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1. Introduction

A basic property of stable feedback control systems is that they tolerate uncer-
tainties which are sufficiently small in an appropriate sense, and reduce the effects
of uncertainties. A significant approach to deal with uncertainties is the gap metric
theory, it provides a measure of distance between dynamical systems which are not
required to be stable in themselves, small distance between open-loop systems would

correspond to small errors in norm in the closed loop.

In the context of nonlinear systems, a fundamental framework developed by Geor-
giou and Smith in [9] provides a generalization of linear gap metric([8, 16]) and as-
sociated robust stability results on the basis of a robust stability margin taken to be
the inverse of the induced norm of a closed loop operator. Two types of gap metrics
were introduced in [9], the § metric and the dy metric as denoted in the paper. the
first one is defined using causal and surjective mappings between graphs of open loop
operators, but for the dy metric, which is further studied in [11], no such mapping is
involved in its definition. Under appropriate well posedness assumptions, the main
robust stability theorems state that, given two plants P, P; and a controller K, if the

closed loop [P, K] is gain stable, i.e. the corresponding closed loop operator has a

Submitted November 3, 2010 1083-2564 $15.00 ©Dynamic Publishers, Inc.



2 W. BIAN

finite induced norm, and if the gap (either § or 50) between P and P is smaller than
the robust stability margin, then the closed loop [P;, K| is also gain stable and its
gain can be estimated in terms of the gap and the gain of the closed loop operator of
[P, K]. This motivates many further studies on gap metric and its applications, see
(1,2, 5,6, 10, 11, 12] and references therein.

The framework requires that both the plant and controller map zero inputs to
zero outputs (i.e., PO =0, K0 = 0) and that the closed loop operator has an induced
norm. However, there are important instances in which these sufficient conditions for
robust stability generically fail; and yet for which robustness results should apply and
for which, to date, either relatively ad-hoc methods have been utilized to establish
robust stability, or no such such robust stability certificates have been established.
Many such systems can be handled by developing a robust stability theory based
on an underlying notion of stability which includes bias terms; for such notions of
stability see [3, 15]. The second class of systems are those for which P(0) = 0,
K(0) = 0 but whose closed loop operator is discontinuous at 0, thus precluding the
existence of a (local) finite gain. Most adaptive controllers fall within this category
[4]. A third class of examples includes systems which include inherent offsets, arising
e.g. from quantization errors, sensors biases etc. Another such class of feedback
systems include nonlinear high gain controller designs which attenuate the effects of
unknown nonlinearities by high gain feedback, and which do not cancel the effect of

the nonlinearities.

The notion of gain function stability given in [9] might be an alternative approach
to those problems, but it is too general and fails to produce a clear description to the
stability. So several generalized gap metrics and theorems have been introduced. In
[10], based on shift operation, a theorem is given dealing with systems whose response
depends on a non-zero initial condition, and which do not start at an equilibrium. In
[5], notions of stability and gap matric with bias terms are presented under uniqueness
assumption instead of the stronger well-posedness assumption. In [12], stability is
defined via a biased norm but the gap metric remains the same as in [9]. All of
those generalizations are based on the 5 gap metric which needs causal and surjective
mappings between graphs. We note that, comparing with the 5 gap metric, the 50
gap metric has two advantages: firstly, it is smaller and therefore theoretically allows
a wider range of perturbations; secondly, its definition does not needs causal and
surjective mappings between graphs of which the causality is not easy to verify in

applications (so an alternative causality is used in [2, 5, 6, 7]).

So, in this paper, we will generalize Georgiou and Smith’s 5 gap metric and the
corresponding robust stability theorem. In our setting, both the gap and the stability
will be based on norm with bias, the systems do not need to have zero outputs

for zero inputs, nor the system operator needs to be continuous at any point. This
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generalization does not require causal mappings between graphs, but can be described
using surjective mappings. Using the obtained results, we study the stability of a
type of semilinear systems with bounded nonlinearities and linear system realizations.
The robust stability of integrator system with saturation is also given to show the

advantage of our results.

The paper is organized as follows. Section 2 introduces the basic signal spaces
setting and closed loop systems. Generalized gap metrics and robust stability results
are presented in Section 3. Stability of semilinear systems and linear system realiza-
tions are addressed in Sections 4 and 5, respectively, and in Section 6, we consider

the integrator system with saturation.

2. The closed loop system

Let 7 denote either the discrete half-axis time set N or the continuous time
counterpart, R;. In both cases 7 U {oo} is totally ordered in the natural manner.
For w € TU{o0}, let S, denote the set of all locally integrable maps [0,w) — X where
X is a nonempty set. For ease of notation define § :=S,,. For 7 € T, w € T U {00},

0 < 7 < w define a truncation operator T, and a restriction operator R, as follows:

v(t), te€l0,7)

T,:85 =S8, v=>Tw: (Tv)(t) = .
0, otherwise

R.:S,—S, v Ruov:=(t—o(t), tel0,T1)).

Both operators are for considering signals over finite time intervals. The results of
this paper will be based on the use of truncation, but remain true if it is replaced by

restriction.

We define V C S to be a signal space if, and only if, it is a vector space. Suppose
additionally that V' is a normed vector space and that the norm |- || = || - ||y is (also)
defined for signals of the form T,v, v € V,, 7 > 0. We can define a norm || - ||, on S

by ||v]l- = || Tyv]], for v € S,. We associate spaces as follows:

e )V.={veS|V7T>0:TweV}, the extended space;
oV, ={ves,|V7e(0w): TweV} for 0 <w < oo; and
o), = UwE(O,oo] V., the ambient space.

