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ABSTRACT

Model-Driven Engineering (MDE) has been advocated as an
effective way to deal with today’s software complexity. MDE
can be seen as an integrative approach combining exist-
ing techniques such as Domain-Specific Modeling Languages
(DSML) and Transformation Engines. This paper presents
the ezRealtime, an MDE-based tool that relies on the Time
Petri Net (TPN) formalism and defines a DSML to provide
an easy-to-use environment for specifying Embedded Hard
Real-Time (EHRT) systems and for synthesizing timely and
predictable scheduled C code. The ezRealtime adopts the
universal XML-based transfer syntax for Petri nets, named
as PNML. The main idea of this work is to propose a gener-
ative programming method and tool to boost code quality
and improve developer productivity with automated soft-
ware synthesis. The ezRealtime tool reads and automati-
cally translates the specification to a time Petri net model
through composition of building blocks with the purpose
of providing a complete model of all tasks in the system.
Therefore, this model is used to find a feasible schedule by
applying a depth-first search algorithm. Finally, the sched-
uled code is generated by traversing the feasible schedule,
and replacing transition’s instances by the respective code
segments. We also present the application of the proposed
method in a case study.
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1. INTRODUCTION

This work considers Embedded Hard Real-Time (EHRT)
software development. Regarding real-time systems, the
correct behavior depends not only on the integrity of the
results, but also the time in which such results are produced.

The adoption of formal methods is an alternative to deal
with several kinds of constraints that need to be satisfied,
such as timing, size, weight, energy consumption, and re-
liability. Formal methods are important mechanisms for
the analysis and verification of properties, as well as, fa-
cilitate system validation. However, for the effective use of
formalisms, the availability of an abstraction layer through
which developers can model their application in graphic de-
sign area, without necessarily knowing that there is an un-
derlying formal semantics, is an important issue and needs
to be considered.

Model-Driven Engineering (MDE) tools impose domain-
specific constraints and perform model checking that can
detect and prevent many errors early in the life cycle [13].
MDE can be seen as an integrative approach combining
existing techniques such as Domain-Specific Modeling Lan-
guages (DSML) and Transformation Engines.

DSML environments are intended to automate the cre-
ation of program parts that are costly to build from scratch.
It is a graphical representation of a Domain-Specific Lan-
guage (DSL) that is targeted to a particular matter, rather
than a general purpose language that can be used to de-
velop all kinds of programs. There are some DSL building
frameworks used to speed up the development process, such
as GMEJ9], Microsoft DSL Tools[5], and Eclipse Modeling
Project Platform®.

In this context, we developed the ezRealtime?, a MDE-
based tool which provides a DSML backed by a time Petri
net formalism and a code generator engine with the purpose
of automating several parts of the development of EHRT
software. It aims at developing an open source MDE-based
environment to provide not just a friendly GUI from where
all system’s functionalities can be specified, but a generative
programming approach to boost code quality and improve
developer productivity with automated software synthesis.

The rest of this work is organized as follows: Section 2
describes related works. Section 3 describes the method for
modeling embedded hard real-time systems. A deep dive
on project ezRealtime is the subject of Section 4. Section 5

'EMP, http://www.eclipse.org/modeling/
2ezRealtime, http://pnmp.sourceforge.net/ezrealtime/



showcases an experiment. Finally, Section 6 concludes this
paper and depicts future works.

2. RELATED WORKS

MDE is gaining momentum in the development of com-
plex software systems. We have identified other projects
that also consider this important subject.

The TOPCASED project[15] is an open source CASE
environment for critical applications and systems develop-
ment. It relies on the Eclipse Modeling Project Platform and
the metamodelling principles forms the core of this project.
A new DSL is proposed and used as case study in this work,
namely SimplePDL (Simple Process Description Language),
which is an experimental language for specifying processes.
It introduces a temporal extension of OCL, TOCL, based
on process states and formalized using a LTL (Linear Tem-
poral Logic). In additional to that, Petri nets are also used
for model checking purposes.

