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Abstract. We describe the winning strategy of the inaugural
Lemonade Stand Game (LSG) Tournament. The LSG is a repeated
symmetric 3–player constant–sum finite horizon game, in which a
player chooses a location for their lemonade stand on an island with
the aim of being as far as possible from its opponents. To receive a
high utility in this game, our strategy, EA2, attempts to find a suit-
able partner with which to coordinate and exploit the third player. To
do this, we classify the behaviour of our opponents using the history
of joint interactions in order to identify the best player to coordinate
with and how this coordination should be established. This approach
is designed to be adaptive to various types of opponents such that co-
ordination is almost always achieved, which yields consistently high
utilities to our agent, as evidenced by the Tournament results and our
subsequent experimental analysis. Our strategy models behaviours
of its opponents, rather than situations of the game (e.g. game theo-
retic equilibrium or off equilibrium paths), which makes EA2 easy to
generalize to many other games.

1 INTRODUCTION

Distributed decision–making using learning in repeated games is a
growing area of research in the computer science, engineering and
economics communities. Such agent–based systems typically as-
sume that the agents are identical, which allows the convergence of
their parallel actions to be proven analytically (e.g. [6, 9]). At the
same time, however, autonomous agents are being used increasingly
in open systems. Although open systems are addressed in fields such
as mechanism design, and in specific domains such as poker research,
little effort has gone into foundational research on repeated interac-
tion and agent design for open systems.

The Lemonade Stand game (LSG) Tournament3 was designed to
confront this shortcoming within the current multi–agent systems
and game theory research literature. In the LSG, each day an agent
chooses a location for their lemonade stand on an island from one of
12 possible sites (like the hours on the face of a clock), with the aim
of being as far from its competitors as possible so that it attracts the
most customers. An agent’s payoff for a location is directly propor-
tional to the distance to the other agents. The game is repeated for
100 days — on each day the players choose their locations simul-
taneously and with no communication. Movement during the day is
not allowed; players can only move to new locations on the next day.
The Tournament was proposed by Martin Zinkevich, and was con-
structed with the aim of discovering principles for designing an agent
that would directly engage heterogeneous, rather than homogeneous,
opponents in a repeated game setting. It provides a setting in which
standard analysis is not useful for deriving strategies or refining the
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set of possible outcomes of the game. In other words, the game is not
hard to play because its rules are complex. Rather, it is hard because
the agents playing it are themselves hard to play.

This paper describes the winning strategy of the inaugural LSG
Tournament. In more detail, the LSG is a symmetric three–player
constant–sum game (i.e. in which all players’ interests are opposed).
It is difficult for a single agent to achieve a high score, because an
increase in one player’s payoff strictly decreases some other agent’s
payoff. Indeed, the only way that an agent can earn a high payoff is to
tacitly coordinate with one other agent to exploit the third, or to accu-
rately predict the future actions of its opponents. However, because
of the LSG Tournament’s structure, coordination of the sort that is
typically obtained using identical agents playing repeated games is
improbable. This is because, as each agent is entered independently
of the others, they are unlikely to be similar enough to converge to a
Nash or correlated equilibrium via the mechanisms that cause identi-
cal agents to converge in standard learning in repeated games results.
On the other hand, predicting an opponent’s actions seems plausi-
ble, but the actions of a boundedly–rational agent may be difficult to
model, particularly if your own agent is similarly constrained. Con-
sequently, the LSG Tournament strips away the assumptions of ho-
mogeneity and rationality present in much research into learning in
games and mechanism design to focus on one key question in artifi-
cial intelligence: How to identify how to collaborate with others. By
doing so, the LSG provides a framework for investigating domains in
which agents can benefit from tacit collusion or coordination, such
as auctions or voting problems, and in which agents may currently
struggle to identify opportunities to collaborate with others, such as
scheduling and planning in open systems.

