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Abstract. Until recently, computational aspects of the Shap-
ley value were only studied under the assumption that there
are no externalities from coalition formation, i.e., that the value of
any coalition is independent of other coalitions in the system.
However, externalities play a key role in many real-life situa-
tions and have been extensively studied in the game-theoretic
and economic literature. In this paper, we consider the issue of
computing extensions of the Shapley value to coalitional games
with externalities proposed by Myerson [21], Pham Do and
Norde [23], and McQuillin [17]. To facilitate efficient computa-
tion of these extensions, we propose a new representation for
coalitional games with externalities, which is based on weighted
logical expressions. We demonstrate that this representation is
fully expressive and, sometimes, exponentially more concise than
the conventional partition function game model. Furthermore,
it allows us to compute the aforementioned extensions of the
Shapley value in time linear in the size of the input.

1 Introduction
The Shapley value is arguably the most important normative
payoff division scheme in coalitional games. Whereas game
theory focuses predominantly on the theoretical aspects of the
Shapley value, computer science is equally concerned with the
computational aspects involved. Given this, in this paper we
consider the issue of computing the Shapley value extended to
coalitional games that exhibit externalities from coalition forma-
tion (i.e., games in which the gain from forming a coalition may
be affected by the formation of other coalitions). The issue of
externalities has been extensively studied in the economic liter-
ature, as they play an important role in many real life problems
(see, e.g., [4]). This issue has also been recently considered in
the AI and multi-agent systems literature [18, 19, 25]. Here, ex-
ternalities emerge in any situation where the utility of an agent
or a coalition of agents is influenced by the functioning of coali-
tions created by other agents in the system.2

In the absence of externalities, Shapley [27] proposed to eval-
uate the role of each agent by averaging the marginal contribu-
1 We would like to thank Michael Wooldridge for helpful discussions.

Also comments from three ECAI anonymous reviewers are grate-
fully acknowledged.

2 See [19] for examples of settings with externalities.

tions of that agent to coalitions over all the possible permu-
tations of agents in the game (see the formal definition in the
next section). Assuming that the grand coalition, i.e. the coali-
tion of all the agents in the game, is formed, the Shapley value
identifies the fair division of the joint payoff. Here, fairness is
defined by the following four desirable axioms: (i) efficiency —
all the wealth available to agents is distributed among them;
(ii) symmetry — any agents that have the same marginal contri-
butions obtain the same payoff; (iii) null player — agents with
zero marginal contributions receive zero payoff; and (iv) addi-
tivity — values of two games should sum up to the value com-
puted for the sum of both games. This last axiom means that
when agents divide the payoff from two different games, each
agent’s share does not depend on whether the two games are
considered together or one after the other. The importance of
Shapley value stems from the fact that it is the unique division
scheme that meets all the above four fairness axioms.3

As for computational issues, the definition of the Shapley
value is based on the characteristic function that assigns to
every coalition a numerical value representing the quality of
its performance, i.e., given n agents, it considers 2n coali-
tions. Such an exponential input is clearly computationally in-
tractable for bigger systems (e.g., 100 or 1000 agents). There-
fore, a number of works in the computer science literature pro-
posed alternative representations which are sometimes more
concise and have other interesting computational properties
[8, 5, 6, 14, 22, 11]. For example, the representation of Ieong and
Shoham [14], which is in many cases exponentially more con-
cise than the characteristic function, allows us to compute the
Shapley value in time linear in the size of the representation.

However, the issue of representing coalitional games is more
challenging in the presence of externalities [19, 20]. In game
theory, such games are represented using the partition function
game representation. Here, the value of the coalitions depends
on the coalition structure in which it is embedded, where a coali-
tion structure is defined as a partition of all the agents into
disjoint coalitions. Clearly, the partition function is much more
computationally involved than the characteristic function. Fur-
thermore, solution concepts developed for games with no ex-

3 It should be noted that, in games with no externalities, the fourth
axiom can be derived from the first three axioms.



Figure 1. Integer partitions for 8 agents

ternalities, such as the Shapley value, have to be redefined (or
extended) to allow for existence of externalities. To date, there
have been a number of such extensions of the Shapley value in
the game-theoretic literature, namely, those proposed by My-
erson [21], Bolger [3], Potter [24], Maskin [16], Macho-Stadler
et al. [15], Pham Do and Norde [23], Fujinaka [10], Hafalir [12],
Hu and Yang [13], Albizuri et al. [1], DeClippel and Serrano
[7] and McQuillin [17]. The main reason for this multiplicity
of concepts is that the fairness axioms introduced by Shapley
for games with no externalities are not sufficient to guaran-
tee uniqueness of a division scheme in games with external-
ities. To attain this uniqueness, some extra axioms have to be
introduced and this leads to a number of different extensions
depending on the axioms that are being added. Although the
Shapley value is one of the key solution concepts in coalition
formation, none of its extensions to games with externalities
has been considered in the computer science literature with the
exception of the recent paper by Michalak et al. [20] which con-
sidered only one of those extensions.

