows thly distance from the distribution formed by the standard EMT
algorithm in the non-perturbed environment. This data demonstrates thBMHEA-
exponentially quickly discovers the true effects of actions and appesdbie per-
formance of the EMT control in a non-perturbed environment. Even tnolg
empirical distribution of the first 200 steps includes the first decisions maskdb
on the scrambled model, it already recovers 70% of the performance &l the
model incoherence and, through further adaptation, it reaches 3%fery.

4.3. Periodic Perturbation

Finally, it is important to ensure that the algorithm can perform well in a dynami-
cally changing environment. For example, a robot’s body is subject tocmaign-

tal effects, and its response to control will change accordingly. Sormiseanvent
parameters, like the daily temperature variation on Lunar surface, maytieenex
and persistently reoccurring. To test EA-EMT in such environments,onsider

yet another perturbation: an additional deterministic step is made, and theatire

of the step switches between left and right with constant period (500at@éps

in our experiments). The shape of the distributions formed by the contralters
equivalent to those in the persistent shift experiment (see Fig. 6(&))Wwa omit

the respective graph. On the other hand, the development of the emgistal
bution over time is quite different. In particular, Fig. 7(c) shows the behaad

the mean value for empirical distributions calculated within a 200 step sliding win-
dow. While the standard algorithm literally switches from one value to another,
depending on the direction of the shift, the performance of EA-EMT advainpws
recovery after a direction switch occurs. Notice also, that the magnitutieeof
mean variation at the switch point becomes significantly (25%) less for EA-EM
than the standard EMT. This suggests that, beyond its ability to recoverifrom
relevant adaptations, the adaptive controller version learns to redeiaittrol
inertia. In other words the algorithm reduces the impact of the suddemehan
the environment behaviour, stabilising the overall performance.
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a0 5. Experimental Evaluation: Continuous State Space

461 TO complete the demonstration of our algorithm, we apply EA-EMT to a continu-

462 OUS State environment, where a task is achieved by switching betweepgmiéiesi

a3 Sub-controllers. This combination of the discrete switching and the contnuou

a6 SWitching components, clearly show EA-EMT to be a hybrid controller. Ngtab

465 Neither the structure nor the principle of application change with the transition f

a6 a discrete to a continuous state space. The transition is achieved simplydxy rep

67 ing the finite dimensional vector, that has represented state probability dligtnib

a8 IN the discrete case, by a Gaussian distribution to represent the state tatribu

a0 Of the continuous domain. Similarly, stochastic transition matrix is replaced by a

470 conditional Gaussian distribution to capture system dynamics. Furtherthere,

az1 - amount of underlying calculations grows only polynomially with the dimension of

a2 the state and the observation spaces. Itis this computational scalabilityegfadith

a3 that no modification is required nor made to the reasoning of the action selection

472 procedure, which remains fully and completely intact whatever the envinohme

475 dimensionality is, that grant EA-EMT almost universal applicability. It all@us

476 algorithm to be deployed both as a direct low level controller, and as aopart
complex hierarchical hybrid controller with multiple levels of abstraction.

Figure 8: Hovercraft scheme.

477
478 The specific domain we chose is that of a hovercraft with three thrusters d

479 picted in Fig. 8. Solid arrows show thruster directions, while the hollow arrow
a0 denotes a potential mistake in that thruster's model. From the perspecie of
a1 IFR example, such modelling mistake would correspond to a sudden chatige in
a2 plane’s responses, for instance due to a collision with a bird or a mecharata

a3 function. The system generically develops in discrete time using the equation:

