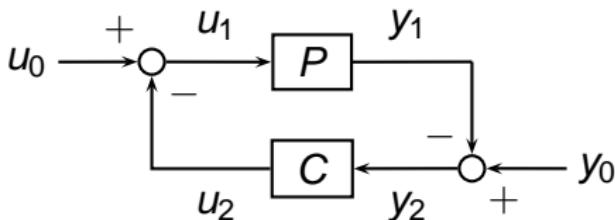


Generalized Gap Metrics and Robust Stability of Nonlinear Systems

Wenming Bian

School of Electronics and Computer science,
Universities of Southampton

To Prof. J.R.L. Webb on the occasion of his retirement


EPNADE10, June 1-4, 2010, Glasgow

Introduction - system

- ▶ Consider the classical closed loop system:

$$[P, C] : y_1 = Pu_1, \quad u_2 = Cy_2, \quad u_0 = u_1 + u_2, \quad y_0 = y_1 + y_2$$

as depicted in Figure 1:

- ▶ $u_0 \in \mathcal{U}, y_0 \in \mathcal{Y}, \quad \mathcal{U}, \mathcal{Y}$: normed signal spaces,
 $P : \mathcal{U}_a \rightarrow \mathcal{Y}_a, \quad C : \mathcal{Y}_a \rightarrow \mathcal{U}_a, \quad \mathcal{U}_a, \mathcal{Y}_a$: the ambient spaces,
e.g. if $U = L^2(\mathbb{R}_+, \mathbb{R}^n)$, then $\mathcal{U}_a = \bigcup_{\omega > 0} L^2_{loc}((0, \omega), \mathbb{R}^n)$.

Introduction - closed loop operators

- ▶ Closed loop operator:

$$H_{P//C}: \begin{pmatrix} u_0 \\ y_0 \end{pmatrix} \mapsto \left(\begin{pmatrix} u_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} u_2 \\ y_2 \end{pmatrix} \right),$$

assumed causal and well defined:

- well defined on $[0, \infty)$ – **globally well posed**;
- well defined on $[0, \omega)$ – **locally well posed**.

- ▶ Projections

$$\Pi_{P//C}: \begin{pmatrix} u_0 \\ y_0 \end{pmatrix} \mapsto \begin{pmatrix} u_1 \\ y_1 \end{pmatrix}, \quad \Pi_{C//P}: \begin{pmatrix} u_0 \\ y_0 \end{pmatrix} \mapsto \begin{pmatrix} u_2 \\ y_2 \end{pmatrix}.$$

- ▶ Graphs

$$\text{graph}(P) = \left\{ \begin{pmatrix} u_1 \\ Pu_1 \end{pmatrix} : u \in \mathcal{U}, Pu_1 \in \mathcal{Y} \right\}.$$

Introduction - stability and robustness

- ▶ Let $\|\Pi_{P//C}\| = \sup_{\tau > 0, \|w\|_\tau \neq 0} \frac{\|\Pi_{P//C} w\|_\tau}{\|w\|_\tau}$,
where $\|w\|_\tau = \|T_\tau w\|$ and T_τ is the truncation.
- ▶ $[P, C]$ is gain stable if $\|\Pi_{P//C}\| < \infty$ (or $\|\Pi_{C//P}\| < \infty$).
- ▶ Robust stability: if $[P, C]$ stable implies $[P_1, C]$ stable for any P_1 close to P .

Introduction - a theorem of Georgiou & Smith (1997)

- ▶ Gap metric: $\vec{\delta}_0(P, P_1) = \begin{cases} \inf_{\Phi \in \mathcal{O}} \|I - \Phi\| & \text{if } \mathcal{O} \neq \emptyset, \\ \infty & \text{if } \mathcal{O} = \emptyset \end{cases}$
$$\mathcal{O} = \left\{ \Phi : \text{graph}(P) \rightarrow \text{graph}(P_1) \begin{array}{l} \Phi \text{ is surjective, causal,} \\ \text{gain stable and } \Phi 0 = 0 \end{array} \right\}.$$

- ▶ Under appropriate well posedness assumptions, if $[P, C]$ is gain stable and if

$$\vec{\delta}_0(P, P_1) < b_{P,C} := \|\Pi_{P//C}\|^{-1}$$

then $[P_1, C]$ is gain stable and

$$\|\Pi_{P_1//C}\| \leq \frac{1 + \vec{\delta}_0(P, P_1)}{1 - \vec{\delta}_0(P, P_1)\|\Pi_{P//C}\|} \|\Pi_{P//C}\|.$$

- ▶ Requires $\Pi_{P//C}(0) = 0$, i.e. $P(0) = 0, C(0) = 0$;
- ▶ Examples in adaptive control show that even $\Pi_{P//C}(0) = 0$ is not sufficient for finite gain, but system has been proved robustly stable;
- ▶ Strong causality:

$$T_\tau \Phi T_\tau w = T_\tau \Phi w \text{ for all } \tau > 0, w \in \text{dom}(\Phi)$$

causing signals must discontinuous, plants memoryless.