Against this background, in this paper:

• We consider the computational aspects related to three ex-
tensions of the Shapley value to games with externalities;
namely, those proposed by Myerson, Pham Do and Norde,
and McQuillin.

• To facilitate the efficient computation of the three exten-
sions under consideration, we propose a novel representa-
tion of coalitional games with externalities that is based
on weighted logical expressions. We show that our repre-
sentation is fully expressive, i.e., it is able to represent any
coalitional game with externalities, and is not restricted to
any particular subclasses of these games. Furthermore, our
representation can be much more concise compared to all
available alternatives for games with externalities, namely
the conventional partition function game representation, and
the representations recently introduced by Michalak et al.
[19, 20].4

• We show that, for all three extensions of the Shapley value,
using our representation the division of payoff is obtained
in time linear in the number of logical rules that model the
coalitional game.

4 In fact, it can be easily shown that the representation in [20], which
is also based on logical expression, is only a very special case of our
representation.

2 Notation and Basic Definitions

We denote by A = {a1, . . . , a|A|} the set of agents participat-
ing in the game. A characteristic function v : 2A → R assigns to
every coalition C ⊆ A a real number representing the quality
of its performance. A characteristic function game is then a tuple
(A, v). However, as common practice in the literature, we will
simply denote it by v alone. A coalition structure, denoted π, is
a disjoint and exhaustive partition of the agents in A. That is,
π = {C : C ⊆ A ∧

⋃
C∈π C = A ∧ ∀C,C′ ∈ π,C∩C′ = ∅}. By

Π(A) we will denote the space of all coalition structures overA.
In the spirit of [26], we will divide Π(A) into sub-spaces such
that every sub-space is represented by a unique integer parti-
tion of |A|, with the integers corresponding to coalition sizes.
Figure 1 shows an example for |A| = 8, where all the pos-
sible integer partitions are divided into levels L1, L2, . . . , L8

such that every level Li contains the integer partitions of size i.
The integer partition [1, 1, 6], for example, represents the sub-
space containing all the coalition structures within which two
coalitions are of size 1, and one coalition is of size 6. For every
coalition C′ ⊆ A, we distinguish two coalition structures that
contain it, denoted {C′, singletons} and {C′, A \C′}, as these
will play an important role in the paper. Specifically:

(i) {C′, singletons} = {C : C ⊆ A ∧ (C = C′ ∨ |C| = 1)}
(ii) {C′, A \ C} = {C : C ⊆ A ∧ (C = C′ ∨ |C| = |A| − |C′|)}

In a coalitional game with externalities, given three dis-
joint coalitions: C1,C2,C3, and given two coalition structures:
CS,CS′ such that C1, C2, C3 ∈ CS and C1, (C2 ∪ C3) ∈ CS′,
the value of C1 may be different in CS than in CS′ due to the
merge ofC2 withC3. Such effects are known as externalities from
coalition formation. Games with externalities are conventionally
modelled using a partition function that assigns a real value to
any pair (C, π) where π ∈ Π(A) and C ∈ π. We will refer to
such pairs as embedded coalitions, and the set of them will be de-
notedE. A game in a partition function form is then a tuple (A,w).
Again, for ease of notation we will denote such a game by
w alone. Following [7], we will call w(C, {C, singletons}) the
externality-free value of coalition C, and denote it vef (C); this is
because C is not subject to any externalities in {C, singletons}
(see [7] for more details).

