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Abstract 
 

 As scientific workflows and the data they operate 

on, grow in size and complexity, the task of defining 

how those workflows should execute (which resources 

to use, where the resources must be in readiness for 

processing etc.) becomes proportionally more difficult. 

While “workflow compilers”, such as Pegasus, reduce 

this burden, a further problem arises: since specifying 

details of execution is now automatic, a workflow's 

results are harder to interpret, as they are partly due 

to specifics of execution. By automating steps between 

the experiment design and its results, we lose the 

connection between them, hindering interpretation of 

results. To reconnect the scientific data with the 

original experiment, we argue that scientists should 

have access to the full provenance of their data, 

including not only parameters, inputs and intermediary 

data, but also the abstract experiment, refined into a 

concrete execution by the “workflow compiler”. In this 

paper, we describe preliminary work on adapting 

Pegasus to capture the process of workflow refinement 

in the PASOA provenance system. 

 

1. Introduction 
 

Today, workflows are used by many researchers in 

a range of sciences [15]. Workflow execution systems 

provide a means to coordinate the execution of 

thousands of tasks accessing Petabytes of data. Given 

the size of analyses, a major challenge for scientists is 

the interpretation of results produced by workflows, as 

potentially many steps are involved in generating a 

particular data product and the computations are often 

executed in a distributed environment. For example, a 

popular astronomy application, Montage [2] produces 

science-grade mosaics of the sky on demand. This 

application can be structured as a workflow that takes 

images, projects them, adjusts their backgrounds, and 

adds them together. A mosaic of 6 degrees square 

involves processing 1,444 input images, requires 8,586 

computational steps and generates 22,850 intermediate 

data items. For a scientist to verify the quality of the 

final mosaic, he/she may need to check that an input 

image was retrieved from a specific archive, the 

reprojections’ parameters were set correctly, the 

execution platforms used did not have processors with 

a known floating point processing error, etc. 

Given the complexity of workflows with thousands 

of computational steps executing across multiple 

distributed resources, it is infeasible for users to 

directly define the executable workflow. Often, 

researchers use “workflow compilers” such as Pegasus 

[6, 7] to generate the executable workflow from a  

high-level, resource-independent description of the 

end-to-end computation (an abstract workflow). 

However, the additional workflow mapping also 

increases the gap between what the user defines and 

what is executed by the system and so complicates 

interpretation of results: the connection between 

scientific results and the original experiment is lost. 

In this paper, we present a proof-of-concept 

solution for this issue, based on technology for 

determining the provenance of data, i.e. the process by 

which they were produced. 

 

1.1 Provenance systems 
 

Many workflow systems now support some 

mechanism by which execution can be tracked [16] so 

that the provenance of results can later be determined. 

Most such mechanisms focus on documenting how 

execution steps, parameters, and intermediate data 

produce the final results. 

Therefore, while these provenance systems allow the 

connection between data items to be made more 

evident, they do not provide the connection between 

results and steps in the original, abstract, high-level 

workflow description; the provenance merely describes 

the process of the compiled (executable) workflow. 

1.2 Connecting data to experiments 
 

The key contribution of this paper is to recognize that 

scientific workflows, whether abstract or concrete, are 



also first-class data, and that provenance mechanisms 

designed for tracking data can also be used to track 

processing applied to workflows. Combining 

provenance of workflows with that of data they 

produce, gives a comprehensive solution that allows 

scientists to relate scientific data to scientific 

workflows. 

This paper describes preliminary work in recording 

workflow refinements (transformations) made by 

Pegasus so that this information can help users 

understand the relationship between the executed 

workflow and its abstract precursor defined by the user. 

Such a record contributes to the full provenance of the 

scientific data. We provide the ability to produce and 

access this information via a provenance management 

system. The technical contributions of this paper are: 

• A model for defining workflow transformations 

conducted by workflow compilers such as Pegasus. 

• A mapping of that model to that of the PASOA 

provenance system, and a description of its 

implementation. 

• An evaluation of approach’s cost in an astronomy 

application, measured by the overhead to the 

workflow compiler in documenting its execution. 

• An illustration of uses to which scientists can put 

the provenance in answering questions. 

 

2. Workflow Compilation/Refinement  
 

Our work is based on the Pegasus workflow compiler, 

which maps high-level, abstract workflow descriptions 

onto available distributed resources. The abstract 

workflow provided by a user, portal, or another 

workflow composition system [10] is resource 

independent. It specifies the computations, their input 

and output data, and interdependencies between them 

without indicating where the computations take place, 

or where data is located. A simple workflow 

description could define computing the function F on 

an input x, generating the output Y and placing it at L. 

