
Mechanism Design for Task Procurement with
Flexible Quality of Service

Enrico H. Gerding1, Kate Larson2, Alex Rogers1, and Nicholas R. Jennings1

1 University of Southampton, Southampton, SO17 1BJ, UK
{eg,acr,nrj}@ecs.soton.ac.uk

2 University of Waterloo, Waterloo, ON N2L 3G1, Canada
klarson@cs.uwaterloo.ca

Abstract. In this paper, we consider the problem where an agent wishes to com-
plete a single computational task, but lacks the required resources. Instead, it
must contract self-interested service providers, who are able to flexibly manip-
ulate the quality of service they deliver, in order to maximise their own utility.
We extend an existing model to allow for multiple such service providers to be
contracted for the same task, and derive optimal task procurement mechanisms in
the setting where the agent has full knowledge of the cost functions of these ser-
vice providers (considering both simultaneous and sequential procurement). We
then extend these results to the incomplete information setting where the agent
must elicit cost information from the service providers, and we characterise a
family of incentive-compatible and individually-rational mechanisms. We show
empirically that sequential procurement always generates greater utility for the
agent compared to simultaneous procurement, and that over a range of settings,
contracting multiple providers is preferable to contracting just one.

1 Introduction

Service-oriented computing, in which computational resources are seamlessly and dy-
namically procured from third party suppliers as they are required, has generated sig-
nificant recent activity within the research community. Examples of such initiatives
include Grid and utility computing, and these technologies are increasingly being pro-
posed for a wide range of scientific and business workflows. However, to reach the full
potential of this vision, such systems require that both the suppliers and consumers of
these computational resources are able to engage in autonomous negotiation and con-
tracting (given their own individual goals and requirements). To this end, agent-based
approaches that make use of computational mechanism design have been advocated [1].

Much of the work in this area to date has sought to extend the standard approaches
of mechanism design to cases in which there is a non-zero probability that a service
provider may fail to meet its contracted obligation (e.g. failing to satisfy an agreed time
deadline) [2,3]. However, a significant shortcoming of much of this work is that it as-
sumes the probability with which a service provider will fail is fixed and exogenous.
In contrast, Matsubara provides a more realistic model in which self-interested service
providers flexibly manipulate their quality of service in order to maximise their own
utility [4]. In this model, a contracted service provider actively manages the resources

R. Kowalczyk et al. (Eds.): SOCASE 2009, LNCS 5907, pp. 12–23, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Mechanism Design for Task Procurement with Flexible Quality of Service 13

that it commits to a task, in order to manipulate the quality of service that it provides to
the contracting agent (e.g., it may commit more resources to a task, increasing the prob-
ability that the task will be successfully completed, if the reward for doing so is large;
conversely, it may intentionally fail to complete a task if it profits by doing so). Here
the contracting agent is faced with a principal-agent problem since it cannot directly
monitor the service providers’ activities. Hence it must create appropriate incentives in
order to achieve the desired quality of service level.

To this end, Matsubara provides a mechanism based on a payment rule that incen-
tivises potential contractors to truthfully reveal their costs for completing the task, and,
once selected, to invest the required amount of costly resources. The approach used
is similar to that more recently applied to an information setting where strictly proper
scoring rules are used to incentivise information providers to truthfully reveal a prob-
abilistic estimate whose generation requires the investment of costly resources [5,6].
However, these mechanisms are restricted to the case that a single service provider is
contracted to complete each task. In reality, when faced with the uncertain execution of
tasks, it is common to introduce redundancy by contracting multiple providers for the
same task; either simultaneously or sequentially (i.e. the agent awaits the failure of one
provider before approaching another) [7].

