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Introduction - system

◮ Consider the classical closed loop system:

[P,C] : y1 = Pu1, u2 = Cy2, u0 = u1 + u2, y0 = y1 + y2

as depicted in Figure 1:
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◮ u0 ∈ U , y0 ∈ Y, U ,Y: normed signal spaces,

P : Ua → Ya, C : Ya → Ua, Ua,Ya : the ambient spaces,

e.g. if U = L2(R+,R
n), then Ua =

⋃

ω>0

L2
loc((0, ω),R

n).
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Introduction - closed loop operators

◮ Closed loop operator:

HP//C :

(

u0

y0

)

7→

((

u1

y1

)

,

(

u2

y2

))

,

assumed causal and well defined:
• well defined on [0,∞) – globally well posed;
• well defined on [0, ω) – locally well posed.

◮ Projections

ΠP//C :

(

u0

y0

)

7→

(

u1

y1

)

, ΠC//P :

(

u0

y0

)

7→

(

u2

y2

)

.

◮ Graphs

graph(P) =

{(

u1

Pu1

)

: u ∈ U ,Pu1 ∈ Y

}

.
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Introduction - stability and robustness

◮ Let ‖ΠP//C‖ = sup
τ>0,‖w‖τ 6=0

‖ΠP//Cw‖τ

‖w‖τ
,

where ‖w‖τ = ‖Tτw‖ and Tτ is the truncation.

◮ [P,C] is gain stable if ‖ΠP//C‖ < ∞ (or ‖ΠC//P‖ < ∞).

◮ Robust stability: if [P,C] stable implies [P1,C] stable for
any P1 close to P.
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Introduction - a theorem of Georgiou & Smith (1997)

◮ Gap metric: ~δ0(P,P1) =

{

inf
Φ∈O

‖I − Φ‖ if O 6= ∅,

∞ if O = ∅

O =

{

Φ : graph(P) → graph(P1)
Φ is surjective, causal,
gain stable and Φ0 = 0

}

.

◮ Under appropriate well posedness assumptions, if [P,C] is
gain stable and if

~δ0(P,P1) < bP,C := ‖ΠP//C‖
−1

then [P1,C] is gain stable and

‖ΠP1//C‖ ≤
1 + ~δ0(P,P1)

1 − ~δ0(P,P1)‖ΠP//C‖
‖ΠP//C‖.
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Introduction - motivations

◮ Requires ΠP//C(0) = 0, i.e. P(0) = 0,C(0) = 0;

◮ Examples in adaptive control show that even ΠP//C(0) = 0
is not sufficient for finite gain, but system has been proved
robustly stable;

◮ Strong causality:

TτΦTτw = TτΦw for all τ > 0,w ∈ dom(Φ)

causing signals must discontinuous, plants memoryless.

◮ There are gap metrics without Φ between graphs, e.g.:

~δ1(P,P1) = lim sup
τ→∞

sup
y∈graph(P1)

inf
x∈graph(P)

‖y − x‖τ
‖x‖τ

.
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Generalizations - definitions

◮ Generalized gap metric:

~δ(P,P1) = lim sup
τ→∞

inf







k > 0 :
there exists β ≥ 0 such that
∀ y ∈ graph(P1),∃ x ∈ graph(P)
s.t. ‖y − x‖τ ≤ α‖x‖τ + β







.

◮ Equivalent expression:

~δ(P,P1) =

{

infω∈U×Y
Φ∈Θω

‖Φ − I‖(∞) if Θw 6= ∅

0, otherwise

where

‖Q‖(∞) = lim sup
τ→∞

inf
{

k > 0 :
there exists β ≥ 0 s.t.∀ τ > 0
‖Qu‖τ ≤ α‖u‖τ + β, ∀ u ∈ Ua

}

.

Θw =

{

Φ :
Φ : graph(P) → graph(P1) + w is set-valued,
surjective and gain stable in ‖ · ‖(∞) sense

}

.
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Generalizations - an alternative

◮ Let β > 0 be given. Define

~β(P,P1) = lim sup
τ→∞

inf
{

α > 0 :
∀ y ∈ graph(P1),∃ x ∈ graph(P)
s.t. ‖y − x‖τ ≤ α‖x‖τ + β

}

◮ Similar equivalence expression involving set-valued
mappings between graphs.
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Generalization - gain stability.