Staged in January 2010, the LSG Tournament featured teams from
universities such as Rutgers, Brown, Carnegie Mellon, Princeton,
University of Michigan and UT Austin among others. Each team en-
tered one agent, and the Tournament had a round–robin format. The
LSG is connected to research into designing agents to play classic
constant–sum games, such as Chess, Go or Poker. However, unlike
these games, which have complicated rules and require a degree of
skill to play, the LSG has very simple rules, which allows researchers
to focus on the problems of collaborating with opponents. The Tour-
nament itself is similar in flavour to the well knownIterated Pris-
oner’s Dilemma(IPD) [1], in which two competing agents can col-
laborate using strategies such astit-for-tat or Pavlov to gain higher
payoffs. The LSG, however, presents an opportunity to study strate-
gic interactions between competing agents in a scenario without a
focal point to coordinate on and containing more than two agents.
The Tournament is also comparable to the TAC Market Design Com-
petition (or CAT) [13], in that, due to the structure of the game and
since the agents compete directly with each other, there is no optimal
solution to the problems they face, because their actions should be
dependent on those of their competitors.



Our entry, EA2, (named after the team–members), incorporates
ideas of both learning to coordinate with one other player to exploit
the third and accurately predicting future actions. It achieves this by
playing strategically in response to thehigh level behaviourof both
opponents, rather than their actions per se. Thus, it learns how to
play the players in the game (i.e. it learns how its opponents respond
to joint actions) rather than the specific patterns of actions that its
opponents play. Specifically, EA2 tries to find a partner with which
to collaborate and share a high utility. It does this by measuring the
proximity of each opponent to an “ideal”, or perfectly-predictable,
type using a number of metrics. These ideal types represent strategies
that can be used most easily by EA2 to form a collaboration. Then,
using these metrics to capture the behaviour of both opponents, EA2

selects a partner and a form of collaboration to attempt in the game
(e.g. stick in one position, or follow an opponent’s lead).

This paper is related to other work on learning in repeated games,
and in particular with recent work on planning and learning against
heterogeneous algorithms. The field is still new, and most of its litera-
ture focuses on how to maximize expected long term reward against
specific classes of opponents [11, 2, 4]. The LSG Tournament has
motivated new perspectives on designinguniversalalgorithms that
can handle the more general, and intrinsically more complex scenario
where the agent does nota priori require the opponents to have any
particular structure. As is expected, the entrants to the Tournament
(described in more detail later on) were designed to play well against
their preferred flavour of opponent but they (to a lesser or greater
extent) generalize well across all flavours seen in the Tournament.

Moreover, we expect the general approach used in EA2 to gener-
alise to a broad range of scenarios. At an abstract level, the algorithm
is effectively made of two parts, the first which maps opponents onto
an appropriately defined space of ideal types, and the second which
maps from the space of joint types to an action. In the future, spe-
cific versions of these components may be constructed for specific
problems, but more interestingly, general methods for automatically
generating each component could be derived from our basic designs
(e.g. by automatically computing a set of ideal types for a game, or
by learning the mapping from joint types to actions online).

The structure of the paper is as follows. In Section 2 we give back-
ground on repeated games and algorithms for playing them. The LSG
is introduced in Section 3, together with an analysis of the equilibria
and the benefits of coordination between two players. Building on
this, in Section 4 we describe EA2. We conduct a thorough exper-
imental analysis comparison to other entrants to the Tournament in
Section 5. Section 6 discusses future work.

2 BACKGROUND
In general, anon–cooperative game in normal formis a tuple
〈{Ai, ui}i∈N 〉, consisting of a set ofagentsN = {1, . . . , n}, and
for each agenti ∈ N , a set of (pure)actions,Ai, and autility function
ui. The joint strategy space of the game is given byA = ×i∈NAi,
and an agent’s utility function is a mapui : A → R. In normal
form games, theith agent, simultaneously with the other agents−i,
chooses an action from its own action setAi and, on the basis of the
actions performed by all the agents, receives a payoffui(ai, a−i),
wherea−i is the joint action of all the players except playeri. Stable
points in games are characterised by the set of (pure)Nash equilibria
(NE), which are defined as those joint strategy profiles,aNE ∈ A,
in which no individual agent has an incentive to change its strategy:
ui(a

NE
i , a

NE
−i )− ui(ai, a

NE
−i ) ≥ 0, ∀ ai ∈ Ai, ∀ i ∈ N.