The process of generating an executable workflow 

involves the following steps: 

a) Find where x is from {S1, S2, …}, where Si is a 

storage system. 

b) Find where F can be computed from {C1, C2, …}, 

where Ci is a computational site. 

c) Choose a site c and a storage system s subject to 

constraints (performance, space availability etc.) 

As a result, the following executable workflow will be 

constructed. 

1. Copy x from s to c 

2. Move F to c 

3. Compute F(x) at c, obtaining Y at c. 

4. Move Y from c to L 

5. Register Y in data registry 

A description of steps a-c is the executable 

workflow’s provenance while a description of steps 1-5 

is Y’s provenance within the workflow.  

Understanding Y’s full provenance requires 

knowing its connection to the original workflow. Even 

with this simple workflow, things can go wrong: x was 

not found at s, F(x) failed, c crashed, or there was not 

enough space at L. Given these four types of error 

messages, the user may only understand the second and 

last. That x was not at s is hard to interpret, especially 

if there are copies of x elsewhere, because s was not 

chosen by the user. A workflow system may shield 

users from some failures, but for others this is 

impossible. 

 

2.1 Pegasus and workflow refinement  
 

Above, we provided an example of the mapping from 

abstract to executable workflow.  In this section, we 

present the refinement process that Pegasus goes 

through as it refines information in the abstract 

workflow towards execution. The main steps are: 

• Reduction eliminates processing steps when 

intermediate data products have already been 

generated (by another workflow or previous 

execution of this workflow) and can be reused. 

• Site Selection chooses computational resources on 

which to execute jobs described in the workflow. 

This means finding available resources and 

determining where required executables are 

already installed or can be staged in. The workflow 

nodes are annotated with their target execution 

sites. 

• Data Staging selects sources of input data for 

computations, and adds nodes to the workflow to 

stage this data in and out of the computation sites. 

• Registration causes final and intermediate data to 

be registered in a registry, by adding registration 

nodes to the workflow.  

• Clustering: The granularity of computations (many 

short run jobs) or the granularity of data staging 

(many small data transfers) can be too fine to be 

efficient. In such cases, Pegasus clusters workflow 

nodes together to be handled as one in execution.  

The refinements result in an executable workflow that 

looks very different than the abstract one defined by the 

user. 

 

2.2 Example of a Workflow Refinement 
 



To illustrate how a workflow changes in refinement, 

we use part of the Montage workflow which reprojects 

images and takes their differences (Figure 1). 

 

 
Figure 1. Part of Montage Workflow. Ovals 

denote computations, rectangles denote data. 
 

Reduction: Based on available data products, 

Pegasus reduces the workflow: we assume that files 

“Projected 1” and “Diffed 1” already exist on storage 

system S1, so do not need to be recomputed. The 

refined workflow is in Figure 2(a). 

Site Selection: Sites for job execution are selected: 

resources R1 and R2 are chosen (Figure 2(b)). 

Data Staging:  After consulting a registry, Pegasus 

adds nodes to transfer the data from their storage sites 

to where the computations occur. Nodes are also added 

to transfer outputs back to the storage sites. Here, a 

node (“Projected 2 R2 > R1” in Figure 3) is added to 

transfer the intermediate data between sites R2 and R1 

so that the computation can be invoked at R1. The 

intermediate result “Projected 1” from the workflow’s 

first branch is staged in for the mdiff computation. 

 

 
Figure 2: Workflow (a) After Reduction (b) 

After Site Selection. 
 

 
Figure 3: Workflow with data transfer and 

registration nodes. 
 

Registration: Data registration nodes are added for 

the workflow’s outputs. Registration enables workflow-

level checkpointing in case of failures and helps find 

the data later. Figure 3 shows the workflow after the 

data transfer and registration nodes are added. 

Clustering: Data staging and computations on the 

same sites can be clustered to improve overall 

performance. The cluster is shaded in Figure 4. 

The workflow is now ready for execution and is 

sent to a workflow engine (we use Condor DAGMan 

[9]). After execution, data products requested by the 

original workflow are available on S1. 

 

 
Figure 4: Workflow with node clustering of 

data transfer tasks. 
 

3. Motivating Questions 
 

From our collaborations with domain scientists who 

use workflows for analyses, some basic questions are 

known to be important: 

• Which data items were used to generate a 

particular data product? 

• What computations where conducted to generate 

these data items? 

• Where did the computations occur?  

• Which version of the software was used? 

There are also questions related to the evolution from 

the abstract to the executable workflow: 

• Why is this node in my abstract workflow not in 

the executable workflow? 