◮ An operator Q : X → Va is said gain stable with bias if
Q(X ) ⊂ V and ‖Q‖(∞) < ∞;

◮ Q is said β-gain stable with bias if Q(X ) ⊂ V and

‖Q‖(β) =: lim sup
τ→∞

inf{k > 0 : ‖Qx‖τ ≤ k‖x‖τ+β, ∀x ∈ X} < ∞.

◮ Closed loop [P,C] is gain stable (resp. β-gain stable) with
bias if ΠP,C is (or if ΠC//P is).
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Robust stability theorems

◮ Suppose [P,C] is globally well posed, [P1,C] is locally well
posed. If [P,C] is gain stable with bias and if

~δ(P,P1) < ‖ΠP//C‖
−1
(∞),

then [P1,C] is gain stable with bias on and

‖ΠP1//C‖(∞) ≤
1 + ~δ(P,P1)

1 − ~δ(P,P1)‖ΠP//C‖(∞)

‖ΠP//C‖(∞).

◮ Similar conclusion holds for β-gain stability: [P,C] is
β-gain stable implies [P1,C] is β1-gain stable.

β1 = β1(β, ‖ΠP//C‖, ~δ(P,P1)).

β1 = β provided ~δ(P,P1) = 0.
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Examples - semilinear systems (1/2)

Consider the system P(f , x0) given by

P(f , x0) : u 7→ y :
x ′ = Ax + f (t , x) + Bu, x(0) = x0,

y = C1x + Dy

with C1,B,D bounded linear operators, A a linear operator and
f Lipschitz w.r.t. x . If there exists a linear operator F such that
A + BF generates a c0-semigroup s.t.

x ′ = (A + BF )x + f (t , x) + Bu, x(0) = x0

has unique solution for each x0, then

• ~δ
(

P(f , x0),P(f , x̃0)
)

= 0 for any initials x0, x̃0,

• ~δ
(

P(0, x0),P(f , x0)
)

= 0 if f is uniformly bounded.
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Examples - semilinear systems (2/2)

• ~β
(

P(f , x0),P(f , x̃0)
)

= 0, with a suitable β = β(x0, x̃0)

• If a smaller β is chosen, then ~β
(

P(f , x0),P(f , x̃0)
)

6= 0.

• Similar conclusion for ~δ
(

P(0, x0),P(f , x0)
)

.
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Examples - system realization

◮ Each linear system has a transfer function G(s), more than
one systems may have the same transfer function.

◮ Let G(s) be a transfer function, having two linear
realizations P and P1. If [P,C] is stable, how about
[P1,C]?

◮ If both are stabilizable, then ~δ(P,P1) = 0.

◮ Controller can be designed based on either realization.
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Examples - time delay systems

◮ Consider the systems

P : u → x with ẋ(t) = f (x(t),u(t)), x(0) = x0

P1 : u → x with ẋ(t) = f (x(t),u(t − h)), x(0) = x0.

If |f (x ,u)| ≤ c + k(|x | + |u|), then

~δ(P,P1) ≤ kh, ~β(P,P1) ≤ kh with some β > 0.

◮ A typical example

ẋ(t) = sat(u(t)) =:

{

|u| if |u| ≤ 1
sign(u) otherwise

, x(0) = x0

for which ~δ(P,P1) = 0. [P1,−1] is gain stable for any h > 0.
~β(P,P1) = 0 for some β > 0, and ~β(P,P1) → h as β → 0.
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Further generalizations

In L2(R+) setting, consider

P(θ) : u1 → y1 with ẏ1 = θy1 + u1, y1(0) = 0

C : u2 = −ky2(t) with k̇(t) =
α

(n + 1)kn y2
2 , k(0) = 0.

Then

‖ΠP//Cw‖ ≤ γ(r)‖w‖ + β, for each w ∈ B(0, r),

where γ(r) is a nonlinear function, tends to linear as n increase.

For this type of problems, we need to introduce the notion of
regional gain stability to deal with the nonlinear growth.
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Conclusions and comments

◮ Generalized the robust stability theory of Georgious and
Smith, allows stability with bias term;

◮ Applied to stability of linear system with perturbations,
realizations and systems with larger time delay;

◮ Sacrifice with system bahaviours at transition period.

◮ Local stability can be given;

◮ What will happen if the stability is defined via nonlinear
growth?

◮ Tracking problems with nonlinear controllers?
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Thank you
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