
Connecting Scientific Data to Scientific Experiments with Provenance

Simon Miles
1
, Ewa Deelman

2
, Paul Groth

3
, Karan Vahi

2
, Gaurang Mehta

2
, Luc Moreau

3

1
Department of Computer Science, King’s College London, UK

2
Information Sciences Institute, University of Southern California, US

3
 Electronics and Computer Science, University of Southampton, UK

Abstract

 As scientific workflows and the data they operate

on, grow in size and complexity, the task of defining

how those workflows should execute (which resources

to use, where the resources must be in readiness for

processing etc.) becomes proportionally more difficult.

While “workflow compilers”, such as Pegasus, reduce

this burden, a further problem arises: since specifying

details of execution is now automatic, a workflow's

results are harder to interpret, as they are partly due

to specifics of execution. By automating steps between

the experiment design and its results, we lose the

connection between them, hindering interpretation of

results. To reconnect the scientific data with the

original experiment, we argue that scientists should

have access to the full provenance of their data,

including not only parameters, inputs and intermediary

data, but also the abstract experiment, refined into a

concrete execution by the “workflow compiler”. In this

paper, we describe preliminary work on adapting

Pegasus to capture the process of workflow refinement

in the PASOA provenance system.

1. Introduction

Today, workflows are used by many researchers in

a range of sciences [15]. Workflow execution systems

provide a means to coordinate the execution of

thousands of tasks accessing Petabytes of data. Given

the size of analyses, a major challenge for scientists is

the interpretation of results produced by workflows, as

potentially many steps are involved in generating a

particular data product and the computations are often

executed in a distributed environment. For example, a

popular astronomy application, Montage [2] produces

science-grade mosaics of the sky on demand. This

application can be structured as a workflow that takes

images, projects them, adjusts their backgrounds, and

adds them together. A mosaic of 6 degrees square

involves processing 1,444 input images, requires 8,586

computational steps and generates 22,850 intermediate

data items. For a scientist to verify the quality of the

final mosaic, he/she may need to check that an input

image was retrieved from a specific archive, the

reprojections’ parameters were set correctly, the

execution platforms used did not have processors with

a known floating point processing error, etc.

Given the complexity of workflows with thousands

of computational steps executing across multiple

distributed resources, it is infeasible for users to

directly define the executable workflow. Often,

researchers use “workflow compilers” such as Pegasus

[6, 7] to generate the executable workflow from a

high-level, resource-independent description of the

end-to-end computation (an abstract workflow).

However, the additional workflow mapping also

increases the gap between what the user defines and

what is executed by the system and so complicates

interpretation of results: the connection between

scientific results and the original experiment is lost.

In this paper, we present a proof-of-concept

solution for this issue, based on technology for

determining the provenance of data, i.e. the process by

which they were produced.

1.1 Provenance systems

Many workflow systems now support some

mechanism by which execution can be tracked [16] so

that the provenance of results can later be determined.

Most such mechanisms focus on documenting how

execution steps, parameters, and intermediate data

produce the final results.

Therefore, while these provenance systems allow the

connection between data items to be made more

evident, they do not provide the connection between

results and steps in the original, abstract, high-level

workflow description; the provenance merely describes

the process of the compiled (executable) workflow.

1.2 Connecting data to experiments

The key contribution of this paper is to recognize that

scientific workflows, whether abstract or concrete, are

also first-class data, and that provenance mechanisms

designed for tracking data can also be used to track

processing applied to workflows. Combining

provenance of workflows with that of data they

produce, gives a comprehensive solution that allows

scientists to relate scientific data to scientific

workflows.

This paper describes preliminary work in recording

workflow refinements (transformations) made by

Pegasus so that this information can help users

understand the relationship between the executed

workflow and its abstract precursor defined by the user.

Such a record contributes to the full provenance of the

scientific data. We provide the ability to produce and

access this information via a provenance management

system. The technical contributions of this paper are:

• A model for defining workflow transformations

conducted by workflow compilers such as Pegasus.