In a constant-sumgame, the agents’ utility functions always sum
to the same value, i.e.:

∑
i∈N ui(a) = c, ∀a ∈ A. In afinite-horizon

repeated game, the agents repeatedly play astage game, which is
a single normal–form game, for a finite number of iterations. Let
at = (at1, a

t
2, ..., a

t
n) be the joint action executed at iterationt. In

such games, an agent’s utility is the sum of its payoffs from the stage
games. In the LSG, each stage game is a constant-sum game.

In this paper we focus on games in which an agent can observe the
actions chosen by other agents, but does not know their decision–
making processes. This differs from traditional approaches to learn-
ing in repeated games, which consider agents that play against iden-
tical opponents. Nonetheless, in the LSG an agent may still benefit
from learning about other’s decision–making processes from the his-
tory of joint actions. EA2 and other entries to the LSG Tournament
make use of ideas from both of these approaches to playing repeated
games using learning algorithms, so we now discuss three algorithms
that converge in self-play (i.e. play against identical versions of them-
selves), and then consider playing against heterogeneous algorithms.

First,fictitious playis a learning strategy designed to solve for NE
in zero–sum games [3]. In classical fictitious play, an agent’sbeliefs
over each of its opponents’ actions are given by the frequency with
which they have been played in the past. An agent then evaluates
its actions by their expected payoff given its beliefs, and plays the
highest value. In general, past observations can be discounted, and in
the extreme case, if only the most recently observed action is used as
beliefs, the resulting decision rule corresponds to the best-response
dynamics. Furthermore, fictitious play can be weakened to allow for
probabilistic action choices, while still guaranteeing convergence to
NE [9]. Second, there are many learning algorithms that useregretto
choose an action, includingregret-matching[6], and internal regret
minimisation[7]. These algorithms use various measures of regret for
an action, which is generally measured as the total payoff that would
have been accumulated if the agent had played that action at every
point in the past. Typically, an agent selects an action from those
which have positive regret; however, each algorithm uses variations
of this general principle. Third, there are several algorithms that use
the reinforcement learning paradigm [12]. Most of their multi-agent
variations use past joint actions as states and learn mappings from
those states to actions [10, 5], while others use a single state and
treat the game as a multi-arm bandit problem [8].

Now we consider approaches to playing optimally against hetero-
geneous agents. Normally, there is no optimal strategy that is inde-
pendent of the other agent’s strategy (i.e. optimality in multi–agent
interactions usually depends on the joint action of agents, and not
just the single agent action), therefore, there is no hope in searching
for a universal strategy that is optimal against any opponent. What
does exist, however, are planning strategies that are optimal against
specific classes of opponents. Such is the case of [2] for bounded
memory opponents and [4] for unbounded memory opponents.

EA2 is constructed using a mixture of ideas from the above ap-
proaches to playing repeated games, including using measures of the
past history of play as a state and techniques for playing optimally
against specific classes of opponents. We now describe the specifics
of the LSG Tournament in detail, before detailing our entry.

3 THE LEMONADE STAND GAME
We first describe the stage game, before then discussing equilibria
and the possibility of beneficial coordinated strategies between pairs
of agents.

3.1 The Lemonade Stand stage game
Each day, the three players play the following stage game. There
are twelve possible locations to setup a stand on the island’s beach,
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Figure 1. Example Lemonade Stand game.

Ai = {1, . . . , 12}, which runs around the entire island. The twelve
locations are uniformly spread around the perimeter, like the hours
on the face of a clock. The customers are assumed to be distributed
uniformly around the island and always purchase from the nearest
stand. The utility to a player on a single day is given by the sum of
the distance to the nearest player clockwise around the island plus the
distance to the nearest player anti-clockwise. Distances are measured
in the number of spots between players. If two players are located in
the same position, both players receive 6 and the other player re-
ceives 12. If all three players are located in the same position then all
players receive 8. Therefore, whatever the configuration of the play-
ers, their utilities always sum to 24 in each stage game. For example,
if the players are located as shown in Figure 1 then ‘square’ receives
utility of 7, ‘star’ receives 9 and ‘circle’ receives 8. The objective of
the game is for each player to sequentially choose locations for their
stand, in order to maximise their aggregate utility over 100 rounds.
As such, a player wishes to be located as far as possible from its two
opponents in each stage game.