Now, let ω ∈ Ω(A) denote a permutation of agents inA, and
letCω(i) denote the coalition made of all predecessors of agent
ai in ω. More formally, if we denote by ω(j) the location of aj
in ω, then: Cω(i) = {aj ∈ ω : ω(j) < ω(i)}. The Shapley value
of ai, denoted SVi(v), is then defined as the average marginal
contribution of ai to coalition Cω(i) over all ω ∈ Ω[27]:

SVi(v) =
1

|A|!
∑
ω∈Ω

[v(Cω(i) ∪ {ai})− v(Cω(i))]. (1)

Shapley provides the following intuition behind this for-
mula: imagine that the players are to arrive at a meeting point
in a random order, and that every player ai who arrives receives
the marginal contribution that his arrival would bring to those
already at the meeting point. Now if we average these contri-
butions over all the possible orders of arrival, we obtainSVi(v),
ai’s payoff in the game. The formula in (1) can also be stated in
the equivalent but computationally less involved form as:

SVi(v) =
∑

C⊆A\{ai}

|C|!(|A| − |C| − 1)!

|A|!
[v(C ∪ {ai})− v(C)]. (2)



3 Extensions of the Shapley Value
In this section we discuss three extended Shapley values (ESVs),
i.e. extensions of the Shapley value to games with externalities.
Each of these is based on a different axiomatic characterization
and, thus, accommodates externalities in a different way. To
better understand these differences, we show in Figure 1 the
coalition structures that play a role in the computation pro-
cess of every extension. These differences ultimately determine
which extension is most suitable for a given application.

Extension of Pham Do and Norde. The axiomatic characteri-
zation of this extension is similar to that of the standard Shap-
ley value except for the null player and symmetry axioms.
Whereas there are many ways of defining these axioms in
games with externalities, in their definitions, Pham Do and
Norde compute marginal contributions of an agent consider-
ing only those coalition structures in which this agent plays as
a singleton (see [23] for more details). This uniquely determines
the following ESV:

ESV pdn
i (w) =

∑
C⊆A\{ai}

|C|!(|A| − |C| − 1)!

|A|!
[vef (C ∪ {ai})− vef (C)].

(3)
In other words, the axioms proposed by Pham Do and Norde

lead to an ESV that focuses solely on the externality-free value of
every coalitionC, which can be found in the coalition structure
of the form {C, singletons}, i.e., it ignores the other values of
C (whenC is embedded in other coalition structures) as visible
in Figure 1. This means that players are remunerated based on
their performance when it is unaffected by externalities.

The procedural account for theESV PdN is, in principle, sim-
ilar to that of the conventional Shapley value, except for the fact
that the agents who have not arrived yet at the meeting point,
are taken into consideration as singletons.

Extension by McQuillin. This extension is related to the prob-
lem of generalization of the conventional Shapley value. This
problem involves defining a fair division of the game’s payoff
under the assumption that the game is played not by agents but
by coalitions in a certain, a priori known, coalition structure.
Whereas the problem of generalization had been considered
only in the context of games with no externalities, McQuillin
analysed it in the presence of externalities [17]. Specifically, the
author showed that the widely accepted solution to the prob-
lem of generalization forces a unique solution to the problem of
extension, and he called this solution the Extended, Generalized
Shapley Value (EGSV ).

In order to formalize this concept, let us define for any set
T ⊆ π the operator bT c :=

⋃
C∈T C. For instance, if T =

{{a1}{a2}} then bT c = {a1a2}. Now, given a game w and
(C, π) ∈ E, the EGSV is defined as [17]:

EGSV(C,π)(w)=
∑

C∈T⊆π

(|T | − 1)!(|π| − |T |)!
|π|!

(
wπ
(
bTc

)
− wπ

(
bT\{C}c

))
(4)

where wπ(C) := w(C, {C,A\C}). In other words, to com-
pute the EGSV of a coalition C embedded in an a priori coali-
tion structure π, a characteristic function game (π,wπ), or wπ
for brevity, should be constructed in which the players are
the coalitions from π and the payoffs are given by: wπ(T ) :=

w
(
bT c,

{
bT c, bπ\T c

})
for all T ⊆ π. Now, by computing the

conventional Shapley value of player C ∈ π in the game wπ ,
we obtain EGSV(C,π)(w).

McQuillin shows that apart from efficiency, symmetry, null-
player, and linearity, the EGSV meets also weak monotonic-
ity, the rule of generalisation, strong linearity, cohesion, gen-
eralised null-player, and recursion axioms (see [17] for more
details). The author proves that the extended values proposed
by [7, 15, 21, 23, 24] asymptotically converge to the EGSV .

The procedural account for the EGSV is, in principle, simi-
lar to that of the conventional Shapley value, but now marginal
payoffs are calculated by assuming that agents, who have not
arrived yet at the meeting point, form a coalition (which is ex-
actly the opposite to the assumption made in ESV PdN ).