X1 1 h 0 0] % ® oo !
484 Xt = 0 1.0 0} X + h 0 [V, V2, V3] u1
Yir1 0 0 1 h|| w 0 h—zz 1Y 73 u2
Vicrt 000 1]l w 0 h s
485 In the equationy; denotes the directional force distribution of a thruster,
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its basic level of activity, andh denotes the time span during which the thrust
was applied. To further underline the use of EA-EMT as a switching mecha-
nism of a hybrid controller, we restrict in our experiments to a finite discrete
set. Specifically, we used 5 activation levels betweénahd 10 in equal inter-
vals, and only one thruster could have a non-zero activation at any tortbas
total of 15 distinct joint activations were possible. This naturally simulates the
situation that occurs in hybrid systems, where an action corresponds &pthe
plication of a distinct sub-system controller, rather than a choice of a comim
value control signal. Two configurations of thrusters were used. Qunatiion A,
[vi,v2,v3] = [(1) cl’jﬂ, that corresponds to the solid arrows in Fig. 8; and config-

uration B, 1,v2,v3] = [_%.3 (1’:}], that corresponds to a structural failure of a
thruster depicted by the hollow arrow. In all experiments, while the contralier
gorithm was given either the environment model with thruster Configuration A
B, the actual motion of the hover craft was always simulated using Coafigar
A. This discrepancy allowed us to test the performance of our algorithraerum
deviating modelling incoherence.

Now, to provide a quantitative performance measure, we have seakewar
trol algorithms with the task to simulate a gradual spiralling descent towards zer
from rest at coordinates [1], which we have described by an autonomic linear
system with the equation given below. Recalling once more our IFR scerad
system would correspond, for example, to the necessary relativertiespof the
altitude and speed of the airplane, as well as their development in time, during a
landing procedure. As befork denotes the time span of a single step, whitie-
notes the decay of the spiral afthe rotation angle of a single step of the system.

Xie1 Acosp) 0 —Asin@) 0 Xk
X1 | | 2(dcos@)-1) -1 —22asin@) 0 X
Yiel | Asin(@) 0 Acosf) 0 Yk
Vi1 fsing) 0 f(acosf)-1) -1 | W

In more detail, the algorithms we have considered were EMT, EA-EMT and
a discrete Model Follower Controller (MFC). The latter algorithm has been s
lected for its robustness and ubiquity of its principle (see e.g. [7, 14, a&{king
it suitable to produce a baseline comparison. The MFC algorithm operated in th
usual manner, specifically, given the current hover coordinateslgfoeithm se-
lected thrust to minimise the discrepancy between the outcome predicted by the
task’s equation and the equation of the hovercraft's model. We have &ivdd
initialisation and task representation parameters so that, for the Configufation
thrusters model, its decisions coincide with MFC. We conjecture, in fact, tat E
is formally a more general approach than MFC, in that EMT can alwaysrisaltu
to reproduce MFC'’s behaviour. The resulting hovercraft trajectodefsicted in
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Figure 9: Hovercraft trajectories under various controllers algoritmascontroller models and their
cumulative error. In all cases physical simulation adopts thruster @oafion A.

Fig. 9(a). The dotted line represents the ideal trajectory that could resare dib-
tained if the thrustss; where continuous, rather than discretised. The Fig. 9(a)
also demonstrates that the task we posed can be indeed solved by antiapplica
of the standard EMT controller or MFC, forming a performance baselinerevh
the environment develops exactly as the controller's model describes itirrin
Fig 9(b) and Fig 9(c) depict the performance of the EMT and EA-EMT ratigams
provided with Configuration B (wrong) thruster model. Due to the aforemeatio
EMT tuning, even under Configuration B the trajectories of EMT and MRE ar
extremely similar, and we omit the latter due to space limitations.

However, Fig.s 9(a), 9(b), 9(c) can only provide an intuition as to havoua
algorithms cope with the task. To clearly distinguish and evaluate the contosl alg