- ▶ There are gap metrics without Φ between graphs, e.g.:

$$\vec{\delta}_1(P, P_1) = \limsup_{\tau \rightarrow \infty} \sup_{y \in \text{graph}(P_1)} \inf_{x \in \text{graph}(P)} \frac{\|y - x\|_\tau}{\|x\|_\tau}.$$

Generalizations - definitions

- Generalized gap metric:

$$\vec{\delta}(P, P_1) = \limsupinf_{\tau \rightarrow \infty} \left\{ k > 0 : \begin{array}{l} \text{there exists } \beta \geq 0 \text{ such that} \\ \forall y \in \text{graph}(P_1), \exists x \in \text{graph}(P) \\ \text{s.t. } \|y - x\|_{\tau} \leq \alpha \|x\|_{\tau} + \beta \end{array} \right\}.$$

- Equivalent expression:

$$\vec{\delta}(P, P_1) = \begin{cases} \inf_{\substack{\omega \in \mathcal{U} \times \mathcal{Y} \\ \Phi \in \Theta_{\omega}}} \|\Phi - I\|_{(\infty)} & \text{if } \Theta_{\omega} \neq \emptyset \\ 0, & \text{otherwise} \end{cases}$$

where

$$\|Q\|_{(\infty)} = \limsupinf_{\tau \rightarrow \infty} \left\{ k > 0 : \begin{array}{l} \text{there exists } \beta \geq 0 \text{ s.t. } \forall \tau > 0 \\ \|Qu\|_{\tau} \leq \alpha \|u\|_{\tau} + \beta, \forall u \in \mathcal{U}_a \end{array} \right\}.$$

$$\Theta_w = \left\{ \Phi : \begin{array}{l} \Phi : \text{graph}(P) \rightarrow \text{graph}(P_1) + w \text{ is set-valued,} \\ \text{surjective and gain stable in } \|\cdot\|_{(\infty)} \text{ sense} \end{array} \right\}.$$

Generalizations - an alternative

- ▶ Let $\beta > 0$ be given. Define

$$\vec{\beta}(P, P_1) = \limsupinf_{\tau \rightarrow \infty} \left\{ \alpha > 0 : \begin{array}{l} \forall y \in \text{graph}(P_1), \exists x \in \text{graph}(P) \\ \text{s.t. } \|y - x\|_\tau \leq \alpha \|x\|_\tau + \beta \end{array} \right\}$$

- ▶ Similar equivalence expression involving set-valued mappings between graphs.

Generalization - gain stability.

- ▶ An operator $Q : \mathcal{X} \rightarrow \mathcal{V}_a$ is said **gain stable** with bias if $Q(\mathcal{X}) \subset \mathcal{V}$ and $\|Q\|_{(\infty)} < \infty$;
- ▶ Q is said **β -gain stable** with bias if $Q(\mathcal{X}) \subset \mathcal{V}$ and $\|Q\|_{(\beta)} =: \limsup_{\tau \rightarrow \infty} \inf \{k > 0 : \|Qx\|_\tau \leq k\|x\|_\tau + \beta, \forall x \in \mathcal{X}\} < \infty$.
- ▶ Closed loop $[P, C]$ is gain stable (resp. β -gain stable) with bias if $\Pi_{P,C}$ is (or if $\Pi_{C//P}$ is).

