Demo Abstract: Run-time Compilation of
Bytecode in Wireless Sensor Networks

Joshua Ellul
Electronics and Computer Science
University of Southampton
je07r@ecs.soton.ac.uk

ABSTRACT

Recent work on virtual machines for wireless sensor networks
has demonstrated the benefits of using a Java programming
paradigm for resource constrained sensor networks. Results
have shown that a virtual machine approach greatly suffers
from interpretation overheads. We present run-time compi-
lation of bytecode which leverages from a compact platform
independent bytecode application encoding as well as an ef-
ficient program execution platform by converting bytecode
to native code in situ.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systems]:

Real-time and Embedded Systems;
Languages]|: Processors—Compilers

D.3.4 [Programming

General Terms

Languages, Experimentation, Performance

Keywords

Java, Compilers, Wireless Sensor Networks, Bytecode

1. INTRODUCTION

The learning curve involved to begin development for sen-
sor networks is quite steep, since not only does one have to
understand the embedded systems paradigm, but new lan-
guages and tools must be adopted.

Recent work on Java compatible virtual machines for wire-
less sensor networks[2][1] attempt to alleviate the sensor net-
work programming paradigm shift by allowing developers
to create Java applications which are converted to bytecode
and interpreted on sensor nodes. Results presented from the
Darjeeling Virtual Machine [1] demonstrate the high execu-
tion costs incurred when using an interpreted virtual ma-
chine.

Outside the realm of sensor networks, the study of ef-
ficiently executing Java has been exhaustively researched.
Techniques proposed include Just-in-Time compilation, byte-
code optimization and also processors designed specifically
to execute Java bytecode. Due to the resource constraints
imposed in sensor networks, it is widely accepted that com-

Copyright is held by the author/owner(s).
IPSN’10, April 12-16, 2010, Stockholm, Sweden.
ACM 978-1-60558-955-8/10/04.

Kirk Martinez
Electronics and Computer Science
University of Southampton
km@ecs.soton.ac.uk

Java
source

Java Compiler

Bytecode
Converter Translation
Table Archive
v 1 h
Intermediate Bytecode
Bytecode Translation
’ Table
Run-time
Compiler
Sensor Node
Native
Code

Figure 1: The translation process from Java source
code down to native code compiled on the sensor
node.

piling bytecode to native code on sensor nodes is impossible
or infeasible [5][3][7][6][4].

Our contribution is that we demonstrate that run-time
compilation of bytecode to native code is both feasible and
practical, and a substantial decrease in execution overhead
can be achieved with a simplistic compilation model.

In this demo we will demonstrate the development envi-
ronment and full process of compiling Java source code to
native code on a sensor node. The demo will be in the form
of a hands-on approach allowing the audience to program
sensor applications in Java.

2. COMPILATION PROCESS

Figure 1 depicts our proposed compilation process of byte-
code. The Java program is first compiled using the stan-
dard Java compiler. The Java bytecode generated is then
passed through our converter which generates our interme-

diate bytecode. This process involves resolving constants,
class names and function signatures to a more compact sym-
bolic representation. The final step involves compiling byte-
code to native code on the resource constrained sensor node.

In order to minimize footprint of the system, we have im-
plemented a simplistic run-time compiler which translates
bytecode to the respective native code without any addi-
tional optimizations. To achieve such a simplistic transla-
tion, a run-time operand stack is implemented which mim-
ics the Java bytecode operand stack. Items are pushed and
popped to the run-time operand stack natively with sin-
gle PUSH or POP native code commands, thus, our run-time
operand stack operates on top of the microcontroller’s stack.