• Which intermediate data product was substituted 

for the actual computation? 

• Why, given that the data was at S1, did the 

workflow use the data at S2? 

• Which abstract node does a particular executable 

node correspond to? 

• Why did disk space at location X diminish so 

much? 

• Why is this intermediate data not in the registry? 

The first set of questions can be answered by many 

provenance systems but, to answer the second set, 

information must be known about refinement, and in a 

form suitable for answering those questions. 

 

4. Documentation for Provenance 
 

To address the needs of a range of e-Science 

applications [14], the PASOA and Provenance projects 

developed an architecture for determining of the 

provenance of data [12]. The architecture proposes the 

following lifecycle. 

1. Create: As an application executes, it also creates 

a description of its execution, called process 

documentation, comprised of p-assertions, 

assertions about individual process steps.  

2. Record: Once documentation has been created, it 

is recorded into a provenance store. 

3. Query: After a data item is produced by an 

application, users (or applications) obtain the 

provenance of this data item by querying the store. 

A query retrieves the p-assertions that describe 

process by which the data item was produced.  

An application that produces and stores process 

documentation is provenance-aware, and in Section 5, 

we describe how Pegasus has been made provenance-

aware.  

E-science applications are often composed of multiple 

independent components that may execute in a variety 

of environments, so a generic data model for process 

documentation was developed. Such a data model, 

shared by all components, allows users to query 

documentation without having to know which 

components created it, and for creators to create 

documentation understood by future unknown queries. 

The provenance store is organized to enable the 

provenance to be determined from documentation by 

independent distributed sources. Applications are 

viewed as service-oriented architectures (SOA). In this 

style, a service is a component that takes inputs and 

produces outputs. Clients invoke services, which may 

themselves act as clients for other services; the term 

actor denotes either a client or a service. 

Communication between actors is by exchanging 

messages, and exchange of one message between 

actors is an interaction. An application’s execution is 

described as the exchange of messages between actors 

and transformations that actors perform on messages 

they receive in order to generate new messages.  

After mapping an application to an SOA, its 

execution is captured using three types of p-assertion. 

• An interaction p-assertion documents an 

interaction between two actors, including the 

content of the message exchanged. 

• A relationship p-assertion documents the 

function applied to data within an actor's incoming 

messages to create an outgoing message, i.e. 

processing done by an actor for an invocation. 

• An actor state p-assertion documents internal 

states of an actor that may be important in the 

execution, e.g. configuration information 

Using p-assertions, each actor in the application 

documents the interactions it participates in and how 

those interactions are related. 

  

5. Implementation 
 

Following PASOA’s approach, we modeled 

Pegasus in terms of interacting actors. We consider the 

refinement phase, where Pegasus refines an abstract 

workflow is refined to be executable, and the 

enactment phase, where Condor DAGMan enacts it. 

 

5.1 Refinement Process Documentation 
 

In refinement, Pegasus is modeled as an actor, 

interacting with five refiners, also actors.  The flow of 

this process is in Figure 5. Each arrow is a documented 

interaction or relationship. The interactions are 

exchanges of partially refined workflows between 

Pegasus and a refiner, until the final refiner’s output is 

an executable workflow passed to DAGMan.  

Pegasus

Reduction
Refiner

Site
Selection
Refiner

Data
Staging
Refiner

Registration
Refiner

Clustering
Refiner

Condor
DAGMan

 
Figure 5: Pegasus workflow refinement 

modeled as interacting actors. 
For each refinement step, five recording actions take 

place. For explanation, Figure 6 depicts a refinement 

step and Pegasus' invocation of it. Recording actions, 

labeled A to E, and described below. 



• Prior to each refinement, Pegasus records the 

current, partially refined workflow that is about 

to be refined further (A). 

• It records relationship p-assertions linking this 

workflow to the output of the previous 

refinement (B): these are identical as Pegasus 

itself does not alter the workflow. 

• The refiner records the workflow received prior to 

its refinement (C). 

• It then records the workflow after refinement (D). 

• It also records relationships from each workflow 

node after refinement to nodes that caused it to 

be as it is in the pre-refinement workflow (E). 

 

Pegasus

Workflow
i

Workflow
i

Workflow
i+1

Refiner

B E

A C D

 
Figure 6: One refiner’s documentation. 

 

5.2 Refinement Relationships 
 

As mentioned in the final step above, each refiner 

documents the relationships between nodes in the 

workflow as it was before and after refinement. Each 

relationship’s type gives queriers more information on 

the refinement that occurred. 

• identicalTo: Denotes that a node has not changed 

in refinement. The absence of the relationship for a 

node in the pre-refinement workflow indicates that 

the node was changed removed in refinement. 