Robust stability theorems

- ▶ Suppose $[P, C]$ is globally well posed, $[P_1, C]$ is locally well posed. If $[P, C]$ is gain stable with bias and if

$$\vec{\delta}(P, P_1) < \|\Pi_{P//C}\|_{(\infty)}^{-1},$$

then $[P_1, C]$ is gain stable with bias on and

$$\|\Pi_{P_1//C}\|_{(\infty)} \leq \frac{1 + \vec{\delta}(P, P_1)}{1 - \vec{\delta}(P, P_1) \|\Pi_{P//C}\|_{(\infty)}} \|\Pi_{P//C}\|_{(\infty)}.$$

- ▶ Similar conclusion holds for β -gain stability: $[P, C]$ is β -gain stable implies $[P_1, C]$ is β_1 -gain stable.

$$\beta_1 = \beta_1(\beta, \|\Pi_{P//C}\|, \vec{\delta}(P, P_1)).$$

$$\beta_1 = \beta \text{ provided } \vec{\delta}(P, P_1) = 0.$$

Examples - semilinear systems (1/2)

Consider the system $P(f, x_0)$ given by

$$P(f, x_0) : u \mapsto y : \begin{aligned} x' &= Ax + f(t, x) + Bu, \quad x(0) = x_0, \\ y &= C_1 x + Dy \end{aligned}$$

with C_1, B, D bounded linear operators, A a linear operator and f Lipschitz w.r.t. x . If there exists a linear operator F such that $A + BF$ generates a c_0 -semigroup s.t.

$$x' = (A + BF)x + f(t, x) + Bu, \quad x(0) = x_0$$

has unique solution for each x_0 , then

- $\vec{\delta}(P(f, x_0), P(f, \tilde{x}_0)) = 0$ for any initials x_0, \tilde{x}_0 ,
- $\vec{\delta}(P(0, x_0), P(f, x_0)) = 0$ if f is uniformly bounded.

Examples - semilinear systems (2/2)

- $\vec{\beta}(P(f, x_0), P(f, \tilde{x}_0)) = 0$, with a suitable $\beta = \beta(x_0, \tilde{x}_0)$
- If a smaller β is chosen, then $\vec{\beta}(P(f, x_0), P(f, \tilde{x}_0)) \neq 0$.
- Similar conclusion for $\vec{\delta}(P(0, x_0), P(f, x_0))$.

Examples - system realization

- ▶ Each linear system has a transfer function $G(s)$, more than one systems may have the same transfer function.
- ▶ Let $G(s)$ be a transfer function, having two linear realizations P and P_1 . If $[P, C]$ is stable, how about $[P_1, C]$?
 - ▶ If both are stabilizable, then $\vec{\delta}(P, P_1) = 0$.
 - ▶ Controller can be designed based on either realization.

Examples - time delay systems

- ▶ Consider the systems

$P : u \rightarrow x$ with $\dot{x}(t) = f(x(t), u(t)), x(0) = x_0$

$P_1 : u \rightarrow x$ with $\dot{x}(t) = f(x(t), u(t - h)), x(0) = x_0$.

If $|f(x, u)| \leq c + k(|x| + |u|)$, then

$\vec{\delta}(P, P_1) \leq kh, \quad \vec{\beta}(P, P_1) \leq kh$ with some $\beta > 0$.

- ▶ A typical example

$$\dot{x}(t) = \text{sat}(u(t)) =: \begin{cases} |u| & \text{if } |u| \leq 1 \\ \text{sign}(u) & \text{otherwise} \end{cases}, \quad x(0) = x_0$$

for which $\vec{\delta}(P, P_1) = 0$. $[P_1, -1]$ is gain stable for any $h > 0$.
 $\vec{\beta}(P, P_1) = 0$ for some $\beta > 0$, and $\vec{\beta}(P, P_1) \rightarrow h$ as $\beta \rightarrow 0$.

Further generalizations

In $L^2(\mathbb{R}_+)$ setting, consider

$$P(\theta) : u_1 \rightarrow y_1 \text{ with } \dot{y}_1 = \theta y_1 + u_1, y_1(0) = 0$$

$$C : u_2 = -ky_2(t) \text{ with } \dot{k}(t) = \frac{\alpha}{(n+1)k^n} y_2^2, k(0) = 0.$$

Then

$$\|\Pi_{P//C} w\| \leq \gamma(r) \|w\| + \beta, \text{ for each } w \in B(0, r),$$

where $\gamma(r)$ is a nonlinear function, tends to linear as n increase.

For this type of problems, we need to introduce the notion of regional gain stability to deal with the nonlinear growth.

Conclusions and comments

- ▶ Generalized the robust stability theory of Georgious and Smith, allows stability with bias term;
- ▶ Applied to stability of linear system with perturbations, realizations and systems with larger time delay;
- ▶ Sacrifice with system behaviours at transition period.
- ▶ Local stability can be given;
- ▶ What will happen if the stability is defined via nonlinear growth?
- ▶ Tracking problems with nonlinear controllers?

Thank you