• A mapping of that model to that of the PASOA

provenance system, and a description of its

implementation.

• An evaluation of approach’s cost in an astronomy

application, measured by the overhead to the

workflow compiler in documenting its execution.

• An illustration of uses to which scientists can put

the provenance in answering questions.

2. Workflow Compilation/Refinement

Our work is based on the Pegasus workflow compiler,

which maps high-level, abstract workflow descriptions

onto available distributed resources. The abstract

workflow provided by a user, portal, or another

workflow composition system [10] is resource

independent. It specifies the computations, their input

and output data, and interdependencies between them

without indicating where the computations take place,

or where data is located. A simple workflow

description could define computing the function F on

an input x, generating the output Y and placing it at L.

The process of generating an executable workflow

involves the following steps:

a) Find where x is from {S1, S2, …}, where Si is a

storage system.

b) Find where F can be computed from {C1, C2, …},

where Ci is a computational site.

c) Choose a site c and a storage system s subject to

constraints (performance, space availability etc.)

As a result, the following executable workflow will be

constructed.

1. Copy x from s to c

2. Move F to c

3. Compute F(x) at c, obtaining Y at c.

4. Move Y from c to L

5. Register Y in data registry

A description of steps a-c is the executable

workflow’s provenance while a description of steps 1-5

is Y’s provenance within the workflow.

Understanding Y’s full provenance requires

knowing its connection to the original workflow. Even

with this simple workflow, things can go wrong: x was

not found at s, F(x) failed, c crashed, or there was not

enough space at L. Given these four types of error

messages, the user may only understand the second and

last. That x was not at s is hard to interpret, especially

if there are copies of x elsewhere, because s was not

chosen by the user. A workflow system may shield

users from some failures, but for others this is

impossible.

2.1 Pegasus and workflow refinement

Above, we provided an example of the mapping from

abstract to executable workflow. In this section, we

present the refinement process that Pegasus goes

through as it refines information in the abstract

workflow towards execution. The main steps are:

• Reduction eliminates processing steps when

intermediate data products have already been

generated (by another workflow or previous

execution of this workflow) and can be reused.

• Site Selection chooses computational resources on

which to execute jobs described in the workflow.

This means finding available resources and

determining where required executables are

already installed or can be staged in. The workflow

nodes are annotated with their target execution

sites.

• Data Staging selects sources of input data for

computations, and adds nodes to the workflow to

stage this data in and out of the computation sites.

• Registration causes final and intermediate data to

be registered in a registry, by adding registration

nodes to the workflow.

• Clustering: The granularity of computations (many

short run jobs) or the granularity of data staging

(many small data transfers) can be too fine to be

efficient. In such cases, Pegasus clusters workflow

nodes together to be handled as one in execution.

The refinements result in an executable workflow that

looks very different than the abstract one defined by the

user.

2.2 Example of a Workflow Refinement

To illustrate how a workflow changes in refinement,

we use part of the Montage workflow which reprojects

images and takes their differences (Figure 1).

Figure 1. Part of Montage Workflow. Ovals

denote computations, rectangles denote data.

Reduction: Based on available data products,

Pegasus reduces the workflow: we assume that files

“Projected 1” and “Diffed 1” already exist on storage

system S1, so do not need to be recomputed. The

refined workflow is in Figure 2(a).

Site Selection: Sites for job execution are selected:

resources R1 and R2 are chosen (Figure 2(b)).

Data Staging: After consulting a registry, Pegasus

adds nodes to transfer the data from their storage sites

to where the computations occur. Nodes are also added

to transfer outputs back to the storage sites. Here, a

node (“Projected 2 R2 > R1” in Figure 3) is added to

transfer the intermediate data between sites R2 and R1

so that the computation can be invoked at R1. The

intermediate result “Projected 1” from the workflow’s

first branch is staged in for the mdiff computation.

Figure 2: Workflow (a) After Reduction (b)

After Site Selection.

Figure 3: Workflow with data transfer and

registration nodes.