3.2 Game analysis
The stage game of the LSG has many pure NE. In fact, any config-
uration where the players are located at different positions and all
receive a payoff of at least 6 is a NE, and there are also NE in any
configuration where two players are located on the same position
and the other is exactly opposite. Alternatively, the set of NE can be
viewed as all locations for a player that are on or in between the posi-
tions directly opposite the other two players. Figure 2 shows the NE
locations for a third player, given players square and star are located
as shown. For each configuration, the third player’s best responses
are anywhere in the larger segment between the star and square play-
ers, while the best responses that are consistent with a NE are those
that are on or in between the positions directly opposite the other
two players, as indicated by the arrows. Specifically, in (a) the third
player’s best responses are anywhere in the larger segment between
the star and square players, while the best response in the NE set are
between their respective opponent-opposite actions. In (b), where the
opponents play opposite one another, the third player is indifferent
between all positions, while in (c), where its opponents play on top
of one another, the third player is indifferent between all positions
except the location of its opponents.

Assuming one player is located at the top of the island, there are
53 possible pure strategy NE. This leads to a plethora of NE in the
repeated game, so equilibrium analysis is not sufficient to determine
what action to take. As a result, we resort to alternative reasoning.

In particular, for a 3-player game such as this, there is the opportu-
nity for two players to coordinate to minimize the utility of the third
player. The constant–sum nature of the game then allows for the two
players to gain a higher than average utility. We draw attention to a
particular type of coordination between two players, which forms the
basis of EA2. Consider two players that repeatedly sit on opposing
sides of the island. The utility of the third player is restricted to 6,
which it receives in all of the 12 possible positions – hence all lo-
cations are NE, as shown in Figure 2b. Thus, the two collaborating

(a) (b) (c)

Figure 2. Best-responses for different opponent configurations: The
dot-dashed segment indicates the third player’s best-response actions, the

dashed segment shows best-response actions consistent with a Nash
equilibrium, and arrows point to the action opposite each opponent.

players share the remaining utility of 18. For example, a strategy that
selects locations randomly (a strategy that is consistent with a mixed
NE) over the 100 iterations can be defeated this way – with the two
collaborating players receiving an average utility of 9 and the random
strategy yielding an average utility of 6. Thus, a strategy that consis-
tently forms such a collaboration frequently receives a high utility.

However, such coordination is difficult to achieve without explicit
communication, correlation or pre–game agreements. For this rea-
son, in EA2 we adopt the approach of building a model of the high–
level decision–making behaviour of our opponents, rather than fo-
cussing on their specific actions, and use this model to predict their
reactions to our current actions. In the next section, we describe how
EA2 carries out this modelling and prediction, and how it uses this to
select its actions.

4 THE WINNING STRATEGY
The EA2 strategy attempts to coordinate with one other player in the
LSG by sitting at opposite locations, to consistently score a high util-
ity. It does this by measuring deviation of its opponents fromideal
types, which are decision–making processes with which it could eas-
ily predict and coordinate with. We now discuss these ideal types,
then describe how we measure an opponent’s deviation from an ideal
type. Finally, we describe how EA2 maps from joint types (i.e. types
of both opponents) and game configurations (i.e. current joint action
profiles) to select an action in the LSG.

4.1 Ideal types
To begin, there are two obvious ways of initiating a coordinated joint
strategy pair in the LSG stage game. First, a player could simply
“stick’ in the same location, and wait to see if an opponent moves
into the location directly opposite. Second, a player could “follow”
by moving into a location that is opposite another player. Based on
these two patterns of play, we define two ideal types of strategies that
an agent could easily coordinate with, as follows:
• A Stick strategy, which involves picking a starting location and

staying at that spot for the duration of the game.
• A Follow strategy, which chooses an opponent and sits directly

opposite the position of that opponent at the previous time step.
Furthermore, a Follow strategy always chooses to sit opposite a
Stick opponent if one is present.