• siteSelectionOf: Denotes that the post-refinement 

workflow node is a compute job in the pre-

refinement workflow for which the target 

execution site has been chosen and specified. 

• stagingIntroducedFor Denotes that the post-

refinement node is a data staging operation 

introduced to stage data in/out for the computation 

present in the pre-refinement workflow. 

• registrationIntroducedFor: Denotes that the post-

refinement node is a registration operation 

introduced to follow a stage-out node. 

• clusteringOf: Denotes that the post-refinement 

node is a cluster of jobs combining several jobs 

present in the pre-refinement workflow. 

Relationships documented for Section 3’s example 

are summarized in Figure 7. We show the workflow 

fragment through six stages of refinement, from 

abstract to executable. The workflow nodes (ovals) at 

each stage are related (large arrows) to those in the 

previous stage, with the relationship type (arrow label) 

stating the function performed by the refiner that 

transformed the workflow. By tracing relationships 

backwards, a querier determines the provenance of 

each concrete job, and how it relates to the original 

abstract workflow. 

 

5.3 Enactment Process Documentation 
 

The new model for documenting enactment is very 

similar to that for refinement. DAGMan is modelled as 

an actor, interacting with each workflow job. DAGMan 

sends invocation messages, containing command-line 

arguments including input file names to executable 

jobs, and completion messages are returned from the 

jobs containing the names of output files produced. 

As with refinement, relationships link nodes from 

one step to the next, so that provenance can later be 

determined, as in Figure 7. However, here the nodes 

are the data items processed by the jobs, referred to by 

filename, rather than job nodes of the workflow. 
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Figure 7: Relationships recorded during refinement. 



Relationships between data items depend on the type of 

job enacted, e.g. a job invoking 'gzip' would assert a 

relationship of type 'gzip' between its output and input. 

We did not adapt DAGMan itself to record 

documentation; we automatically added wrapper code 

to each job, which recorded the appropriate 

documentation for that job and, by consulting the 

abstract workflow, the connections between the inputs 

to that job and the outputs of its parents in the 

executable workflow. 

 

5.4 Refinement and Enactment Connected 
 

The combination of the documentation for 

workflow refinement and enactment, allows detailed 

provenance of a data item to be found: 

• For each data item, we can find the concrete 

workflow steps that produced it and other data 

items that contributed to those steps. 

• For each workflow step, we can find its 

connection to the abstract workflow jobs from 

which it was refined. 

The full set of documented connections is depicted 

in Figure 8, an extension of Figure 5 including the 

documentation of the enactment's interactions and 

relationships. Jobs in the concrete workflow produced 

from the refinement lead to the data being produced, so 

the refinement process is part of the data’s provenance. 

Pegasus

Reduction
Refiner

Site
Selection
Refiner

Data
Staging
Refiner

Registration
Refiner

Clustering
Refiner

Condor DAGMan

Job 1 Job 2 Job 3 Job 4 Job 5  
Figure 8: Combined workflow and data 

process documentation. 
 

5.5 Performance Evaluation 
 

To be realistically usable, the overhead cost of 

recording process documentation during enactment 

must be insignificant. While the work presented here is 

merely a test of the feasibility of the approach, our 

preliminary results show that this is achievable. We 

take different sizes of the large-scale Montage 

workflow, with 0.5, 1, and 2 degrees square for our 

evaluation. These have 65, 232 and 1444 nodes in their 

abstract workflows respectively.  

Prior to using PASOA, Pegasus recorded some 

documentation about the enactment of jobs in a 

database, the Provenance Tracking Catalog (PTC) [24]. 

The causal connection between data items and jobs 

were not captured, and the workflow refinement phase 

was not documented at all. In our experiments, we 

compare the performance of refining and enacting the 

workflows for Pegasus with its previous setup and with 

the new setup, recording all documentation to a 

PASOA’s Web Service provenance store [11]. For 

brevity, we will refer to these setups as PTC and 

PASOA respectively. 

The workflows were run on a cluster of 7 dual 

processor 2.4Ghz XEON nodes. A separate host (2GhZ 

Pentium machine with 1Gb of memory) was used for 

workflow submission. The Web Service provenance 

store and the PTC were on the submit host. 
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Figure 9: Time to refine workflow with and 

without recording as workflow size increases 
In Figure 9, we show the difference in execution 

time for Pegasus with and without process 

documentation recording to PASOA. As can be seen, 

while there is an overhead to recording, this is linear to 

the size of the workflow. While future work will much 

reduce this overhead, through asynchronous recording 

for example, the increase is already manageable. In 

Figure 10, we show the total time for refinement and 

enactment, with recording to PTC (enactment only) and 

PASOA. The times recorded were comparable, and 

increased linearly. Additionally, one needs to put these 

times into the context of the time that Pegasus takes for 

planning. For example, for the 2 degree Montage 

workflow, the overhead of recording the refinement 

provenance is 0.05% of the running time of Pegasus.  