Registration: Data registration nodes are added for

the workflow’s outputs. Registration enables workflow-

level checkpointing in case of failures and helps find

the data later. Figure 3 shows the workflow after the

data transfer and registration nodes are added.

Clustering: Data staging and computations on the

same sites can be clustered to improve overall

performance. The cluster is shaded in Figure 4.

The workflow is now ready for execution and is

sent to a workflow engine (we use Condor DAGMan

[9]). After execution, data products requested by the

original workflow are available on S1.

Figure 4: Workflow with node clustering of

data transfer tasks.

3. Motivating Questions

From our collaborations with domain scientists who

use workflows for analyses, some basic questions are

known to be important:

• Which data items were used to generate a

particular data product?

• What computations where conducted to generate

these data items?

• Where did the computations occur?

• Which version of the software was used?

There are also questions related to the evolution from

the abstract to the executable workflow:

• Why is this node in my abstract workflow not in

the executable workflow?

• Which intermediate data product was substituted

for the actual computation?

• Why, given that the data was at S1, did the

workflow use the data at S2?

• Which abstract node does a particular executable

node correspond to?

• Why did disk space at location X diminish so

much?

• Why is this intermediate data not in the registry?

The first set of questions can be answered by many

provenance systems but, to answer the second set,

information must be known about refinement, and in a

form suitable for answering those questions.

4. Documentation for Provenance

To address the needs of a range of e-Science

applications [14], the PASOA and Provenance projects

developed an architecture for determining of the

provenance of data [12]. The architecture proposes the

following lifecycle.

1. Create: As an application executes, it also creates

a description of its execution, called process

documentation, comprised of p-assertions,

assertions about individual process steps.

2. Record: Once documentation has been created, it

is recorded into a provenance store.

3. Query: After a data item is produced by an

application, users (or applications) obtain the

provenance of this data item by querying the store.

A query retrieves the p-assertions that describe

process by which the data item was produced.

An application that produces and stores process

documentation is provenance-aware, and in Section 5,

we describe how Pegasus has been made provenance-

aware.

E-science applications are often composed of multiple

independent components that may execute in a variety

of environments, so a generic data model for process

documentation was developed. Such a data model,

shared by all components, allows users to query

documentation without having to know which

components created it, and for creators to create

documentation understood by future unknown queries.

The provenance store is organized to enable the

provenance to be determined from documentation by

independent distributed sources. Applications are

viewed as service-oriented architectures (SOA). In this

style, a service is a component that takes inputs and

produces outputs. Clients invoke services, which may

themselves act as clients for other services; the term

actor denotes either a client or a service.

Communication between actors is by exchanging

messages, and exchange of one message between

actors is an interaction. An application’s execution is

described as the exchange of messages between actors

and transformations that actors perform on messages

they receive in order to generate new messages.

After mapping an application to an SOA, its

execution is captured using three types of p-assertion.

• An interaction p-assertion documents an

interaction between two actors, including the

content of the message exchanged.

• A relationship p-assertion documents the

function applied to data within an actor's incoming

messages to create an outgoing message, i.e.

processing done by an actor for an invocation.

• An actor state p-assertion documents internal

states of an actor that may be important in the

execution, e.g. configuration information

Using p-assertions, each actor in the application

documents the interactions it participates in and how

those interactions are related.

5. Implementation

Following PASOA’s approach, we modeled

Pegasus in terms of interacting actors. We consider the

refinement phase, where Pegasus refines an abstract

workflow is refined to be executable, and the

enactment phase, where Condor DAGMan enacts it.

5.1 Refinement Process Documentation

In refinement, Pegasus is modeled as an actor,

interacting with five refiners, also actors. The flow of

this process is in Figure 5. Each arrow is a documented

interaction or relationship. The interactions are

exchanges of partially refined workflows between

Pegasus and a refiner, until the final refiner’s output is

an executable workflow passed to DAGMan.