We also define an idealRandomstrategy, which simply selects a ran-
dom location on each day, and is therefore impossible to coordinate
with. Given this, it is clear to see in a game containing a Stick versus
Follow versus Random will yield an average utility of 9, 9 and 6 to
each respective player, because Follow will play opposite Stick, as in
Figure 2b, and each will earn 9 in expectation. However, it is unlikely
that a Stick and Follow strategy will always face such a favourable
combination of opponents. Building on this, Table 1 displays aver-
age utilities for Stick, Follow and Random against various combina-
tions of ideal type strategies. Notice that Random always performs
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equally to or worse than Stick or Follow, although only against a
Stick-Follow combination of opponents will a random strategy yield
less than average utility. Moreover, which of Stick or Follow is best
depends on the combination of opponents. This motivates the funda-
mental principle behind EA2, which is flexible in choosing whether
to stick or follow depending on the types of opponents it faces.

Table 1. Average utilities for Stick, Follow, Random and EA2 against
various combinations of ideal type opponents (maximum values inbold).

Opponents Stick Follow Random EA2

Stick + Follow 7.5 6 6 7.5
Stick +Random 8 9 8 9
Follow + Random 9 8 8 9
2 Stick 8 9 8 9
2 Follow 12 8 8 12
2 Random 8 8 8 8

4.2 Classifying opponents
EA2 takes the approach of measuring and classifying the character-
istic behaviour of the opponents, based on their closeness to ideal
types, and then playing an appropriate strategy in response that aims
to form a collaborative partnership. The actions taken are intended to
indicate the willingness of EA2 to coordinate or collaborate with one
of the opponents, in order to exploit the third player.

In more detail, EA2 classifies its opponents by their proximity to
playing either a stick or follow strategy, based on their previous ac-
tions. An opponent classified as playing a stick strategy is usually
slow moving, or stationary, and is hence very predictable. An oppo-
nent classified as playing a follow strategy tends to play actions that
are within the best response set from the previous time step (or an
appropriately discounted average of recent time steps). For example,
an agent using fictitious play will often choose locations opposite a
stationary player, and is therefore selecting strategies similarly to an
ideal Follow strategy. Finally, a player that chooses actions using al-
ternative reasoning, will have low stick and follow indices, and will
not be used by EA2 as a collaborative partner. In what follows, we
denote the player using EA2 as player 0, and its opponents as{1, 2},
or any pair of agents{i, j} when their identities are not needed.

In order to classify its opponents, EA2 maintains a measure of a
stick index,si, and a follow index,fi, for each opponent. It also
measures which playeri is following using the indexfij (wherej =
N \ i). The indices are calculated from the sequence of past actions
of each playerAi = (ai(1), . . . , ai(t− 1)):

si =−
t−1∑

k=2

γt−1−k

Γ
d (ai(k), ai(k − 1))

ρ , (1)

fij =−
t−1∑

k=2

γt−1−k

Γ
d
(
ai(k), a

∗
j (k − 1)

)ρ
, (2)

fi =−
t−1∑

k=2

γt−1−k

Γ
min
j=N\i

[
d
(
ai(k), a

∗
j (k − 1)

)]ρ
, (3)

whereΓ =
∑t−1
k=2 γ

t−1−k. The metricd(ai(k), aj(k − 1)) is the
minimum distance between playeri at time-stepk and playerj at
k − 1, anda∗j (k − 1) denotes the location opposite fromj. In Fig-
ure 2, thea∗ of each agent are indicated by the arrows. The parameter
γ ∈ (0, 1] is the response rate (or discount factor), which exponen-
tially weights past observations – a low response rate (γ close to 1)
makes use of a long history of observations, whereas a high response
rate corresponds to indices that are more adaptive to capturing sud-
den changes in the opponent’s behaviour. The parameterρ scales the
distances between locations:ρ < 1 treats all behaviour that devi-
ates from the ideal types relatively equally, whileρ > 1 places more