It is this shortcoming that we address in this paper, and to this end, we describe
a novel family of mechanisms that allow the contracting agent to procure computa-
tional tasks from multiple self-interested service providers. We consider how a utility-
maximising contracting agent should price contracts with these service providers in
both the full information setting, where the agent has complete knowledge of the cost
functions of the providers, and also in the incomplete information setting where it must
elicit this information from them. Such an extension is challenging since, in the opti-
mal case, the expected utility of a provider that has been contacted to perform the task,
depends on the cost functions of the other contracted providers. In the incomplete infor-
mation case this results in an interdependent valuation setting with so-called allocative
externalities, for which it has been shown that no standard mechanism exists which is
both efficient and incentive compatible [8]. We address this by developing mechanisms
which are not efficient, but take advantage of the optimal solution to reduce this inef-
ficiency. We then show empirically that, under our mechanisms, contracting multiple
service providers for the same task is preferable to contracting a single provider, as it
often increases the probability that a task is successfully completed, whilst reducing the
costs to the contracting agent.

In more detail, we make the following contributions to the state of the art:

– We derive optimal task procurement mechanisms when the agent has full knowl-
edge of the cost functions of the service providers. We consider procurement from
multiple providers, and consider settings where these providers are contracted si-
multaneously and sequentially (i.e. the agent awaits the failure of one provider be-
fore approaching another).

– We extend these results to the incomplete information setting where the agent must
elicit the cost information from the providers. We characterise a family of mecha-
nisms and prove that they are incentive compatible (i.e. the providers have a domi-
nant strategy to truthfully reveal their cost functions to the agent), and individually

14 E.H. Gerding et al.

rational (i.e. the expected utility of providers that participate in the mechanism is
greater or equal to zero). Based on the insights obtained from the optimal, full
information case, we present three mechanisms from this family: a uniform and
discriminatory pricing mechanism for the simultaneous procurement case, and a
mechanism for the sequential procurement case.

– Finally, we empirically evaluate our mechanisms, showing that sequential procure-
ment always generates greater utility for the agent compared to simultaneous pro-
curement, that discriminatory pricing always generates greater utility for the agent
than uniform pricing, and that over a range of settings, procuring from multiple
providers is preferable to procuring from just one.

The remainder of this paper is structured as follows. In section 2 we formally describe
the setting which we consider. In section 3 we describe the optimal procurement strategy
in the full information setting, before presenting our three novel mechanisms, and prov-
ing their properties, in section 4. We instantiate and empirically evaluate these mecha-
nisms in section 5, and, conclude in section 6.

2 Problem Description

Our model is based on that of Matsubara, but expressed here in the standard notation
of mechanism design, rather than the original contract theory. Hence, we consider that
contracting agent, A, has a task, T , that it would like to have completed. If the task is
completed successfully then the agent receives value V , and otherwise it receives zero.
We assume that there are n service providers capable of performing task, T . The prob-
ability of any provider successfully completing the task (the quality of service offered)
depends on the amount of some costly resources that it decides to allocate to the task.

Formally, we assume that each service provider, i, has a potentially unlimited sup-
ply of resources1, and denote ri ≥ 0 as the amount of resources that i will devote to
executing the task. We assume that as a provider allocates more resources to the task,
the probability that the task will be successfully executed increases. That is, there is a
quality of service (QoS) function P : R

+ → [0, 1] such that P (ri) is the probability
that i successfully completes the task if it devotes ri resources to the problem. We as-
sume that P (·) is common to all providers, that if a provider devotes no resources to
the task then it will fail (that is, P (0) = 0), and that the more resources are devoted to
the task, the more likely it is to successfully complete the task. Thus, P (·) is continu-
ous, increasing and strictly concave with P (ri) → 1 as ri → ∞. Finally, we assume
that the probability of success of any service provider depends only on its own resource
allocation, and not on the success or failure of any other provider.

We model the costly resources of provider i with a cost function, ci : R
+ → R.

We assume that ci(·) is continuous, increasing and convex, and that ci(0) = 0. In ad-
dition, we assume that for any two service providers i and j, if they have different
cost functions, ci(r) and cj(r), these functions are non-crossing for r > 0, i.e., either
ci(r) = cj(r), ∀r or ci(r) �= cj(r), r > 0. An example class of cost functions which

1 However, the costs of these resources (explained below) can become arbitrarily large.

Mechanism Design for Task Procurement with Flexible Quality of Service 15

�

�0

1 �

�
r r

P (r) ci(r)

c1(r)

c2(r)

c3(r)

�������

.
..