Pegasus

Reduction
Refiner

Site
Selection
Refiner

Data
Staging
Refiner

Registration
Refiner

Clustering
Refiner

Condor
DAGMan

Figure 5: Pegasus workflow refinement

modeled as interacting actors.
For each refinement step, five recording actions take

place. For explanation, Figure 6 depicts a refinement

step and Pegasus' invocation of it. Recording actions,

labeled A to E, and described below.

• Prior to each refinement, Pegasus records the

current, partially refined workflow that is about

to be refined further (A).

• It records relationship p-assertions linking this

workflow to the output of the previous

refinement (B): these are identical as Pegasus

itself does not alter the workflow.

• The refiner records the workflow received prior to

its refinement (C).

• It then records the workflow after refinement (D).

• It also records relationships from each workflow

node after refinement to nodes that caused it to

be as it is in the pre-refinement workflow (E).

Pegasus

Workflow
i

Workflow
i

Workflow
i+1

Refiner

B E

A C D

Figure 6: One refiner’s documentation.

5.2 Refinement Relationships

As mentioned in the final step above, each refiner

documents the relationships between nodes in the

workflow as it was before and after refinement. Each

relationship’s type gives queriers more information on

the refinement that occurred.

• identicalTo: Denotes that a node has not changed

in refinement. The absence of the relationship for a

node in the pre-refinement workflow indicates that

the node was changed removed in refinement.

• siteSelectionOf: Denotes that the post-refinement

workflow node is a compute job in the pre-

refinement workflow for which the target

execution site has been chosen and specified.

• stagingIntroducedFor Denotes that the post-

refinement node is a data staging operation

introduced to stage data in/out for the computation

present in the pre-refinement workflow.

• registrationIntroducedFor: Denotes that the post-

refinement node is a registration operation

introduced to follow a stage-out node.

• clusteringOf: Denotes that the post-refinement

node is a cluster of jobs combining several jobs

present in the pre-refinement workflow.

Relationships documented for Section 3’s example

are summarized in Figure 7. We show the workflow

fragment through six stages of refinement, from

abstract to executable. The workflow nodes (ovals) at

each stage are related (large arrows) to those in the

previous stage, with the relationship type (arrow label)

stating the function performed by the refiner that

transformed the workflow. By tracing relationships

backwards, a querier determines the provenance of

each concrete job, and how it relates to the original

abstract workflow.

5.3 Enactment Process Documentation

The new model for documenting enactment is very

similar to that for refinement. DAGMan is modelled as

an actor, interacting with each workflow job. DAGMan

sends invocation messages, containing command-line

arguments including input file names to executable

jobs, and completion messages are returned from the

jobs containing the names of output files produced.

As with refinement, relationships link nodes from

one step to the next, so that provenance can later be

determined, as in Figure 7. However, here the nodes

are the data items processed by the jobs, referred to by

filename, rather than job nodes of the workflow.

Reduction Site
Selection

Data
Staging

Registration Clustering

mproject

mdiff

mproject

mdiff

mproject

mdiff

mproject
at R2

mdiff
at R1

mproject
at R2

mdiff
at R1

Image 2
S1 > R2

Diffed 2
R1 > S1

mdiff
at R1

Id

Id

Id

Id Id

Id

Id

Id

Id Id

Cl

Id

Id

Id

SS

SS

St

St

St

St

St

Re

Relationship Type Key
Id identicalTo
SS siteSelectionOf
St stagingIntroducedFor
Re registrationIntroducedFor
Cl clusteringOf

Projected 1
S1 > R2

Image 2
S1 > R2

St

mproject
at R2

Projected 2
R2 > R1

Diffed 2
R1 > S1

Register
Diffed 2

Projected 1
S1 > R2

Image 2
S1 > R2

Id

mproject
at R2

Projected 1 & 2
R2 > R1

mdiff
at R1

Diffed 2
R1 > S1

Register
Diffed 2

Cl

Projected 2
R2 > R1

Figure 7: Relationships recorded during refinement.