Extension of Myerson. The three axioms that uniquely charac-
terize Myerson’s extension are linearity, symmetry, and carrier,
extended to games with externalities. This last axiom means
that the value of the grand coalition should be divided only
among the members of the carrier that is defined as:
Definition 3.1
Let (A,w) be a game with externalities. The coalitionC ⊆ A is called
a carrier ofw if, for any embedded coalition (C′, π) ∈ E, it holds that
w(C′, π) = w(C ∩ C′, π ∧ {C,A\C}).

This extended carrier axiom implies both the efficiency and
the dummy-player concepts much stronger than in the original
Shapley value as well as in ESV PdN and EGSV (see [15, 17]
for more details on this issue). Myerson’s extension is then:
ESVMi (w)=

∑
(C,π)∈E

(−1)|π|−1(|π| − 1)!× (5)

×
( 1

|A|
−

∑
C̃∈π:C̃ 6=C

ai /∈C̃

1

(|π| − 1)(|A| − |C̃|)

)
w(C, π)

4 Weighted MC-Nets
We call our representation for games with externalities weighted
MC-nets as we derive our inspiration from both:

• the various weighted-formula representations that have
been used to represent preferences and valuation functions
in other areas of AI [28]; and

• MC-nets — the representation of coalitional games with no
externalities proposed by Ieong and Shoham [14].

Although there are a number of alternative representations of
games with no externalities in the literature [2, 5, 6, 8, 14, 22],
we find MC-nets to be the most suitable starting point of our
computational analysis of various extensions of Shapley value
for games with externalities. Specifically, in addition to being
fully expressive and, for many games, concise, this representa-
tion also facilitates a very efficient way of computing the con-
ventional Shapley value. In MC-nets, a game with no externali-
ties is represented with a set of simple rulesR, where each rule
is of the form (B, v), with B being a Boolean expression over
A, and v ∈ R.5 Such a rule is interpreted as follows: the value
of any coalition C is increased by v if that coalition meets the
expression B, i.e., if B evaluates to true when every Boolean
variable corresponding to an agent in C is set to true, and ev-
ery one corresponding to an agent in A\C is set to false. In
this case, we write C |= B. Similarly to [14], our computational
results are derived for the special case where all expressions are
conjunctions of literals. In this context, within any expression,
5 In [14], the notation B −→ v is used instead of (B; v).



an agent will be called a negative literal if it is preceded with the
sign “¬”, and will be called a positive literal otherwise.6 We as-
sume that any expression contains at least one positive literal.

The basic idea behind our weighted MC-nets representation
is to generalize the aforementioned rules such that Boolean ex-
pressions are matched against coalition structures rather than
just coalitions. Specifically, in our representation, a rule is of
the following form:

(B1
1; v1

1) . . . (B1
r1 ; v1

r1)| . . . |(Bs1; vs1) . . . (Bsrs ; v
s
rs) (6)

Any rule of this form will be called a weighted rule, and will be
denoted as WR ∈ WR. A coalition structure π is said to meet
such a rule if π can be divided into disjoint non-empty sets of
coalitions π1, . . . , πs such that π1 ∪ · · · ∪ πs = π and every ex-
pressionBlk for a given l ∈ {1, . . . , s} and k ∈ {1, . . . , rl} is met
by at least one coalition in πl. This, as well as the assumption
that every expression Blk contains at least one positive literal,
imply that Blk does not meet any coalition in πl′ 6=l. In this case,
we write π |= WR. A coalitional game with externalities is
then represented as a tuple (A,WR), where the value of any
embedded coalition (C, π) is computed as follows:

w(C, π) =
∑

WR∈WR:π|=WR

∑
(Bl
k
,vl
k

)∈WR:C|=Bl
k

v lk

When convenient, an expression Blk of the form in (6) will
be denoted as a conjunction of positive and negative literals.
For example, the rule (a1 ∧ a2; 15)(a3 ∧ ¬a5; 10)|(a7; 20) will
be denoted as (p1

1; 15)(p1
2 ∧ ¬n1

2; 10)|(p2
1; 20), where p1

1 = a1 ∧
a2, p1

2 = a3, ¬n1
2 = ¬a5, and p2

1 = a7. Furthermore, we will
denote by P lk and N l

k the sets containing the agents in plk and
¬nlk, respectively. For example, in the above rule we have P 1

1 =
{a1, a2}, P 1

2 = {a3}, N1
2 = {a5}, and P 2

1 = {a7}.
Having introduced our representation, we will now evaluate

its properties, starting with expressiveness:
Proposition 4.1 (Expressiveness)
Every coalitional game with externalities that is represented with a
partition function can be expressed using weighted MC-nets.