......................................

...................................

................................

............................

.........................

......................

.
.....................................

...................................

.................................

...............................

..............................

...............................

.................................

..................................

.
......................

...................

.................

..............
........
..........

............
......

(a) (b)

Fig. 1. Figure (a) is an example quality of service function. Figure (b) shows example cost
functions.

satisfy these properties are linear cost functions, where ci(ri) = Kiri for some con-
stant Ki ≥ 0. Figure 1 illustrates the structure of possible cost and quality of service
functions.

Since the contracting agent cannot directly observe the amount of invested resources
(but only whether a task failed or succeeded), it must create incentives for service
providers to invest a certain amount of resources. To do so, the contracting agent uses
a payment scheme whereby the payment depends on whether or not the task was suc-
cessfully completed. In the case that service provider i is contracted, it is automatically
paid βi, and then, if the task is successfully completed, it receives an additional bonus
αi. We assume that αi is always non-negative, but place no restrictions on βi.

3 The Full Information Setting

In this section we study the problem of procuring service providers to complete the
agent’s task, when the agent has full information about the providers’ cost functions.
We first analyse the case where the agent contacts a single provider, before extending
these results to the case where the agent procures services from multiple providers.

3.1 Single Service Provider Case

Since the providers are self-interested and autonomous, the agent is unable to force
them to execute the task. Instead, the agent must provide appropriate incentives so that
the providers will take on the task for the agent, and will invest appropriate levels of
resources. Assume that the agent has selected provider i to execute the task. By setting
the parameter αi appropriately, the agent is able to induce any desired level of effort,
ri, from provider i.2 In particular, for any value of ri, provider i’s expected utility
is given by Ui(ri) = αiP (ri) + βi − ci(ri) which is maximized when U ′

i(ri) =
αiP

′(ri) − c′i(ri) = 0. Solving for αi, we have:

αi =
c′i(ri)
P ′(ri)

(1)

2 From here on, we use ri to denote the agent’s desired level of effort, to distinguish from the
provider’s chosen investment ri, and to emphasize that the agent cannot directly enforce this.

16 E.H. Gerding et al.

which is well defined (since ci(·) is convex and P (·) is strictly concave), and is positive
(since both ci(·) and P (·) are increasing). Therefore, if the agent desires that i invest r
resources, then by setting αi = c′i(r)/P ′(r), i maximizes its utility by actually investing
r (i.e. r = argmaxrUi(r)).

As well as inducing effort, the agent would like to minimise the payment to provider
i. At the same time, however, the agent needs to ensure that i will voluntarily participate,
and as such must ensure that Ui(ri) ≥ 0. The agent can satisfy both conditions by
ensuring that βi ≥ ci(ri)−αiP (ri). By substituting αi from Equation 1 and minimising
βi subject to the constraint, we have:

βi = ci(ri) − c′i(ri)
P ′

i (ri)
P (ri). (2)

While the agent wants to ensure that the selected provider invests the desired level of
resources into the task, its real goal is to maximise its own utility, UA(r) = (V −
αi)P (r) − βi. To this end, the agent must find α∗

i and β∗
i so as to induce the optimal

level of effort from i, r∗i , such that UA(r∗i) is maximised. By substituting Equations 1
and 2 into the expression for the agent’s utility, we get UA(ri) = V P (ri) − ci(ri).
Hence, by taking the first derivative and setting it to zero, and by letting r∗i denote the
optimal level of (induced) investment by provider i from the agent’s perspective, we get
V = c′i(r

∗
i)/P ′(r∗i) and therefore:

α∗
i = V =

c′i(r
∗
i)

P ′(r∗i)
(3)

To calculate β∗
i , let g(ri) = c′i(ri)/P ′(ri). Then r∗i = g−1(V) and thus:

β∗
i = ci(g−1(V)) − V P (g−1(V)). (4)

It is important to note that when V (and thus αi) is very small, and the provider’s
marginal costs c′(r) are very high, the optimal level of effort r∗i = g−1(V) may be neg-
ative. If this is the case, i cannot hope to obtain any (strictly) positive utility, irrespective
of the actual invested effort. However, due to voluntary participation, the provider will
then choose to not execute the task, and this is actually beneficial to the agent since
costly providers will self-select and voluntarily opt out.