Sztipanovits and Karsai[14] discusses challenges and op-
portunities of generative programming (developing programs
that synthesize other programs) for embedded software de-

velopment. It explains the principles of MIC (Model-Integrated

Computing), a project from the ISIS laboratory of the Van-
derbilt University, which places models as center piece for
the integrated software development.

Another important work is the Times tool which is in-
tend to support the embedded system designer for mod-
elling, schedulability analysis, synthesis of schedules and ex-
ecutable code®. One of the main characteristics of Times
tool is that it is suitable for systems that can be decom-
posed by a set of preemptive or non-preemptive tasks which
are triggered periodically or sporadically by time or external
events. Moreover, this tool provides means to interactively
model and simulate the dynamic behavior of the system as
well as verify the schedulability analysis. Nevertheless, this
tool only allows the user to automatically generate the C-
code for the brickOS platform.

These works are very close to that achieved in this work.
Indeed, ezRealtime also combines a operational semantics
based on timed Petri nets with DSL Engineering. In addi-
tional, it provides an easy-to-use model-based software de-
velopment environment for modeling EHRT systems, sched-
ule software synthesis and model validation engine.

3. MODELING
3.1 Computational Model

Computational model syntax is given by a time Petri
net [11], and its semantics by a timed labeled transition sys-
tem. A time Petri net (TPN) is a bipartite directed graph
represented by a tuple P= (P, T, F,W,mo,I). P (places)
and T (transitions) are non-empty disjoint sets of nodes.
The edges are represented by FF C (P x T) U (T x P).
W . F — N represents the weight of the edges. A TPN
marking m; is a vector m; € Nlp‘, and myo is the initial
marking. I : T — N x N represents the timing constraints,
where I(t) = (EFT(t), LFT(t)) Vt € T, EFT(t) < LFT(t),
EFT(t) is the Earliest Firing Time, and LEFT(t) is the Lat-
est Firing Time. An extended time Petri net with code and
priorities is represented by P, = (P,CS, 7). P is the time
Petri net, CS:T - S7 is a partial function that assigns

3The Times Tool, http://www.timestool.com

transitions to behavioral source code, where S7 is a set of
source tasks codes, and 7 : T" — N is a priority function.

A set of enabled transitions is denoted by: ET(m;) =
{t € T | mi(p;) > W(p;,t)}, ¥p; € P. The time elapsed,
since the respective transition enabling, is denoted by a clock
vector ¢; € NIET(mil The dynamic firing interval (Ip(t)) is
dynamically modified whenever the respective clock variable
c(t) is incremented, and ¢ does not fire. Ip(t) is computed
as follows: Ip(t) = (DLB(t), DUB(t)), where DLB(t) =
maz(0, EFT(t) — c(t)), DUB(t) = LFT(t) — ¢(t), DLB(t)
is the Dynamic Lower Bound, and DLB(t) is the Dynamic
Upper Bound.

DEFINITION 3.1  (STATES). Let P be a time Petri net,
M be the set of reachable markings of P, and C be the set
of clock vectors. The set of states S of P is given by S C
(M x C), that is a state is defined by a marking, and the
respective clock vector.

FT(s) is the set of fireable transitions at state s defined
by: FTp(s) = {t; € ET(m) | n(t;) = min(n(tx)) A
DLB(t;) < min(DUB(t;)), Vtr € ET(m)}. The firing
domain for t at state s, is defined by the interval: FD,(t)
= [DLB(t), min (DU B(ty))].

The semantics of a TPN P is defined by associating a
TLTS Lp= (S, %, —,s0): (i) S is the set of states of P; (ii)
3 C (T x N) is a set of actions labeled with (¢,0) corre-
sponding to the firing of a firable transition (¢) at time (6)
in the firing interval F'D,(t), Vs € S; (iii) — C S x X x S is
the transition relation; (iv) so is the initial state of P.