Proof: To prove this, it suffices to note that given a coalition
structure π = {C1, . . . , C|π|} we can define a “canonical”
weighted ruleWR such that ∀(C, π) ∈ E, π′ |= WR iff π′ = π.
This rule is (B1;w(C1, π))| . . . |(B|A|;w(C|π|, π)), where the ex-
pressions B1, . . . ,B|π| are composed of positive literals corre-
sponding to the agents in C1, . . . , C|π| respectively. �

Corollary 4.2 (Conciseness)
Weighted MC-nets are at least as concise as the partition function
game representation.

Proposition 4.3 (Conciseness w.r.t. certain games)
Weighted MC-nets are exponentially more concise than the partition
function game representation for certain games.

Sketch of Proof: This follows from the well-known result in
Boolean algebra that, with a set of Boolean formulas, one can
sometimes express the information in an exponentially more
concise manner compared to the extensive representation such
as the partition function. �

Finally, it is easy to show that weighted MC-nets are at least
as concise and sometimes much more concise than the repre-
sentations introduced by Michalak et al. in [19, 20].
6 For convenience, with a slight abuse of conventional notation, by ¬n,

where, for instance, n = a1 ∧ a2, we mean ¬a1 ∧ ¬a2.

5 Computing ESVs with weighted MC-nets

The key role in our algorithms is played by the additivity ax-
iom, which is met by all three ESVs and allows for computing
these values by considering every WR ∈ WR as a separate
sub-game.7

Lemma 5.1
Let w be the game represented by (A,WR), and let wz be the game
represented by (A, {WRz}), where WRz ∈ WR. This means wz is
represented with a single weighted rule. The ESV PdN , ESVM and
EGSV for w are equal to the sum of the ESV PdN s, ESVM s and
EGSV s, respectively, computed for every wz : WRz ∈ WR.

We will say that a set of expressions {B1, . . . ,Bm} is com-
patible, which we denote as ⊕{B1, . . . ,Bm}, if there exists at
least one coalition that meets all these expressions. Formally,
⊕{B1, . . . ,Bm} if ∃C ⊆ A : C |= Bk∀k ∈ {1, . . . ,m}. This hap-
pens if {

⋃m
k=1 P

k} ∩ {
⋃m
k=1 N

k} = ∅. We will denote a set of
incompatible expressions as	{B1, . . . ,Bm}. In what follows we
assume that every weighted rule WR ∈ WR that is not cor-
rectly defined, i.e. ∀π ∈ Π(A), π 6|= WR, is omitted fromWR
(as it does not influence the game at all).

5.1 Computing ESV PdN

Since ESV PdN is computed in a similar way to the stan-
dard Shapley value but using the externality-free values, only
the rules influencing these values (i.e., influencing the value
of a coalition C in {C, singletons}) should be taken into ac-
count. An algorithm is, therefore, needed to (i) identify those
weighted rules and (ii) transform each of them into the corre-
sponding simple rule(s). This transformation has to be done
very carefully in order to preserve other conditions affecting
C that are present in each weighted rule! For example, the
weighted rule (a1 ∧ a2, 5)(a4 ∧ ¬a2, 6)|(a3, 7) is met by some
coalition structures of the form {C, singletons}, where C con-
tains a1 and a2. However, this only happens under the condi-
tion that both a3 and a4 do not belong to C.

Theorem 5.2
Let (A,WR) represent w. Algorithm 1 transformsWR into a cor-
responding set of simple rules R (from which ESV PdNi (w) can be
computed for all ai ∈ A in time linear in |R| as shown in [14]).
Furthermore, for each WR ∈ WR the running time of Algorithm 1
is O(|WR|2|). Therefore, it is linear in the size of the representation
|WR|. Finally, it holds that |R| ≤ |A| × |WR|.