3.2 Multiple Service Providers Case

By procuring from multiple service providers, the agent may be able to increase the
probability with which the task is successfully executed since if one of them fails, then
another may succeed. We now consider two procurement strategies involving multiple
service providers: (i) simultaneous procurement and (ii) sequential procurement (where
the agent awaits the failure of one provider before approaching another).

Simultaneous Procurement. In simultaneous procurement, the agent contracts some
subset of providers, M with |M | = m ≤ n, to execute the task T . Once contracted,
the m providers all execute the task at the same time, not waiting to see how others

Mechanism Design for Task Procurement with Flexible Quality of Service 17

perform. It may so happen that while the agent only requires the task to be completed
once, multiple providers successfully complete the task. Given this possibility, the agent
is faced with the problem of determining how to set the parameters αi and βi for each
of the m providers in order to maximise its own utility.

Let r = (r1, . . . , rn) be the resource vector specifying (induced) resource allocations
for each provider i. Assume that ri = 0 for all i �∈ M . The expected utility of the agent,
given that it selected the m providers to procure from, is:

U sim
A (r, M) = V

(
1 −

∏
i∈M

[1 − P (ri)]

)
−

∑
i∈M

[αiP (ri) + βi]

= V

(
1 −

∏
i∈M

[1 − P (ri)]

)
−

∑
i∈M

ci(ri). (5)

Here, the latter equation is obtained by replacing αi and βi with Equations 1 and 2. By
doing so, the agent induces investment ri, and in addition ensures voluntary participa-
tion.To determine the optimal investment levels for each provider i, r∗i , from the agent’s
perspective, we must solve �U sim

A (r, M) = 0. This results in:

α∗
i = V

∏
j �=i∈M

(1 − P (rj)). (6)

The optimal solution r∗ and α∗
i for all i is found by solving the system of equations

characterised by Equation 6, subject to the constraint that r∗i ≥ 0 and Ui(r∗i) =
αiP (r∗i)+β∗

i −ci(r∗i) ≥ 0. We note that, although at first glace it appears as though α∗
i

does not depend on ci(·), due to the interaction between the constraints for all providers,
α∗

i is indirectly dependent on ci(·). While this observation is interesting but irrelevant
in the case where the cost functions are known, it will become important when we
consider a mechanism for the incomplete information case in the next section.

Sequential Procurement. In sequential procurement, the agent only contracts an ad-
ditional provider if previously contracted providers have failed to complete the task.
This approach can be advantageous to the agent as it may only need to contract a small
number of service providers, compared to the simultaneous procurement setting. On the
other hand, the agent must decide the order in which to contract with providers.

The problem of sequentially procuring tasks from a set of service providers can be
formulated as an optimal search problem [9]. If a provider i is contracted by the center
and devotes ri resources to the task, then it may successfully complete the task with
probability P (ri), providing the agent with value V −αi − βi, or the provider may fail
with probability 1−P (ri), providing the agent with value −βi. Weitzman showed that
in such a setting, each provider can be characterized by an index given by:

zi =
P (ri)(V − αi) − βi

P (ri)
(7)

The optimal order in which the providers should be procured corresponds to the de-
creasing order of zi. That is, the provider with the largest index should be contracted

18 E.H. Gerding et al.

first, followed by the provider with the second largest index, if the first one fails, and so
on. Given equations 1 and 2 which specify αi and βi, we have zi = V − ci(ri)/P (ri).
Since the cost functions of the providers are non-crossing, and quality of service func-
tion, P (·), is the same for all providers, then for a given r, providers with lower cost
functions should be procured before those with higher ones.

Theorem 1. Let M be a set of service providers, |M | = m, and assume ci(r) ≤
ci+1(r) for all r. Then when procuring the providers sequentially, i should be con-
tracted before i + 1.

Proof. Proof follows from [9].