DEFINITION 3.2
derived from a TPN P, and s; = (ms,¢;) a reachable state.
siy1 =fire(s;, (t,0)) denotes that firing a transition t at
time 0 from the state s;, a new state siy1 = (Mit1,Cit1)
is reached, such that: (1) ¥p € P, miy1(p) = mi(p) —
Wi(p,t)+W(t,p); (2) Vtx € ET(miy1): (i) Ciza(te) =0 (if
(tk = t) V (tk c ET(m¢+1) — ET(m,))), or (Z’L) Ci+1(tk) =
Ci(tr) + 0, otherwise.

Definition 3.2 states that the firing of a transition ¢;, at
time value 0;, in state (s;), defines the next state (si+1).

DEFINITION 3.3  (FEASIBLE FIRING SCHEDULE). Let Lp
be a TLTS derived from a TPN P, so its initial state, s, =
(mn,cn) a final state, and my, = MF is the desired final
marking.

(tn,0n)
1 — S

(t1,671) (t2,02)
0o — S1 — 82— — 7 Sp— n

is defined as a feasible firing schedule, where s; = fire(s;_1,
(ti76i)), 1> 0, Z'fti S FT(SZ‘71), and 0; € FDsi,l(ti)v

The modeling methodology guarantees that the final mark-
ing M¥ is well-known since it is explicitly modeled.

3.2 Specification Model

The proposed specification model is composed by: (i) a
set of tasks with timing constraints; (ii) intertask relations;
(c) the schedule method (preemptive or nonpreemptive) for
each task, and the behavioral specification.

Let 7 be the set of tasks in a system. The proposed
approach considers only periodic tasks, where the definition
of timing constraints is as follows. Let 7, € 7 be a periodic
task. The constraints of 7; is defined by (phs, 7, ¢, ds, ps),

(REACHABLE STATES). Let Lp be a TLTS



where ph; is the phase offset time; r; is the release time; ¢; is
the worst-case execution time (WCET); d; is the deadline;
and p; is the period.

The phase (ph;) is the delay associated to the first time
request of task 7; after the system starting. The periodicity
in which 7; is requested is denoted by the period p;. Re-
lease time r;;, WCET ¢;, and deadline d;, are time instants
considering the beginning of the period as the start point.
Thus, r; is the earliest time where the task 7, may start
execution, ¢; is the WCET required for executing task 7;;
and d; is the time at which task 7; must be completed. This
work considers that ¢; < d; < p;.

The considered inter-tasks relations are precedence and
exclusion relations. A task 7; PRECEDES task 7;, if 7; can
only start executing after 7; has finished. A task 7, EX-
CLUDES task 7;, if no execution of 7; can start while task
T; is executing, i.e., task 7; could not be preempted by task
7;. Exclusion relations may prevent simultaneous access to
shared resources. We consider symmetrical exclusion rela-
tion, that is, if A EXCLUDES B then B EXCLUDES A.

In real applications, there are some cases where the arrival
of tasks is not periodic. These tasks are generally called ape-
riodic tasks, since they arrive randomly. A particular class
of aperiodic tasks is called sporadic tasks. The minimum
period between two activations of a sporadic task is known.
However, pre-runtime approaches may only schedule peri-
odic tasks. In order to schedule sporadic tasks, each one
should be translated into an equivalent periodic task. In
this paper such translation is based on Mok’s work [12].

The behavioral specification consists of the source code
for each task. This code is programmed using the C pro-
gramming language, and it must be in accordance with the
respective compiler for the target processor.

3.3 Modeling the Specification

This section details how to model the specification using
time Petri net formal model through composition of building
blocks. It is worth observing that such blocks are specific
for the pre-runtime scheduling policy.

Pre-runtime scheduling considers the entire set of periodic
tasks occurring within a time period that is equal to the
least common multiple (LCM) among periods of the given
set of tasks. The LCM is also called schedule period (PS) or
hyper-period. Therefore, there are several tasks instances of
the same task within the schedule period.