value on behaviour that is close to ideal type behaviour. As such,
with a ρ > 1, EA2 can accommodate players that are noisy but se-
lect locations close to that of an ideal strategy. Notice that the indices
are always negative – the greater the value of the index, the more
this player follows the ideal type. An index value of 0, indicates an
exact ideal type. The follow indexfij measures whether playeri
is following playerj by looking at the lag–one difference between
their respective action sequences. Then the follow indexfi measures
whether playeri is generally following its opponents.

4.3 Mapping from types to actions
The stick and follow indices are used to classify the types of op-
ponents at each stage of the game. Now, each combination of these
observed types lends itself to a specific form of collaboration. Specif-
ically, based on the combination of types, the confidence with which
the classification is held, and the current configuration of actions,
EA2 selects an action that attempts to coordinate with one opponent
or the other. We now discuss this mapping, and pseudo-code for the
full EA2 algorithm is given in Figure 3 for reference.

In its simplest form, collaboration with a player with a high stick
index involves playing the action opposite them on Lemonade Is-
land, while collaboration with a player with a high follow index is
done by sitting still and waiting for the player to learn the appropri-
ate response. Although the presence of a third player means that these
basic heuristics will likely conflict with one another, the values in Ta-
ble 1 are used to guide EA2. Specifically, EA2 classifies its opponents
by comparing their stick and follow indices. Based on their proxim-
ity to the ideal types, EA2 then selects an opponent with which to
coordinate, and a particular action to play. This decision is based on
the expected utilities to the combinations of ideal types given in Ta-
ble 1, where the best ideal type is given in bold. We include a column
for the expected utility of EA2 – notice that the strategy identifies the
best ideal strategy to play by using the follow and stick indices. The
elements of EA2 that correspond to this reasoning are seen in condi-
tions C1, C2 and C3.1 and (by default) C6 in Figure 3. For example,
if opponenti’s behaviour is close to that of an ideal Stick strategy,
andj’s behaviour is not close to either Stick or Follow, then C1 is
satisfied and EA2 chooses to attempt to coordinate by followingi by
playinga∗i (k − 1). This decision is guided by the expected payoffs
given on row 2 of Table 1.

Nevertheless, the utilities in Table 1 are only guaranteed against
exact ideal type strategies and collaboration with more sophisticated
strategies may be more difficult to initiate and maintain. For example,
a pattern of actions that coordinate with one opponent may be suc-
cessfully broken by the third player by it playing on or near the coor-
dinating opponent, or collaboration can be hard to initiate or maintain
against noisy strategies or Follow strategies that choose to follow the
other opponent. For these reasons, we have developed two further
techniques to improve EA2’s utility against sophisticated opponents.
First, if opponenti is following j (indicated through the follow in-
dex fij), but the opponentj is not particularly stationary (so has a
low stick indexsj), then EA2 sits on the previous location ofj. In
this way, EA2 interposes in such a way that a coordination withi is
encouraged. This element of EA2 is found in C3.2.

Second, if the two opponents are coordinating and sitting oppo-
site, then EA2 finds itself in the “sucker” position. In this case, it
deploys a “carrot and stick” strategy to break the coordination be-
tween its opponents. This involves playing a pattern of actions that
are intended to induce one opponent to change its action, and instead
coordinate with EA2. In more detail, first, EA2 identifies which op-
ponent has a higher follow index and targets this agent with the “car-
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Figure 3. Pseudo-code for EA2. The parametertol controls the confidence with which a mapping must be held for a condition to be satisfied.

rot and stick”. Second, it divides the action set into two sides based
on the position of the third agent, and computes a measure of the bias
that an ideal follower would have towards one side or the other. This
measure compares a count of the proportion of recent best-responses
that occur on either side of the third agent, and EA2 uses it to de-
cide which direction to try and push the targeted opponent. Third,
it plays a pattern of actions that, to begin, discourages the targeted
agent from playing directly opposite the third agent by sitting on top
of it (the “stick”) and later encourages the agent to move into the
side identified as having a bias earlier by playing in the opposite side
(the “carrot”). The exact pattern used is not important, but it must
make the targeted agent’s utility lower for sitting opposite the third
agent than if it moves to the side and coordinates with EA2, under
the assumption that the targeted agent chooses an action in a similar
fashion to an ideal follower. This element of EA2 is employed if C5
is satisfied in Figure 3.