Proof: We denote by B∗ an interim expression which we use in
the process of building a simple rule. For every WR ∈ WR:

(i) If for more than one l there exist Blk : |P lk| > 1 then
WR cannot be met by any coalition structure of the form
{C, singletons}; thus, WR is disregarded;

(ii) If for exactly one l there exists Blk : |P lk| > 1 then we need
to ensure that, for this l, all expressions Blk : |P lk| > 1 are
compatible as they have to be met by the same coalition C.
Thus:

(a) If 	{Blk : |P lk| > 1} then WR is disregarded;

7 For an elaboration on this argument for simple MC-nets see [14].



(b) Otherwise, ∃C ⊆ A : ({C, singletons} |= WR) ∧ (C |=
B∗), where B∗ =

∧
k:|P l

k
|>1 B

l
k). Now, what is left is to

ensure that the other conditions in WR that affect C are
preserved. As for Bl

′

k′ : l′ 6= l, where l′ ∈ {1, . . . , s} \ {l}
and k′ ∈ {1, . . . , rl′}, the only conditions that these ex-
pressions place on C is that C ∩ P l

′

k′ = ∅. Thus, B∗ ←
B∗ ∧ ¬pl

′

k′ . As for Blk′ : k′ ∈ {1, . . . , rl} ∧ |P lk′ | = 1,
whenever	{B∗,Blk′} it places a condition on C that C 6|=
Blk′ since C |= B∗. At this point, we have incorporated
in B∗ all the conditions necessary for C to meet; thus,
(B∗,

∑
k:|P l

k
|>1 v

l
k) becomes our first simple rule. How-

ever, if there exist Blk′ such that⊕{B∗,Blk′} then they con-
tribute to the value of C if C |= B∗ ∧Blk′ (see Steps 15-16).

(iii) Otherwise, every Blk such that l ∈ {1, . . . , s} and k ∈
{1, . . . , rl} has exactly one positive literal. While in (ii,b) we
focused on Blk : |P lk| > 1, here the focus is on every Blk (as
coalition C in {C, singletons} can, in principle, meet any of
them). Similar reasoning applies.

It is clear that in both cases (ii) and (iii) the maximum number
of simple rules that can be created from a single WR ∈ WR is
|A|; thus, |R| ≤ |A| × |WR|. The running time comes from the
fact that every WR contains at most |A| expressions. �

5.2 Computing EGSV
In contrast to the ESV PdN , the EGSV is computed for an a
priori coalition π = {C1, . . . , C|π|} using coalition structures
that are of the form {C,A \ C} and, at the same time, satisfy
∃π1, π2 : (π1 ∪ π2 = π) ∧ (∪π1 = C) ∧ (∪π2 = A \ C). This
latter condition identifies those {C,A \ C} that are relevant to
the game wπ . Recall that in this game there are no externalities
and every coalition in π is considered to be a single player. We
denote these players as Aπ = {aC1 , . . . , aC|π|}. The following
theorem holds:

Theorem 5.3
Let (A,WR) representw, and assume that either s > 1 or (s = 1)∧
(rs = 1) for every WR ∈ WR. For a given a priori coalition struc-

ture π, Algorithm 2 transformsWR into a corresponding set of sim-
ple rulesR (from which theEGSV(C,π)(w) can be computed in time
linear in |R| as shown in [14]). Furthermore, for each WR ∈ WR
the running time of Algorithm 2 isO(max(|WR|+ |π|)). Therefore,
it is linear in the size of the representation |WR|. Finally, it holds that
|R| ≤ 2× |WR|.
Proof: As we are only interested in any coalition structure of
the form {C,A \ C}, all rules for which s > 2 should be dis-
regarded. Furthermore, for any WR ∈ WR such that s = 2,
it may still happen that WR is not met by any such coalition
structure. To ensure that ∃C ⊆ A : {C, singletons} |= WR,
it is sufficient to ensure that the following two conditions are
satisfied: (i) expressions in {B1

k : k ∈ {1, ..., r1}} have to be
compatible, as well as those in {B2

k : k ∈ {1, ..., r2}}; and (ii)
((
⋃r1
k=1 N

1
k ) ∩ (

⋃r2
k=1 N

2
k )). If so then all that is left to check is

whether agents in Γ1 and Γ2 (defined as in Steps 4 and 5) can be
replaced with players in Aπ . This last issue is important as we
are not interested in all structures {C,A \C} but only in those
which determine the values of the game wπ with players Aπ .
Finally, Steps 13-14 cover the special case where the weighted
rule is actually a simple rule. Finally, it is easy to see from the
algorithm that |R| ≤ 2× |WR| and O(max(|WR|+ |π|)). �

5.3 Computation of ESVM

The starting point of our algorithm is the following property
of ESVM [21]:

Proposition 5.4
Let w(C,π) be the partition form game such that w(C,π)(C̃, π̃) = 1

if and only if (C̃, π̃) ≥ (C, π), otherwise w(C,π)(C̃, π̃) = 0.8 Then,
ESVM

i (w) = 1
|C| for i ∈ C and 0 otherwise.