18



s rithms’ performance we have calculated the cumulative error of thesettragsc

s3s  Thatis, for each experiment run at each time step we have computed grewliié

s3s  between the system state that results from the discrete level of thrugtnchps

s37  a control algorithm and the system state that resulted from the applicatioe of th
sss  analytically computed continuous thrust. Fig. 9(d) depicts the accumulatioatof th
s discrepancy over time. Initially slightly worse, due to slack expert ensemitibgin

sq0 ISation, over time EA-EMT significantly outperforms both EMT and MFC. Ppsha
sar  to further underline the strength of the EMT-based approach in genetade that,

sz under model incoherence, even the standard EMT outperforms MECaggre-

s43  gates trajectory error at a lower rate. Notice that due to thrust discretisatio

s42  €IT0r is unachievable, as is witnessed by the error accumulation of EMITM&C

s4s  Since they coincide in this case) with the correct Configuration A thrustedeino
s6  Furthermore, we have calculated the accumulated thrust utilised by all atgarith
s¢7  Solutions when faced with the bad Configuration B model. The results aa giv

sas Table 1. The data confirms that EA-EMT recovers significant portionssfde due

s¢9  t0 model incoherence. Furthermore, to complete our investigation, we lawve a
sso  measured the amount of energy consumed by the control algorithms in terms of
ss1 the applied thrust vector norm (see the third column of Table 1). Althougjisat

ss2 - Sight it may look that EA-EMT has conserved some energy by a faster toave

ss3  lower spiral loop, in fact, and unlike a passive descent under a diiavid pull,

ssa - maintaining a tighter trajectory at the same speed necessitates ever higlggr ene
sss  levels to counter the centrifugal force. We are, therefore, inclinedriolade that

ss6  the energy conservation is an algorithmic property of EA-EMT.

Algorithm/Thruster Configuration Total Energy| Total Trajectory Discrepancy
EMT(MFC)/Configuration A 132.6 21.067285
MFC/Configuration B 150.8 43.036976
EMT/Configuration B 140.4 40.56558
EA-EMT/Configuration B 117.6 35.400698

Table 1: Total trajectory discrepancy and energy consumption oesteps

57 6. Conclusions and Future Work

sss 1N this paper we present the Ensemble Action EMT algorithm — a control splutio
sso  that has three important properties: it isayocentric perceptual controller; it is

seo @ Universal model-based controller; it is anon-line model calibrating controller;

se1  and it is ahybrid controller capable of operating in mixed discrete-continuous or
se2 hierarchical action abstraction domains. As an EPC solution, EA-EMTrithesc

ses  the control task and the optimality criteria in terms of the agent’s interpretation
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of sensory input, thus enabling an autonomous agent to formulate intemtabic
tasks, rather than just following an external command. Being a universdél-
based solution, EA-EMT is capable of utilising a given environment modéisbu
not bound to one model or one environment in particular. Finally, on-lineetod
calibration enables EA-EMT application to changing or simply poorly modelled
environments.

EA-EMT is unlike other adaptive control algorithms based on expertnense
bles, where experts directly produce actions or plans to be fused 16.927,
28]) 3. Rather, EA-EMT operates in two distinct modules: the expert-based model
estimation and a control algorithm that utilises that model. This enables greater
design flexibility, and generalisation, particularly with respect to the modd@ typ
that experts produce. For instance, in robotic soccer — a domain wellrktm
attract hybrid control solutions — environment models are frequentlydf@inhe
edge of logic and probability-based approaches, especially in oppplagnecog-
nition [29-31]. Nevertheless, because of the employed probabilistic sotivese
models can still be successfully weighted and fused, albeit necessitatinfgan
ence process to do so [29-31]. Furthermore, they still can be evalaatiecom-
pared via the Kullback-Leibler divergence. As a result, EA-EMT campanded
to operate even in such a highly complex and dynamic environment as robotic
soccer. In fact, the on-line adaptability of the EA-EMT and its computatidifial e
ciency will be particularly useful.

Finally, we also would like to investigate the possibility of altering the weight
adaptation to includdorgetting (inherent tendency of weights to equalise over
time) andupdate extrapolation (simultaneous weight modification of actions with
similar effects). In particular, forgetting and update extrapolation careseel
in combination with learning approaches. Specifically, we would like to conside
the situation where a library of behaviour primitives (or experts) is dyndiyica
composed (see e.g. MOSAIC [16]). In this case, the appearancemofargrol
sub-systems can be handled better, if the expert mixture can be initialitieel, ra
than learned over time, by meansugfdate extrapolation. Similarly, older sub-
systems can be phased out more effectivefgrifetting is applied.
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