5 EMPIRICAL RESULTS: LSG TOURNAMENT

In this section we analyse our winning strategy and compare it to the
other entries of the LSG Tournament. First, we comment on the final
Tournament standings, which are given in Table 2. The Tournament
was played in a round–robin format with each triplet combination of
agents simulated for several repeats. The Tournament concluded with
EA2 shown to be the winner and Pujara and RL3 awarded a statistical
tie for second place. Our parameters for the strategy were:γ = 0.75
(the response rate),ρ = 0.5 (the scale parameter),tol = 0.1 (the
tolerance of our conditions) and an initial stick of 5 plays. These
values are selected (in turn) to make our strategy adaptive to changes
in opponent behaviour, to reward ideal type players, to only act when
we are confident in our classifications, and to initially not appear too
random to our opponents.

There were several interesting entries of note. Pujara is near iden-
tical to an ideal Stick strategy, only modified to move to a new lo-
cation (and stick) when the utility falls below some acceptable level.
Waugh, Schapire and FrozenPontiac all used modified versions of
fictitious play, and are thus like Follow strategies. RL3 and ACT–R
can either stick or follow to coordinate, just like EA2. However, RL3
has additional heuristics such as trying to initiate a “sandwich attack”
and exploit a Stick strategy whereas ACT–R rotates between Stick

Table 2. Results of the LSG Tournament.

Rank Strategy Average Utility StandardError

1. EA2 8.6233 ± 0.0098
2. Pujara (Yahoo! Research) 8.5236 ± 0.0122
2. RL3 (Rutgers) 8.5143 ± 0.0087
4. Waugh (Carnegie Mellon) 8.2042 ± 0.0121
5. ACT–R (Carnegie Mellon) 8.1455 ± 0.0102
6. Schapire (Princeton) 7.7519 ± 0.0110
7. Brown 7.6746 ± 0.0084
8. FrozenPontiac (Michigan) 7.5753 ± 0.0081
9. Kuhlmann (UT Austin) 6.9873 ± 0.0063

and Follow depending on their performance. Brown uses Bayesian
and regret methods. Finally, Kuhlmann is simply a random strategy
selecting between locations uniformly.

Several strategies, therefore select actions similarly to our ideal
types – which validates our classification technique. In addition,
many of the strategies also explicitly search for a “sit opposite” col-
laboration. This, in part, explains our positive results – we are adap-
tive in choosing to stick or follow to collaborate with an opponent.
To gain more insight, we also conducted a more thorough analysis
against a smaller set of strategies from the Tournament. In particular,
we consider Pujara as it is closest to a stick strategy, Schapire as the
best follow strategy and Kuhlmann as a perfectly random strategy.
We also include results with ACT–R, as it rotates between stick and
follow strategies, and RL3 as the best performing strategy that does
not fit our ideal types.

Table 3 reports on specific results against the combinations of
the above strategies. In all but one combination (Pujara/RL3), EA2

achieves above average utility. In particular, EA2 appears to have
consistently found a collaborator with which to exploit the third. In
these instances, EA2 scores almost equally with the collaborating op-
ponent. Notice that the random strategy is always exploited, yielding
utilities of close to 9 for EA2, as motivated in the theoretical expected
rewards given in Table 1. Finally, since Pujara is closer to an ideal
type strategy then ACT–R and Schapire, we choose to collaborate
with Pujara as its stick index is the highest of all indices.

To explain these results in more detail, in Figure 4 we show a
breakdown of the conditions used in our strategy (as defined in
the pseudo-code given in Figure 3) against various opponents. In
(a), EA2 plays against ACT–R and Kuhlmann. In this configuration,
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Figure 4. The frequency of using each condition in the EA2 pseudo-code given in Figure 3 for various combinations of opponents.