Relationships between data items depend on the type of

job enacted, e.g. a job invoking 'gzip' would assert a

relationship of type 'gzip' between its output and input.

We did not adapt DAGMan itself to record

documentation; we automatically added wrapper code

to each job, which recorded the appropriate

documentation for that job and, by consulting the

abstract workflow, the connections between the inputs

to that job and the outputs of its parents in the

executable workflow.

5.4 Refinement and Enactment Connected

The combination of the documentation for

workflow refinement and enactment, allows detailed

provenance of a data item to be found:

• For each data item, we can find the concrete

workflow steps that produced it and other data

items that contributed to those steps.

• For each workflow step, we can find its

connection to the abstract workflow jobs from

which it was refined.

The full set of documented connections is depicted

in Figure 8, an extension of Figure 5 including the

documentation of the enactment's interactions and

relationships. Jobs in the concrete workflow produced

from the refinement lead to the data being produced, so

the refinement process is part of the data’s provenance.

Pegasus

Reduction
Refiner

Site
Selection
Refiner

Data
Staging
Refiner

Registration
Refiner

Clustering
Refiner

Condor DAGMan

Job 1 Job 2 Job 3 Job 4 Job 5
Figure 8: Combined workflow and data

process documentation.

5.5 Performance Evaluation

To be realistically usable, the overhead cost of

recording process documentation during enactment

must be insignificant. While the work presented here is

merely a test of the feasibility of the approach, our

preliminary results show that this is achievable. We

take different sizes of the large-scale Montage

workflow, with 0.5, 1, and 2 degrees square for our

evaluation. These have 65, 232 and 1444 nodes in their

abstract workflows respectively.

Prior to using PASOA, Pegasus recorded some

documentation about the enactment of jobs in a

database, the Provenance Tracking Catalog (PTC) [24].

The causal connection between data items and jobs

were not captured, and the workflow refinement phase

was not documented at all. In our experiments, we

compare the performance of refining and enacting the

workflows for Pegasus with its previous setup and with

the new setup, recording all documentation to a

PASOA’s Web Service provenance store [11]. For

brevity, we will refer to these setups as PTC and

PASOA respectively.

The workflows were run on a cluster of 7 dual

processor 2.4Ghz XEON nodes. A separate host (2GhZ

Pentium machine with 1Gb of memory) was used for

workflow submission. The Web Service provenance

store and the PTC were on the submit host.

Planning Time Comparision

0

20

40

60

80

100

120

0 500 1000 1500 2000

Number of Jobs

T
im
e
 (
in
 s
e
c
o
n
d
s
)

PTC

PASOA

)Linear (PASOA

)Linear (PTC

Figure 9: Time to refine workflow with and

without recording as workflow size increases
In Figure 9, we show the difference in execution

time for Pegasus with and without process

documentation recording to PASOA. As can be seen,

while there is an overhead to recording, this is linear to

the size of the workflow. While future work will much

reduce this overhead, through asynchronous recording

for example, the increase is already manageable. In

Figure 10, we show the total time for refinement and

enactment, with recording to PTC (enactment only) and

PASOA. The times recorded were comparable, and

increased linearly. Additionally, one needs to put these

times into the context of the time that Pegasus takes for

planning. For example, for the 2 degree Montage

workflow, the overhead of recording the refinement

provenance is 0.05% of the running time of Pegasus.

The biggest overhead was seen for the smallest

workflow and was on the order of 0.9%.

We also quantified the amount of disk space used to

store both the enactment and refinement provenance

information in PASOA. For the three workflow sizes

the enactment provenance was 4.7MB, 11.6MB, and

39MB for the 0.5, 1, and 2 degree square mosaics. The

corresponding size of the refinement provenance was

3.3MB, 11.6MB, and 23MB.