3.3.1 Building Blocks

Tasks are modeled by composition of building blocks de-
picted in Figures 1 and 2, and summarized below: a) Fork
Block. The fork block models the starting of n concurrent
tasks. Figure 1(a) shows the fork block. The timing in-
terval of transition tsar¢ is always equal to [0, 0]; b) Join
Block. The join block models the fact that all n tasks
have concluded their execution in the schedule period. Fig-
ure 1(b) presents the join block. It is worth noting that a
marking in place penq represents the desirable final mark-
ing (or MT). In this case, mi(pena) = 1 indicates that a
feasible firing schedule (Def. 3.3) was found; c) Periodic
Task Arrival Block. This block models the periodic in-
vocation of all instances of all tasks in the schedule period
(PS). Figure 1(c) illustrates the periodic task arrival block.
It is worth noting the weight (a; = N(y) — c0) of the arc
(tph;» Pwa; ), where this weight models the invocation of all

pf1 pfi Pfn
Pstart
wn|
tstart [0,0]
tend [0, 0]
Pend
Pstq Pstj Pstp
(a) (b)
‘.ai . Pwci
Pwai [pi, pil pwri :
Dwdi Pwpci l
: td; tpci
3 0, 0]
Psi i pwdi [di, di] [0.0] pdmi
[phi, phi]
(c) (d)

Figure 1: Proposed Building Blocks - Part 1
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Figure 2: Proposed Building Blocks - Part II

remaining instances after the first task instance. The tim-
ing intervals of transitions t., and t,n, are fulfilled by ph;
(phase) and p; (period) of task 7;; d) Deadline Check-
ing Block. Some works (e.g. [1]) extended the Petri net
model for dealing with deadline checking. The proposed
modeling method uses elementary net structures to capture
deadline missing. Obviously, Deadline missing (Fig. 1(d))
is an undesirable situation when considering hard real-time
systems. The timing interval for transition ¢,.; is constant,
and for transition t4; is fulfilled by the deadline d; of task
7;. €) Non-preemptive Task Structure Block. Consid-
ering a non-preemptive scheduling method, the processor is
just released after the entire computation has been finished.
Figure 2(a) shows that time interval of computation tran-
sition has bounds equal to the task computation time (i.e.,



[ci,ci]). The timing interval for transition tg, is constant,
and for transitions ¢, and t., are fulfilled by release r;, and
execution time ¢; of task 7;. f) Preemptive Task Struc-
ture Block. This scheduling method (Figure 2(b)) implies
that a task is implicitly split into subtasks, where the com-
putation time of each subtask is exactly equal to one TTU.
The timing of transition ¢, is fulfilled by r; (release) of task
7;. All remaining timing intervals are constants; g) Pro-
cessor Block. This work is constrained to mono processor
architecture. Hence, as the processor is considered as a re-
source, the processor block consists of a single place pproc
with one marking. This modeling is important since the
processor is used in a mutually exclusive way.

3.3.2 Operators and Net Compositions

The proposed modeling method is conducted by building
block compositions. This work proposes several operators
depicted as follows: (a) Place merging operator is adopted
to make a new net by merging two set of places of two blocks
to be composed; (b) Serial place refinement can be seen as
a replacement of a single place by a sequence of one place,
one transition, and another place; (c) Arc addition is an
operator that adds an arc from a place to a transition or
from a transition to a place; (d) Arc removing is an operator
that removes a specific arc; (e) Place addition is an operator
that adds a single place to a net; and (f) Net union is an
operator that joins two nets producing another net. More
details about compositions and operators are beyond the
scope of this paper. The interested reader is referred to [2].