Given that we now know the order in which to contract the providers, we can derive
the utility of the agent. Assume that there are m providers, and that they are ordered
such that ci(r) ≤ ci+1(r) for all r. The expected utility of the agent, given resource-
allocation vector r = (r1, . . . , rm) is:

U seq
A (r) = UA(r1) +

m∑
i=2

UA(ri)
i−1∏
j=1

(1 − P (rj)) (8)

In order to maximize the utility of the agent, set �U seq
A (r) = 0. This results in m∗ = V

and:

α∗
i = V −

[
UA(ri+1) +

m∑
j=i+2

UA(rj)

j−1∏
k=i+1

(1 − P (rk))

]
(9)

for 1 ≤ i < m. Unlike the simultaneous procurement case, α∗
i depends only on the cost

functions of providers that are potentially contracted if i fails to complete the task. As
was done in the single provider setting, to calculate β∗

i , we define gi(r) = c′i(r)/P ′(r),
and then the optimal resource demand is r∗i = g−1

i (α∗
i). Thus β∗

i = ci(r∗i)−α∗
i P (r∗i).

4 Eliciting Cost Functions

In the previous section we assumed that the cost functions of the providers were known
to the agent. Given this information, the agent was able to compute the appropriate val-
ues for parameters αi and βi so as to incentivise the providers in such a way that the
agent’s own expected utility was maximised. However, the assumption that the agent
has full information is unrealistic in many practical applications. In this section, there-
fore, we show that it is possible to relax this assumption. In particular, we introduce
a family of task procurement mechanisms TPM(α, β), such that providers are willing
to truthfully reveal their cost functions to the agent, that then uses this information in
order to set αi and βi appropriately.

Specifically, the agent first decides on a maximum number of providers, m (1 ≤
m ≤ n), it wants to procure services from (the optimal value of m can be determined
experimentally, as shown in Section 5) . The agent then executes TPM(α, β), which
proceeds as follows:

1. Cost elicitation: All providers i ∈ {1, . . . , n} report their cost functions ĉi(·) to the
agent. We do not assume that providers reveal their true cost functions.

Mechanism Design for Task Procurement with Flexible Quality of Service 19

2. Service provider selection and payment specification: The agent selects the m
providers with the lowest reported cost functions. We denote the set of chosen
providers by M . Since we assume that the cost functions are non-crossing, there is
no ambiguity in this selection. The agent then calculates αi and βi for each provider
i ∈ M , and reports these parameters to the providers.

3. Task execution: If the agent uses a simultaneous procurement strategy, then all
providers in M are asked to perform the task. If the agent uses a sequential pro-
curement strategy then one provider, i ∈ M , is chosen at random to perform the
task (Section 4.2 explains why this randomisation is important). If provider i fails,
then another provider j ∈ M \ {i} is chosen at random. This process continues
until either a provider successfully completes the task, or all providers in M have
attempted the task once and failed. Note that a provider is always allowed to refuse
to attempt the task.

4. Payment: Any provider i ∈ M that was contracted by the agent and successfully
completed the task is paid αi + βi. If provider i failed at the task then it receives
βi. All providers in M that were not asked to attempt the task, and those not in M
initially, receive zero.

In the rest of this section we describe how to calculate parameters αi and βi so that the
mechanism is incentive compatible and individually rational.

4.1 Simultaneous Procurement

We start by noting that the two parameters α and β allow us to define a family of
incentive compatible mechanisms. Then, Theorem 2 characterises the family of such
mechanisms for the simultaneous procurement strategy. We let ĉm+1 denote the (m +
1)th lowest reported cost function, and r∗(α, c) is the optimal investment decision of a
provider with a cost function c(·) and when the agent announces parameter α.

Theorem 2. If, for all i ∈ M , αi is independent of ĉi(·), and βi is given by:

βi = ĉm+1(r∗(αi, ĉm+1)) − V P (r∗(αi, ĉm+1)) (10)

then TPM(α, β)with simultaneous procurement is individually rational and incentive
compatible.