The biggest overhead was seen for the smallest 

workflow and was on the order of 0.9%. 

We also quantified the amount of disk space used to 

store both the enactment and refinement provenance 

information in PASOA.  For the three workflow sizes 

the enactment provenance was 4.7MB, 11.6MB, and 

39MB for the 0.5, 1, and 2 degree square mosaics. The 

corresponding size of the refinement provenance was 

3.3MB, 11.6MB, and 23MB. 
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 Figure 10: Time for refinement and enactment with 

PTC and PASOA systems 

 

6. Related Work 
 

Within computer science, Bose and Frew give an 

overview of provenance related systems [3], Simmhan 

et al. survey its application to e-Science [18], and 

further compilations of the state-of-the-art exist [1, 14, 

16]. Here, we focus on provenance in workflow-based 

environments. 

Deriving from the myGrid e-Science project, the 

Taverna workflow enactment engine captures 

provenance-related data in an RDF based data model 

[22]. A query application programming interface (API), 

ProQA, enables a variety of provenance queries to be 

executed over the provenance RDF graph [23]. As the 

documentation is stored as RDF, it enables both 

workflow annotations and provenance information to 

be queried over simultaneously [21]. Barga and 

Digiampietri modified Windows Workflow Foundation 

[5] to support the collection of process documentation. 

A multi-layered model allowed the size of data stored 

to be significantly decreased [16]. The Kepler 

workflow enactment engine aims to support multiple 

kinds of workflows from bioinformatics experiments 

using complex, high-level tools to processes for job 

control and data movement in Grids [13]. With 

modifications to support explicit dependencies and 

metadata, the execution of workflows in Kepler can be 

captured with the Kepler Provenance Recorder [4]. 

None of the above-mentioned systems support tracking 

the planning of workflows, and many do not support 

execution on computational Grids. 

While the above systems capture process 

documentation only from the workflow enactment 

engine, the Karma Provenance Framework [19, 20] 

supports the capture of this information both from the 

workflow enactment engine and from the services used, 

via a notification model.  The provenance model 

previously used by Pegasus as part of the Virtual Data 

System (VDS) also captured provenance-related 

information from both the workflow enactment engine 

and executing applications [24]. VDS does not, 

however, store explicit relationships between input and 

output data, so determining provenance of data relied 

on access to the same workflow definition as was 

executed at the time.  

As with the above tools, VisTrails provides a 

graphical user interface for building workflows, but, 

instead of just capturing the execution of a workflow, 

VisTrails also captures how workflows are created and 

edited by the user [17]. As the user modifies a 

workflow the various changes in the workflow are kept 

using a mechanism similar to that of versioning 

systems. When a workflow is run, the user can track 

back to the particular workflow that was run and more 

importantly see the evolution of that workflow [8]. 

VisTrails has similarities to our approach in that it 

tracks how a workflow is changed before execution. 

However, it captures only how users change the 

executable workflow and not how automated 

compilation processes affect the execution of the 

workflow. VisTrails is then complementary to our 

approach, as it tracks creation and modification of 

executable workflows. 

 

7. Conclusions and Future Work 
 

Understanding the process that ultimately produced 

a result is critical to interpreting it, and is particularly 

important when execution steps are not apparent in the 

original process design. In this paper, we have 

described our approach to capturing and giving access 

to a workflow’s provenance: the details chosen for its 

execution by a Pegasus workflow compiler. We 

connected this to captured documentation of the 

workflow execution by Condor DAGMan, allowing 

scientists to determine, for a given result, by what 

process it was produced, what abstract workflow led to 

its execution, and every stage between. The connection 

between an experiment’s results and the original 

experiment steps is thus made evident, even when a 

scientist delegates execution details to Pegasus. To 

ensure that the cost of this approach did not excessively 

slow the workflow's execution, we evaluated our 

approach against several large-scale workflows. 

Future work will examine queries suited to answer 

common questions regarding workflow provenance, 

e.g. those in Section 4. We will also tackle questions 

that relate to failures in workflow execution. The work 

presented here demonstrates the feasibility of our 

approach in re-connecting scientific results with the 



original experiments from which they are derived, even 

when execution is large-scale and highly distributed. 
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