3.3.3 Inter-tasks Relations Modeling

Inter-tasks relations are modeled as follows:

a) Modeling Precedence Relations. Precedence re-
lations are defined between pairs of tasks. Let us suppose
that 7, PRECEDES 7; is specified. After modeling the two
tasks (7; and 7;), represented by nets N; and N;, respec-
tively, some actions are performed in order to model such
precedence relation. Figure 3 shows a TPN model repre-
senting a precedence relation. It worth observing that task
T can only proceed after task 71 has finished its execution.
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Figure 3: Precedence Relation Model

b) Modeling Exclusion Relations. Exclusion relations
are also defined between pairs of tasks. Let us suppose that
7; EXCLUDES 7; is specified. The proposed modeling method
adds a single place shared by the two tasks. This place has
one marking and it is pre-condition for the execution of the
two tasks. Therefore, just one of both tasks is executing si-
multaneously. After modeling the two tasks (7; and 7;), rep-
resented by nets IN; and Nj, respectively, some actions are

tpha[0, 0] 1d2[150,150] tpe2[0, 0]

texcly

trp
tap[250,250] [0, 130] 10, 0]

fe2[1,1]

™ 12 [00]
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et e~ e
WexCloz
¥

1o [0,0]

tpho[0, 0] tdo [100,100] tpcoyo, 0]

Figure 4: Exclusion Relation Model

performed to model the exclusion relation: Figure 4 shows
a TPN model representing a exclusion relation.

4. DEEPDIVEONPROJECT EZREALTIME

4.1 Project Internals

The ezRealtime is an open source project which relies on
the time Petri net formalism and defines a Domain Specific
Modeling Language (DSML) to provide an easy-to-use envi-
ronment for specifying EHRT systems and for synthesizing
timely and predictable scheduled C code. It uses the In-
ternational Standard ISO/IEC 15909-2[8] which defines a
universal XML-based transfer syntax for Petri nets, namely
Petri Net Markup Language (PNML).

ezRealtime is distributed under the Apache License ver-
sion 2.0 and it has been developed using Eclipse Modeling
Project Platform, in special the Eclipse Modeling Frame-
work (EMF) [3] that plays an important role in this work and
has proved to be a mature tool that offers a simple and ele-
gant approach to develop DSLs. EMF is a Java framework
and code generation facility for building tools and other ap-
plications based on a metamodel. Once the metamodel for
a particular domain is specified, the EMF can generate a
set of Java code, including Eclipse plug-ins and graphical,
customizable editors.

EMF metamodels can be defined as an UML class diagram
(Rational Rose or UML2), Annotate Java interfaces with
some model properties, XML Schema Definitions (XSDs),
or directly in a XMI document. Additionally, EMF can also
be thought as a Java implementation of a core subset of the
OMG standard MOF (Meta-Object Facility) [6] API. MOF
is a common language across metamodels, and in its current
proposal (MOF 2.0), a similar subset of the MOF model,
which is called Essential MOF (EMOF), is separated out.
To avoid any confusion, the MOF-like core metamodel in
EMF is called Ecore. There are small differences between
Ecore and EMOF; however, EMF can transparently read
and write serializations of EMOF.

4.2 Metamodelling

Modeling describes the concepts of a domain with the con-
cepts provided by a modeling language. Metamodelling al-
lows for the modelling of modelling languages. It thus allows
the definition of tailored, or DSM languages. ezRealtime
uses the EMF to transform the proposed specification (Sec-
tion 3.2) metamodel (represented as a UML class diagram)
representation (see Figure 5) into Ecore.

EMF also allows you to go back and forth from the model
to the generated code, iteratively refining the specification.



For lack of space in Figure 5, the entire metamodel is not
shown.
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Figure 5: Overview of the implemented Specifica-
tion metamodel

4.3 The tool architecture of ezRealtime

In effect, we created a DSML based on a time Petri net for-
malism and the EMF.Codegen code generator facility trans-
lates this model into a treeview graphical editor, where end-
users define a set of Tasks and their inter-relations, whether
such tasks are executed in one or more processors, which is
in turn transformed into a human and machine readable
PNML (a XML-based document markup standard) descrip-
tion of the application. This PNML file is built by following
the proposed Building Blocks (Section 3.3.1), Operators and
Net Compositions (Section 3.3.2) approaches, and it serves
as base for the pre-runtime ezRealtime Scheduler engine that
is used to find a feasible schedule, and then low-level C code
is automatically synthesized.