Let us define the function f : Z2 → R by:

f(a, b) =
∑

0≤j≤b

(−1)j
(
b

j

)
1

a+ j
.

Theorem 5.5
Let (A,WR) represent w, and assume that (s = 1) ∧ (rs = 1) for
everyWR ∈ WR. Algorithm 3 computes theESVMi for all ai ∈ A.
Furthermore, for each WR ∈ WR, the running time of Algorithm 3
is O(|A| × |WR|). Therefore, it is linear in |WR|.
Proof: Following Lemma 5.1, we focus on the case when
|WR| = 1 and rewrite the weighted rule as k = 1, . . . , r1

weighted rules of the form:

(B1
1; 0) . . . (B1

k−1; 0)(B1
k; v)(B1

k+1; 0) . . . (B1
r1 ; 0) (7)

8 See Myerson [21, p. 24] for more details.



Now, the game can be represented by the following rules which
consist of only positive literals:

(p1
1∧n′11 ; 0) . . . (p1

k∧n
′1
k ; (−1)|N

′1
1 |+...+|N

′1
r1
| ·v) . . . (p1

r1
∧n′1r1 ; 0) (8)

for N ′1j ⊆ N1
j and j = 1, . . . , r1. This follows from the fol-

lowing formula
∑

0≤l≤r1(−1)l
(
r1
l

)
= 0. According to Proposi-

tion 5.4, for each k, ESVM
i (w) is:

∑
(N′11 ,...,N

′1
r1

):N′1j ⊆N
1
j

(−1)|N
′1
1 |+...+|N

′1
r1
| ·

v

|P 1
k |+ |N

′1
k |

=
∑

N′1
k
⊆N1

k

(−1)|N
′1
1 | ·

v

|P 1
k |+ |N

′1
k |
×

∑
(N′11 ,...,N

′1
r1

):N′1
j 6=k⊆N

1
j

(−1)|N
′1
16=k|+...+|N

′1
r1 6=k

|

The sum
∑

(N′11 ,...,N
′1
r1

):N′1
j 6=k⊆N

1
j

has non zero value iff ∀j 6=
k, N1

j = ∅. Now, let us assume thatN1
j = ∅ for j 6= k. Then, the

sum
∑

(N′11 ,...,N
′1
r1

):N′1
j 6=k⊆N

1
j
(−1)

|N′116=k|+...+|N
′1
r1 6=k

|
= 1; thus

ESVM
i (w) =

∑
N′1
k
⊆N1

k

(−1)|N
′1
k | · v

|P 1
k |+ |N ′1k |

= f(|P 1
k |, |N1

k |).

From (8) we have that ESVM
i (w) = 0 for ai /∈ P 1

k . The agents
in N1

k are equally valued by ESVM due to symmetry axiom.
Since A is always a carrier, we have that

∑
ai

ESVM
i (w) =

w(A, {A}); thus ESVM
i (w) = − |P

1
k |

|N1
k
|f(|P 1

k |, |N1
k ) for ai ∈ N1

k .
The running time comes from the fact that, in every rule, |WR|
expressions have to be checked against every ai ∈ A. �

6 Conclusions

If coalitional games with externalities are modelled using a
conventional partition function game representation, the com-
putation of the three different extensions of Shapley value con-
sidered in this paper requires an exponential number of oper-
ations. To tackle this problem, we propose a representation of
coalitional games with externalities based on weighted logic
formulas. We demonstrate that it is fully expressive and at least
as concise as the conventional partition function game repre-
sentation. However, it can be exponentially more concise. Fi-
nally, we show that all three extensions of the Shapley value
considered in this paper can be computed in the time linear in
the size of the input (which is the number of weighted rules).

Our work can be extended in several directions. Firstly, the
computational aspects of remaining ESVs are still to be anal-
ysed. Secondly, more involved Boolean expression can be con-
sidered (as it is done in Elkind [9] for basic MC-nets). Finally,
it is interesting to consider the properties of the weighted MC-
nets with respect to other coalitional games solution concepts
such as the core.
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