Proof. Individual rationality holds because a provider i can always refuse the task after
learning αi and βi. Since all providers in M are asked to attempt the task, the expected
utility of i ∈ M does not depend on the payment or the resources allocated to the task by
any other providers j ∈ M . Thus we can look at the incentives of each provider i ∈ M
independently. Consider first provider i with cost function ci. If ci < ĉm+1 then i has no
incentive to announce ĉi > ĉm+1 since by doing so it would guarantee itself a utility of
zero. If it revealed its cost function truthfully, then its expected utility is greater than or
equal to zero. Now consider the case where provider i has true cost function ci > ĉm+1,
but misreports ĉi < ĉm+1 and is selected. Let Ui(r, c) = αiP (r)+βi − c(r). Note that
βi is set such that Ui(r∗(αi, ĉm+1), ĉm+1) = 0. It follows that Ui(r∗(αi, ci), ĉm+1) <
0, and since ci > ĉm+1, Ui(r∗(αi, ci), ci) < Ui(r∗(αi, ci), ĉm+1) < 0. Thus such a

20 E.H. Gerding et al.

provider always receives negative utility. Together with the fact that payments to the
providers are independent of their reports, i has no incentive to under-report its cost
function.

We now introduce two mechanisms that satisfy the above requirement for incentive
compatility: (1) uniform pricing and (2) discriminatory pricing. From Theorem 2, since
β is given by Equation 10, we only need to worry about setting αi for all i ∈ M .
Now, in the uniform pricing mechanism, α = α1 = . . . = αm, and we calculate α by
replacing rj in Equation 6 by r∗(α, ĉm+1), resulting in following equation:

α = V [1 − P (r∗(α, ĉm+1))]
m−1 (11)

Corollary 1. Uniform Pricing Mechanism. TPM(α, β) with α and β satisfying Equa-
tions 11 and 10 is individually rational and incentive compatible.

Proof. Since α is independent of any of the reports of providers in M , the proof follows
from Theorem 2.

Although uniform pricing is a natural extension of the single-provider case, there are
better alternatives. In particular, although from Theorem 2, αi needs to be independent
of ĉi, we can use the cost functions of other providers to calculate αi. In fact, from
Equation 6 the optimal α∗

i in the complete information case can be calculated from
rj , j �= i and thus does not directly depend on ĉi. However, as noted in Section 3.2,
if we solve optimally for i as well as all j simultaneously, then α∗

i depends indirectly
on ĉi since r∗j depends on ri, and r∗i in turn depends on r∗j . Nevertheless, we can take
advantage of the information available about the cost functions of other providers to
develop a discriminatory pricing mechanism, though we need to be careful about how
we calculate αi to ensure incentive compatibility. In more detail, we calculate αi for a
specific provider i ∈ M by solving the following system of equations:

αi = V
∏

j∈M\{i}
[1 − P (r∗(αj , ĉj))] (12)

and for all j ∈ M\{i}:

αj = V [1 − P (r∗(αi, ĉm+1))]
∏

k∈M\{i,j}
[1 − P (r∗(αk, ĉk))] (13)

Note that we need to derive and solve a separate set of equations for each i ∈ M .

Corollary 2. Discriminatory Pricing Mechanism. If, for each i ∈ M , αi is given by in-
dependently solving equations 12 and 13, and if βi is given by Equation 10, TPM(α, β)
is incentive compatible and individually rational.

Proof. Note that ĉi does not appear in equations 12 and 13, and thus αi is independent
of that provider’s report. The proof follows directly from Theorem 2.

Mechanism Design for Task Procurement with Flexible Quality of Service 21

4.2 Sequential Procurement

In the full-information setting, described earlier, the order in which the providers are
asked to perform the task was shown to be important. However, in the incomplete in-
formation setting, we cannot use the reported costs to determine this order since it in-
fluences the expected utility of the providers (since those with higher cost functions are
less likely to be contracted by the agent). For this reason, the providers are randomly
selected in the third stage of the mechanism, and we refer to i ∈ M as the ith provider
in the random sequence, but ĉm+1 is the (m + 1)th lowest reported cost as before.