The software is therefore broken into standalone, well de-
fined tasks, and then the ezRealtime Scheduler engine pro-
duces a feasible schedule ensuring that timing, energy, prece-
dence and exclusion constraints are satisfied for these tasks.

One of the goals of the project is to provide a straight-
forward mechanism for developing embedded hard real-time
systems. Therefore, end-users do not necessarily know that
there is an underlying formal semantics that provide the
basis for the automation of software synthesis. The tool
architecture of ezRealtime is illustrated in Figure 6.

This work considers that the synthesized system runs with-
out a multitasking real-time operating system (RTOS), since
it generates timely and predictable scheduled code.

It is important noticing that as we have shown, different
perspectives exist when examining the internal and external
aspects of ezRealtime. From the tool developers’ viewpoint,
the labor involved would be in: i) the up-front creation of
an accurate metamodel to accomplish the domain-specific
goals, ii) the adoption of the right technology and tool for
developing the DSML, iii) the construction of the graphical
editor, where the end-users will input the information about
the hard real-time software under development, iv) the de-
velopment of the code generator engine. From the end-users’
viewpoint, the labor involved would be in: i) modeling all
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Metamodel leve
ezRealtime A\
<<creates>> DSL <<Eclipse JET>> ezRealtime
API
Is structure by i E <<uses>>
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| #T2
| | =13

= Precedes

T2
<<uses>> B M1

= Precedes Tasks
T1

<<exports >>
PNML

<<ezRealtime >>
| i

Figure 6: tool architecture of ezRealtime

User

relevant system’s Tasks and their relations, ii) invoke the
compiling feature provided by the C code generator engine.

In order to generate a model from the specification, the
following steps should be taken into account: i) generate
a model for arrival, deadline, and task structure blocks for
each task; ii) generate each precedence and exclusion rela-
tions; iii) generate each inter-tasks communication; iv) gen-
erate the fork block; and v) generate the join block.

The ezRealtime uses its transformation engine (a domain-
specific component library) with a third-party API called
PNML Framework* for mapping from ezRealtime DSL (see
Figure 7) into timed Petri nets through the PNML (ezRe-
altime2PNML).

The PNML Framework [7] is the API used in this work
and it provides an extensive and comprehensible API to cre-
ate and save PNML models, load and fetch PNML models
elements. In this context, the PNML Framework will be
used by the ezRealtime Exporter component to translate
the DSL below into a PNML document.

<?7xml version="1.0" encoding="UTF-8"7>
<rt:ez-spec xmlns:rt="http://pnmp.sf.net/EZRealtime">
<Task precedesTasks="#ez1151891690363" identifier="ez1151891">
<processor>p124365</processor>
<name>T1</name>
<period>9</period>
<power>10</power>
<schedulingMode>NP</schedulingMode>
<computing>1</computing>
<deadline>9</deadline>
</Task>

</rt:ez-spec>

Figure 7: ezRealtime DSL: a XML representation of
the hard real-time software specification

4.4 Code Generator Engine

A ezRealtime CodeGen library was developed in order to
automate the code generation process. Such engine uses the
Ruby® programming language to write code for microcon-
trollers. This section shows the scheduler synthesis and the

PNML Framework, http://www.lip6.fr/pnml
http://www.ruby-lang.org




1 scheduling-synthesis(S,M,TPN)

2 {

3 if (S.M = M) return TRUE;

4 tag(S);

5 PT = pruning(firable(S));

6 if (|PT| = 0) return FALSE;

7 for each ((t,0) € PT) {

8 S’= fire(S, t, 0);

9 if (untagged(S’) A

10 scheduling-synthesis (S’,MF,TPN)){
11 add-in-trans-system (S,S’,t,60);
12 return TRUE;

13

14}

15 return FALSE;

16 }

Figure 8: Scheduling Synthesis Algorithm

scheduled code generator.