As an example, let’s consider the compilation of the byte-
code for the Java assignment a = b + ¢, where the Java
compiler has referenced the local variables a, b and ¢ by 1,
2 and 3 respectively. This will be compiled to the following
bytecode:

iload_2
iload_3
iadd
istore_1

The run-time compiler will then produce the following na-
tive code commands for the above generated bytecode:

; iload_2
0 PUSH 0x0002(R11)

; iload_3
1 PUSH 0x0004(R11)

; iadd
POP R10
POP R9
ADD.W R10,R9
PUSH R9

o WwN

; istore_1
6 POP R10
7 MOV.W R10,0x0000(R11)

The iload_2 bytecode instruction is translated to a native
pushing of the variable referenced by 2, i.e. b. The same
applies for the loading of variable 3. The iadd bytecode
instruction results in two native code poppings into registers
10 and 9 which are then added together and the result stored
in register 9 by the ADD.W native command. The result, to
mimic the bytecode operand stack, has to be put on the run-
time operand stack, and thus, the result which was stored in
register 9 is pused onto the run-time operand stack. Finally,
the result is set to be stored into variable 1, i.e. a, by popping
the result just pushed onto the stack into register 10 and
then moving the value of register 10 to the memory position
of variable 0.

3. EVALUATION

Table 1 displays some benchmark tests performed with
C implementations, Run-Time Compilation (RTC) and the
Darjeeling Virtual Machine (DVM).

As can be seen from the results our implementation is only
slower by 4.7 to 7.5 times the native C code implementation,
whilst the Darjeeling virtual machine ranges from 30.4 to
96.5 times slower than the native code implementation.

Table 1: Performance Benchmarks
Test C RTC | DVM
Bubble sort 16 | 0.2s 1.5s 19.3s
Bubble sort 32 | 0.3s 1.8s 23.3s
MD5 13.1s | 61.6s | 399.7s

4. CONCLUSIONS

Our work demonstrates that run-time compilation of byte-
code is both feasible and practical for resource constrained
devices such as sensor networks. The run-time compiled
code achieves execution speeds of up to a magnitude less
than that of interpretted code. We believe that our work
will open up new areas of research for run-time compilers
for sensor networks. We plan to continue our research with
further evaluation and analysis of the generated native code.
Also, debugging of bytecode on a virtual machine running
on resource constrained devices can prove to be very diffi-
cult. Thus, We would like to look into reverse native code
to bytecode techniques in aim of achieving direct debugging
of bytecode on sensor node hardware.

S. ACKNOWLEDGMENTS

The authors would like to thank the Government of Malta
for supporting this research through the Malta Government
Scholarship Scheme ME 367/07/7/

6. REFERENCES

[1] N. Brouwers, K. Langendoen, and P. Corke. Darjeeling,
a feature-rich VM for the resource poor. In SenSys09,
Berkeley, CA, nov 2009.

[2] A. Caracas, T. Kramp, M. Baentsch, M. Oestreicher,
T. Eirich, and I. Romanov. Mote runner: A
multi-language virtual machine for small embedded
devices. Sensor Technologies and Applications,
International Conference on, 0:117-125, 2009.

[3] J. Koshy and R. Pandey. Vmstar: Synthesizing scalable
runtime environments for sensor networks. In In In
Proceedings of the third international Conference on
Embedded Networked Sensor Systems (Sensys, pages
243-254. ACM Press, 2005.

[4] J. Koshy, I. Wirjawan, R. Pandey, and Y. Ramin.
Balancing computation and communication costs: The
case for hybrid execution in sensor networks. Ad Hoc
Netw., 6(8):1185-1200, 2008.

[5] D. Palmer. A virtual machine generator for
heterogeneous smart spaces. In VM’04: Proceedings of
the 8rd conference on Virtual Machine Research And
Technology Symposium, pages 1-1, Berkeley, CA, USA,
2004. USENIX Association.

[6] R. Pandey and J. Koshy. A software framework for
integrated sensor network applications. In InterSense
’06: Proceedings of the first international conference on
Integrated internet ad hoc and sensor networks,
page 11, New York, NY, USA, 2006. ACM.

[7] B. L. Titzer, J. Auerbach, D. F. Bacon, and
J. Palsberg. The exovm system for automatic vm and
application reduction. In PLDI ’07: Proceedings of the
2007 ACM SIGPLAN conference on Programming
language design and implementation, pages 352-362,
New York, NY, USA, 2007. ACM.