Now, whereas in the previous section we were able to use the reported costs of the
other providers to adjust the payment without changing the incentives, this is no longer
the case in the sequential setting. To see this, note that from Equation 9, α∗

i depends on
all providers that appear after i in the sequence. Given these considerations, Theorem 3
reformulates the requirements for incentive compatibility in terms of the sequential
procurement setting.

Theorem 3. If, for all i ∈ M , αi is independent of any ĉj(·), m ≥ j ≥ i, and βi

is given by Equation 10, then TPM(α, β) with sequential procurement is individually
rational and incentive compatible.

Proof. Since ĉi(·) does not affect the payment of providers j > i, the quality of service
offered by these providers is independent of this report. Furthermore, the position of
provider i in the sequence is independent of ĉi(·). As a result, other than through the al-
location decision, provider i’s utility is independent of ĉi(·). Furthermore, analogous to
the arguments in Theorem 2, βi is set such that providers cannot benefit by misreporting
in order to change the allocation.

We now present a specific discriminartory payment scheme where αm = V , and αi for
i < m is calculated by modifying Equation 9 to give:

αi = V −
[
UA(r∗(αi+1, ĉm+1)) +

m∑
j=i+2

UA(r∗(αj , ĉm+1))

j−1∏
k=i+1

[1 − P (r∗(αk, ĉm+1))]

]

(14)

Corollary 3. Sequential Procurement. TPM(α, β) where αm = V , αi for i < m is
given by Equation 14, and βi is given by Equation 10, is individually rational and
incentive compatible.

Proof. Since αi is independent of any reports of providers in M , the proof follows
directly from Theorem 3.

5 Empirical Evaluation

Having described three incentive compatible and individually rational mechanisms, we
now instantiate the quality of service and cost functions, and empirically evaluate our
approach. The purpose of this evaluation is two-fold. First, it provides an example of a
task allocation domain and how the mechanisms can be applied. Second, it allows us to

22 E.H. Gerding et al.

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

Number of Service Providers (m)

Expected Utility of Centre (U)A
n=6

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

Number of Service Providers (m)

Expected Utility of Centre (U)A
n=12

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

Number of Service Providers (m)

Expected Utility of Centre (U)A
n=18

Fig. 2. Simulation results showing the expected utility of the agent for simultaneous procurement
with uniform pricing (squares), simultaneous procurement with discriminatory pricing (triangles)
and sequential procurement (circles). Results for optimal sequential (short dashed) and simulta-
neous (long dash) procurement with complete information are also shown.

compare and evaluate the different mechanisms which we presented against the original
case in which a single provider is contracted3. In more detail, we define the quality of
service function as P (r) = 1/(1 + 1/r) and the providers’ costs as linear functions
ci(r) = Kir. As required, P (·) is strictly concave, P (0) = 0 and P (r) → 1 as r → ∞.
Furthermore, note that c(·) is convex (although not strictly convex) and c(0) = 0. In
the simulations that follow the constants, Ki, are independently drawn from a uniform
distribution with support [1, 2].

We choose these functions since they are representative of the general class of func-
tions to which our formalism applies, and also because they yield attractive analytical
solutions. For example, each provider maximises its utility by committing resources
r∗i =

√
αi/Ki − 1 and this will result in a quality of service such that P (r∗i) =

1−√
Ki/αi. Furthermore, Equation 6 becomes α∗

i = V
∏

j �=i∈M

√
Kj/α∗

j and can be

solved by taking the logarithm of both sides, and using the standard numerical technique
of Gauss-Seidel iteration [10], incorporating the voluntary participation constraint.

Figure 2 shows the results of applying the simultaneous (with uniform and discrim-
inatory pricing) and sequential procurement mechanisms in this setting. We vary both
the total number of providers, n, and the size of the subset of them that are selected
by the agent, m, and in all cases V = 4. We first note that the expected utility of
the agent when using the simultaneous procurement mechanism with discriminatory
pricing always exceeds that of the mechanism with uniform pricing, and thus discrim-
inatory pricing is always preferred. This is not surprising, since discriminatory pricing
makes more use of the cost information that is available to the agent. Likewise, the ex-
pected utility of the agent when using the sequential procurement mechanism always
exceeds that of either simultaneous procurement mechanism, and thus, if sequential
procurement is feasible in the specific application domain, then it is always preferred in
both the full and incomplete information settings. Interestingly, the difference in util-
ity between the full and incomplete information setting is much larger in the case of

3 Note that our simultaneous and sequential procurement mechanisms are identical in the case
that m = 1, and since the single provider mechanism is efficient, this is also identical to
Matsubara’s.