4.4.1 Pre-Runtime Schedule Synthesis

The ezRealtime Scheduler component automatically looks
for a feasible schedule. It takes the PNML document as in-
put and if a schedule is found, the tool generates a scheduler
to control the tasks’ execution. It is worth observing that
this is pre-runtime scheduling policy, which is fundamental
to satisfy timing requirements established in the specifica-
tion.

Starting from the time Petri net model, the proposed
scheduling synthesis framework generates and analyzes the
timed labeled transition system (TLTS), as a result of this
model. It also analyzes the TLTS in order to find a pre-
runtime schedule, provided that such schedule exists.

Scheduling is very important in embedded real-time sys-
tems. The proposed scheduler synthesis algorithm is a depth-
first search method on a finite timed labeled transition sys-
tem derived from a TPN model. The algorithm may ex-
perience the state explosion problem when searching for
a feasible schedule. In order to maintain the state space
growth under control, the proposed method adopts a partial-
order minimization technique [10] in order to prune the state
space.

The proposed algorithm (Fig. 8) is a depth-first search
method on a generated on-the-fly timed labeled transition
system (TLTS). The stop criterion is obtained whenever the
desirable final marking M is reached. Due to lack of space,
the interested reader is referred to [2] for more details of the
algorithm.

The only way the algorithm returns TRUE is when it
reaches a desired final marking (M*'), implying that a feasi-
ble schedule was found (line 3). The state space generation
algorithm is modified (line 5) to incorporate the state space
pruning. PT is a set of ordered pairs (t, ) representing for
each firable transition (post-pruning) all possible firing time
in the firing domain. The tagging scheme (lines 4 and 9) en-
sures that no state is visited more than once. The function
fire (line 8) returns a new generated state (S’) due to the
firing of transition ¢ at time 6. The feasible schedule is repre-
sented by a timed labeled transition system that is generated
by the function add-in-trans-system (line 11). When the
system does not have a feasible schedule, the whole reduced
state space is analyzed.

4.4.2 Scheduled Code Generation

The proposed method for code generation includes not
only tasks’ code, but also a timer interrupt handler, and a

small dispatcher. Such dispatcher automates several control
mechanisms required during the execution of tasks. Timer
programming, context saving, context restoring, and tasks’
calling are examples of such additional controls. The timer
interrupt handler always transfers the control to the dis-
patcher, which evaluates the need of performing either con-
text saving or restoring, and after that to call the specific
task. An array of registers (struct ScheduleItem) is cre-
ated to store the schedule table. Each input represents the
execution part of a task instance. In case of preemption, a
task instance may have more than one ezecution part. The
register struct Scheduleltem contains the following infor-
mation: (i) start time; (ii) flag, indicating if the task was
preempted before; (iii) task id; and (iv) a pointer to a func-
tion (task code). Figure 9 depicts the schedule table for a
preemptive application and Figure 10 presents the respec-
tive timing diagram. It includes two instances of TaskA, two
instances of TaskB, two instances of TaskC, and one instance
of TaskD. TaskAl and TaskA2 are preempted in time 4 and
20, respectively. TaskB1 is preempted twice: first in time 6
and, then, in time 10. Therefore, the schedule table contains
11 entries.

struct ScheduleItem scheduleTable [SCHEDULE_SIZE] =

1, false, 1, (int *)TaskA}, /* TaskAl starts */
{ 4, false, 2, (int *)TaskB}, /* TaskBl preempts TaskAl */
{ 6, false, 3, (int *)TaskC}, /* TaskCl preempts TaskBl */