Provenance Recording Time

0:28:00

0:35:12

0:42:24

0:49:36

0:56:48

1:04:00

1:11:12

1:18:24

1:25:36

1:32:48

0 500 1000 1500 2000

Number of Jobs

T
o
ta
l
E
x
e
c
u
ti
o
n
 T
im
e

(h
o
u
rs
:m
in
u
te
s
:s
e
c
o
n
d
s
)

PTC

PASOA

)Linear (PASOA

)Linear (PTC

 Figure 10: Time for refinement and enactment with

PTC and PASOA systems

6. Related Work

Within computer science, Bose and Frew give an

overview of provenance related systems [3], Simmhan

et al. survey its application to e-Science [18], and

further compilations of the state-of-the-art exist [1, 14,

16]. Here, we focus on provenance in workflow-based

environments.

Deriving from the myGrid e-Science project, the

Taverna workflow enactment engine captures

provenance-related data in an RDF based data model

[22]. A query application programming interface (API),

ProQA, enables a variety of provenance queries to be

executed over the provenance RDF graph [23]. As the

documentation is stored as RDF, it enables both

workflow annotations and provenance information to

be queried over simultaneously [21]. Barga and

Digiampietri modified Windows Workflow Foundation

[5] to support the collection of process documentation.

A multi-layered model allowed the size of data stored

to be significantly decreased [16]. The Kepler

workflow enactment engine aims to support multiple

kinds of workflows from bioinformatics experiments

using complex, high-level tools to processes for job

control and data movement in Grids [13]. With

modifications to support explicit dependencies and

metadata, the execution of workflows in Kepler can be

captured with the Kepler Provenance Recorder [4].

None of the above-mentioned systems support tracking

the planning of workflows, and many do not support

execution on computational Grids.

While the above systems capture process

documentation only from the workflow enactment

engine, the Karma Provenance Framework [19, 20]

supports the capture of this information both from the

workflow enactment engine and from the services used,

via a notification model. The provenance model

previously used by Pegasus as part of the Virtual Data

System (VDS) also captured provenance-related

information from both the workflow enactment engine

and executing applications [24]. VDS does not,

however, store explicit relationships between input and

output data, so determining provenance of data relied

on access to the same workflow definition as was

executed at the time.

As with the above tools, VisTrails provides a

graphical user interface for building workflows, but,

instead of just capturing the execution of a workflow,

VisTrails also captures how workflows are created and

edited by the user [17]. As the user modifies a

workflow the various changes in the workflow are kept

using a mechanism similar to that of versioning

systems. When a workflow is run, the user can track

back to the particular workflow that was run and more

importantly see the evolution of that workflow [8].

VisTrails has similarities to our approach in that it

tracks how a workflow is changed before execution.

However, it captures only how users change the

executable workflow and not how automated

compilation processes affect the execution of the

workflow. VisTrails is then complementary to our

approach, as it tracks creation and modification of

executable workflows.

7. Conclusions and Future Work

Understanding the process that ultimately produced

a result is critical to interpreting it, and is particularly

important when execution steps are not apparent in the

original process design. In this paper, we have

described our approach to capturing and giving access

to a workflow’s provenance: the details chosen for its

execution by a Pegasus workflow compiler. We

connected this to captured documentation of the

workflow execution by Condor DAGMan, allowing

scientists to determine, for a given result, by what

process it was produced, what abstract workflow led to

its execution, and every stage between. The connection

between an experiment’s results and the original

experiment steps is thus made evident, even when a

scientist delegates execution details to Pegasus. To

ensure that the cost of this approach did not excessively

slow the workflow's execution, we evaluated our

approach against several large-scale workflows.

Future work will examine queries suited to answer

common questions regarding workflow provenance,

e.g. those in Section 4. We will also tackle questions

that relate to failures in workflow execution. The work

presented here demonstrates the feasibility of our

approach in re-connecting scientific results with the

original experiments from which they are derived, even

when execution is large-scale and highly distributed.

Acknowledgments
This work was supported by the National Science

Foundation under Cooperative Agreement OCI-

0438712, the SoCA and PASOA projects (EPSRC

references EP/C528131/1 GR/S67623/01).

8. References
[1] "Provenance and Annotation of Data --

International Provenance and Annotation

Workshop, IPAW 2006," 2006.