Mechanism Design for Task Procurement with Flexible Quality of Service 23

the sequential procurement mechanism compared to either simultaneous procurement
mechanism. Finally, the results show that given any specific setting (i.e. the valuation
of the agent, the total number of providers and the distribution that describes their cost
functions), there is an optimum number of providers to select to procure the task from
(either simultaneously or sequentially), and we note that when n is large, procurement
from multiple service providers in preferable to procuring from a single one, over a
wide range of values of m.

6 Conclusions

In this paper, we considered the problem of procuring computational tasks from self-
interested service providers that are able to flexibly manipulate their quality of service
in order to maximise their own utility, and we derived a family of task procurement
mechanisms that allowed a contracting agent to procure tasks from multiple service
providers (either simultaneously or sequentially). Our future work in this area con-
cerns extending these results to the case in which the agent wishes to procure multiple
interdependent tasks which exhibit complementary and substitutable valuations. This
setting corresponds to the problem of procuring services within a computational work-
flow, where the entire workflow may be worthless if particular tasks are not completed
successfully. Such an extension is likely to require the use of combinatorial auctions,
and we are particularly interested in exploring the existence of individually rational and
incentive compatible mechanisms that are also optimal.

References

1. Foster, I., Jennings, N.R., Kesselman, C.: Brain Meets Brawn: Why Grid and Agents Need
Each Other. In: Proc. of the 3rd Int. Conference on Autonomous Agents and Multiagent
Systems, vol. 1, pp. 8–15 (2004)

2. Dash, R.K., Ramchurn, S.D., Jennings, N.R.: Trust-based mechanism design. In: Proc. of the
3rd Int. Conference on Autonomous Agents and Multi-Agent Systems, pp. 748–755 (2004)

3. Porter, R., Ronen, A., Shoham, Y., Tennenholtz, M.: Fault tolerant mechanism design. Arti-
ficial Intelligence 172(15), 1783–1799 (2008)

4. Matsubara, S.: Trade of a problem-solving task. In: AAMAS 2003: Proceedings of the second
international joint conference on Autonomous agents and multiagent systems, pp. 257–264.
ACM, New York (2003)

5. Miller, N., Resnick, P., Zeckhauser, R.: Eliciting informative feedback: The peer-prediction
method. Management Science 51(9), 1359 (2005)

6. Papakonstantinou, A., Rogers, A., Gerding, E.H., Jennings, N.R.: A truthful two-stage mech-
anism for eliciting probabilistic estimates with unknown costs. In: Proc. of the 18th European
Conference on Artificial Intelligence, Patras, Greece, pp. 448–452 (2008)

7. Stein, S., Jennings, N.R., Payne, T.: Flexible service provisioning with advance agreements.
In: Proc. of the 7th Int. Conference on Autonomous Agents and Multi-Agent Systems, pp.
249–256 (2008)

8. Jehiel, P., Moldovanu, B.: Efficient Design with Interdependent Valuations. Economet-
rica 69(5), 1237–1259 (2001)

9. Weitzman, M.L.: Optimal search for the best alternative. Econometrica 47(3), 641–654 (1979)
10. Press, W.H., Flannery, B., Teukolsky, S.A., Vetterling, W.T., et al.: Numerical recipes. Cam-

bridge University Press, New York (1986)

	Mechanism Design for Task Procurement with Flexible Quality of Service
	Introduction
	Problem Description
	The Full Information Setting
	Single Service Provider Case
	Multiple Service Providers Case

	Eliciting Cost Functions
	Simultaneous Procurement
	Sequential Procurement

	Empirical Evaluation
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