Table 3. Average utility to EA2 against various combinations of opponents
(we also give their closest ideal type). The average utilities of the opponents
are also given below (row player first). The winner is denoted in boldtype.

RL3
no type

Pujara
stick

ACT–R
stick/follow

Schapire
follow

Kuhlmann
random

RL3
no type

–
6.84

7.91,9.23

8.64
8.60, 6.75

8.93
8.93, 6.14

8.87
8.86,6.27

Pujara
stick

– –
8.80

8.84, 6.36

8.85
8.83, 6.31

8.93
8.95, 6.13

ACT–R
stick/follow

– – –
8.68

8.79, 6.54

8.70
8.71, 6.59

Schapire
follow

– – – –
8.75

8.74,6.51

ACT–R and EA2 coordinate to both receive a utility of approximately
8.7. This coordination lasts the entire game, and causes the high us-
age of C6, becausesACT−R andfACT−R both converge to 0, so
none of C0–C5 are satisfied. Therefore this final condition is often
used when a partnership has been formed and we wish to stick. More-
over, notice the high usage of both C3.1 (stick to lead an opponent)
and C1 (follow an opponent). ACT–R cycles between a Stick and Fol-
low strategy dependent on its performance, so EA2 adapts to this and
chooses to follow or stick to maintain the partnership. In addition,
C3.2 is used to force a coordination with ACT–R even if it chooses
to follow Kuhlmann. EA2 is therefore adaptive in collaborating with
a dynamic opponent within the same game.

In (b), EA2 faces RL3 and ACT–R. In this configuration the strat-
egy coordinates with RL3 yielding a reward of around 8.6 to both
players. The collaboration is normally initiated through C1, where
EA2 follows RL3. Notice also the occasional usage of C5, which is
the carrot and stick strategy. This has been used to attempt to stop
collaboration between ACT–R and RL3 — the results indicate that it
was successful as coordination with RL3 is almost always achieved.

Finally, in (c) we show the breakdown of conditions against the
only losing configuration for our strategy – against Pujara and RL3.
A large proportion of actions have been allocated to using the carrot
and stick strategy. This indicates that Pujara and RL3 coordinated to
sit opposite each other, leaving EA2 as the “sucker”. The carrot and
stick strategy attempts to dislodge RL3 from the partnership with Pu-
jara, but it is not successful. It appears that RL3 is simply quicker to
move and sit opposite Pujara, and in so doing has exposed a weak-
ness in our strategy – our action choice in the initial steps of the
game. Thus, EA2’s initial behaviour is a weak aspect of the strategy,
and can be improved for future versions of the Tournament.

The analysis in this section indicates that EA2 consistently finds
a suitable partner with which to coordinate, and then subsequently
maintain this partnership for the remainder of the game. By so doing,
it yields above average utilities against all combinations of opponents
except one. Moreover, we have demonstrated that EA2 is also able to
coordinate with a dynamic partner that cycles between strategies.

6 CONCLUSIONS AND FUTURE WORK
In this paper, we described the winning strategy for the LSG Tourna-
ment. To complement this, we also performed a more in depth anal-
ysis of EA2’s performance against other entrants to the Tournament.
In particular, we demonstrated how EA2 adapts to playing different
ideal types depending on the opponents faced, which explains why it
yielded the highest average utility of all entrants.

In future work, we intend to use the same principle of classifying
and responding to our opponent’s high–level behaviour in future ver-
sions of the Tournament. This will involve improving the ideal type
classification technique and refining the mapping from joint types to
actions. Beyond this, we expect the general approach used in EA2

to generalise to a broad range of scenarios. Specifically, the algo-
rithm’s structure is comprised of two parts, a mapping from oppo-
nents’ behaviour onto an appropriately defined space of ideal types,
and a mapping from the space of joint types to an action. Given this
structure, a key question we will pursue is whether general methods
for automatically generating each of these components can be de-
rived.
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