[2] G. B. Berriman, et al., "Montage: A Grid Enabled

Engine for Delivering Custom Science-Grade

Mosaics On Demand," in SPIE Conference 5487:

Astronomical Telescopes, 2004.

[3] R. Bose and J. Frew, "Lineage retrieval for

scientific data processing: a survey," ACM

Computing Surveys, vol. 37, pp. 1-28, 2005.

[4] S. Bowers, et al., "A Provenance Model for

Collection-Oriented Scientific Workflows,"

CCPE, 2007.

[5] D. Box and D. Shukla, "WinFX Workflow:

Simplify Development With The Declarative

Model Of Windows Workflow Foundation,"

MSDN Magazine, vol. 21, January 2006.

[6] E. Deelman, et al., "Pegasus: a Framework for

Mapping Complex Scientific Workflows onto

Distributed Systems," Scientific Programming

Journal, vol. 13, pp. 219-237, 2005.

[7] E. Deelman, et al., "Pegasus: Mapping Large-

Scale Workflows to Distributed Resources," in

Workflows in e-Science, I. Taylor, E. Deelman, D.

Gannon, and M. Shields, Eds.: Springer, 2006.

[8] J. Freire, et al., "Managing Rapidly-Evolving

Scientific Workflows.," IPAW, vol. 4145, 2006.

[9] J. Frey, et al., "Condor-G: A Computation

Management Agent for Multi-Institutional Grids.,"

Cluster Computing, vol. 5, pp. 237-246, 2002.

[10] Y. Gil, et al., "Wings for Pegasus: A Semantic

Approach to Creating Very Large Scientific

Workflows," in OWL: Experiences and Directions

(OWL-ED), Athens, GA, 2006.

[11] P. Groth, et al., "PReServ: Provenance Recording

for Services," Proceedings of the UK OST e-

Science Fourth All Hands Meeting (AHM05),

September 2005.

[12] P. Groth, et al., "An Architecture for Provenance

Systems," Univ. of Southampton October 2006.

[13] B. Ludäscher, et al., "Scientific Workflow

Management and the Kepler System,"

Concurrency and Computation: Practice &

Experience, 2005.

[14] S. Miles, et al., "The Requirements of Using

Provenance in e-Science Experiments," Journal of

Grid Computing, 2006.

[15] L. Moreau, et al., "The First Provenance

Challenge," Concurrency and Computation:

Practice and Experience, 2007.

[16] L. Moreau, et al., "The First Provenance

Challenge," Concurrency and Computation:

Practice and Experience, 2007.

[17] C. Scheidegger, et al., "Tackling the Provenance

Challenge One Layer at a Time,"Concurrency and

Computation: Practice and Experience, 2007.

[18] Y. L. Simmhan, et al., "A survey of data

provenance in e-science," SIGMOD Record, vol.

34, pp. 31-36, 2005.

[19] Y. L. Simmhan, et al., "Performance Evaluation of

the Karma Provenance Framework for Scientific

Workflows," In.l Provenance and Annotation

Workshop, IPAW 2006, vol. 4145, 2006.

[20] Y. L. Simmhan, et al., "Querying Capabilities of

the Karma Provenance Framework," Con. and

Computation: Practice and Experience, 2007.

[21] J. Zhao, et al., "Annotating, linking and browsing

provenance logs for e-Science," Proc. of the

Workshop on Semantic Web Technologies for

Searching and Retrieving Scientific Data, 2003.

[22] J. Zhao, et al., "Using Semantic Web

Technologies for Representing e-Science

Provenance," Proceedings of the 3rd

International Semantic Web Conference, vol.

3298, pp. 92-106, 2004.

[23] J. Zhao, et al., "Mining Taverna's Semantic Web

of Provenance," CCPE, 2007.

[24] Y. Zhao, et al., "Virtual data Grid middleware

services for data-intensive science," CCPE, vol.

18, pp. 595-608, May 2006.