{ 8, true, 2, (int *)TaskB}, /* TaskBl resumes execution */
{10, false, 4, (int *)TaskD}, /* TaskD1 preempts TaskB1l */
{11, true, 2, (int *)TaskB}, /* TaskBl resumes execution */
{13, true, 1, (int *)TaskA}, /* TaskAl resumes execution */
{18, false, 1, (int *)TaskA}, /* TaskA2 starts */
{20, false, 3, (int *)TaskC}, /* TaskC2 preempts TaskA2 */
{22, false, 2, (int *)TaskB}, /* TaskB2 starts */

1, (int *)TaskA} /* TaskA2 resumes execution */

{28, true,

Figure 9: Example of a Schedule Table
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Figure 10: Timing Diagram for Schedule Table

5. CASE STUDY: MINE SYSTEM

This case study is a real-world application, where detailed
specification for this example can be found in [4]. This sys-
tem is a simplified pump control system for a mining envi-
ronment. The system is used to pump mine-water, collected
in a sump at the bottom of the shelf to the surface. When
the water reaches a given high-level the pump is turned on
and the sump is drained until the water reaches the low-level.
At this point, the pump is turned off. The pump should
only be allowed to operate if the methane level (CHy4) in
the mine is below a critical level. The monitoring also mea-
sures the level of carbon monoxide (CO) in the mine and
detects whether there is as adequate flow of air.

Table 1 presents the system specification. The system has
five sensors: C'H4, CO, water flow, air flow, and high/low
water. For each sensor one handler task is defined. The first
four are periodic and the latter is sporadic. Another four



Table 1: Specification for Mine Drainage System

task C D P
PMC 10 20 80
WEFC 15 500 500
RLWH 1 1000 1000
CH4H 25 500 500
CH4S 5 100 500
COH 15 100 2500
AFH 15 200 6000
WFH 15 300 500
PDL 15 500 500
SDL 10 500 500

sporadic tasks are pump motor control (PMC), water flow
check (WFC), process data logger (PDL), and store data log-
ger (SDL). All sporadic tasks were translated into a periodic
ones. The CHA4S task is responsible for verifying the CHy
safety level. The PMC task is used to represent the control
over the motor switch. This problem has 10 tasks, imply-
ing 782 tasks’ instances and, at the beginning, all 10 tasks
arrive at the same time. Our solution searched 3268 states
(where minimum number of states is 3130) in 330 ms, using
a non-preemptive (NP) method. The platform was an AMD
Athlon 1800 MHz processor, with 768 MB RAM, adopting
Linux operating system with GCC 4.0.2 compiler.

6. CONCLUSION AND FUTURE WORK

ezRealtime has been designed to provide developers with
an easy-to-use interface for specifying Embedded Hard Real-
Time (EHRT) systems and for synthesizing timely and pre-
dictable scheduled C code, which can be leveraged in the
applications. Such software uses its transformation compo-
nent library for mapping the proposed DSL into the rigorous
semantics of time Petri nets.

We are evolving the ezRealtime project, both to improve
its CodGen component and transformation rules. Our aim
is to apply the proposed methodology in the development
of the EHRT software for all sorts of microcontrollers and
processors (e.g., ARM9, 8051, M68K, x86) in a generative
way. Moreover, the generated code should also be tuned and
optimized to specific platforms.

This paper contributed with the scheduled code generator
that receives the EHRT software specification and checks if
there exists a feasible schedule for the system. If yes, the
schedule is automatically generated and the code for the
system is synthesized considering a pre-runtime scheduling
strategy. The ezRealtime tool per si is a contribution.
The more specific contributions to the DSL Engineering and
EHRT domains are depicted as follows: (i) propose a for-
malized software modeling process using Time Petri Nets,
(ii) describe a DSML that supports developers to specify
EHRT systems, and also generate C code that make system
deployment easier, and (iii) provide a tool based methodol-
ogy for the development of predictable scheduled code for
EHRT systems.
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