For example, in the case when V = LP(R;,R") with 1 < p < oo, we have V, =
LY (R, R") and V, = | Lioe((0,w),R™). So the ambient space V, includes

loc loc

signals with finite blow up.

we (0,00

For signal spaces X', V, define the following:
(i) An operator Q: X, — V, is called causal if, and only if,

Va,y€eU, V71edom(z)Ndom(y) : [Trx =Ty = T.(Qx)=T,(Qy)]. (2.1)
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(ii) An operator Q: X, — V, is called stabilizable if for all z € X,,v € V, satisfying
Qz = v over dom(x) N dom(v) and for all 7 € dom(z) N dom(v), there exists
T € X,0 €V such that Q7 = o and Ty (x,v)" =T, (7,0)".

(iii) A causal operator Q: X, — V, is called gain stable if Q(X) C V, Q(0) = 0 and

|77 Qx ||,

r@u:am{
HTTx”T

: xEX,T>O,TTx7éO}<oo.

(iv) A causal operator Q: X, — V, is called (v, 3)-gain stable, with v, > 0, if
Q(X) CV and

I7.Qxll- <A|Toall. + 8, VeeX, 7>0.

(v) A causal operator Q: X, — V, is called 7y-gain stable with bias if, and only if,
there exists > 0 such that @ is (v, 5)-gain stable with bias.

We now consider the closed loop system
[P K]+ y1 = Pui, ug = Ky, ug=uy +uz, Yo =Y1 + o, (2.2)

as depicted in Figure 1, where P : U4, — Y, and K : ), — U, are causal mappings

+ W W
Uo O_ P
K _O Yo
Ug Y2+

FIGURE 1. The closed-loop [P, K].

representing the plant and the controller, respectively, and U, ) are given two normed

signal spaces. We write YW := U x Y and define the norm in the product space W as

1w, )"l = max{[lull, 9]}, V(u,y)" € W.

For Wy = (anyO)T S W7 a pair (w17w2) = ((ulayl)Ta (U273/2)T) € Wa X WCU Wa =
U, X YV, is a solution to (2.2) if, and only if, (2.2) holds on dom(w;, ws) := dom(w;)N
dom(ws). Let

Xy = { (w1, ws) € W, x W, | (w1, ws)is a solution to (2.2)}

be the set of all solutions, which may be empty. The closed loop system [P, K] is
said to have the existence property, if X,, # 0 for all wg € W, and the uniqueness
property, if

Y wyeW : (@1,1@2), (2]]1,1172) € Xwo

— (UAjl, 22]2) = (U~J1, UNJQ) on dom(wl, 22]2) N dOHl(UNJh U~12) .



GAP METRICS AND ROBUST STABILITY 5

For each wy € W, define w,,, € T U {oc} by the property

[0, Wi, ) 1= U dom (2, wy)

(1I11,1112)6Xw0

and define (wq,wy) € W, x W,, with dom(w;,wy) = [0,wy,), by the property
Ri(wy,wq) € X, for all t € [0,wy,). This induces the operator

Hprg W — Wy X Wa, wo — (wy, ws)
and the projection operators
Op/j: W — We, wo+— wy, and Hg/p: W = W,, wo— ws.
Clearly,
Hp = (Wpysic Uieypp) and Ty +Tgeyp = 1. (2:3)

The graphs of the plant P and the controller K, denoted by Gp and Gg (or
graph(P) and graph(K)) respectively, are defined as follows:

gP:{Gu) ueu,puey}, 9K={<[Zy>

The closed loop system [P, K] given by (2.2), is said to be:

Kyeu,yey}.

(i) locally well posed if, and only if, it has the existence and uniqueness properties
and the operator Hpr : W — W, x W,, wo — (wy,wy), is causal;
(ii) globally well posed if, and only if, it is locally well posed and Hp (W) C W, X
We;
(iii) regularly well posed if it is locally well posed and for all wy € W with w,,, < oo,
we have

|Hp xwolle — 00 as 0 — Wy,

(iv) BIBO stable if, and only if, it is globally well posed and Hp (W) C W x W.
(v) gain stable, (v, B)-gain stable or vy-gain stable with bias if, and only if, IIp)/k is
gain stable, (v, 3)-gain stable or v-gain stable with bias respectively.

We remark that in the above definitions, the operator Hp//x can be replaced by

Ip,/k or llg,/p due to the relations between the three operators given in (2.3).

3. Robustness

In this section, we deal with robustness of globally gain stability with bias of
feedback systems in the sense that if, for given nominal plant P and controller K,
p/ i is (7, 5)-gain or y-gain stable with bias, then Ip //k is also (v, 3)-gain or 7-
gain stable with bias for a suitable perturbation P;. The allowed perturbations are

measured by distances which are generalizations of a gap metric given in [9]. It is
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proved that if the distance is smaller than the inverse of the gain 7, then the feedback

stability is preserved.

Let U,Y be two signal spaces and let P, P, : U, — )Y, be the input-to-output
operators of two control systems. Given a number 5 > 0, we define the following four

gap metrics from P to P;:

gg(P, Py) =limsup inf

T—00

50 for any y € Gp,, there exists x € Gp
Q@ : ;
such that ||y — z||, < «a|z|, + 3
there exists § > 0 such that, for any
5(P,P)) =limsup inf{ > 0: y € Gp,, there exists z € Gp satisfying  ;
T—00
ly —zl- < allzll- + 8

ds(P, P1) = sup inf

>0

Y

50 for any y € Gp,, there exists x € Qp
a
such that ||y — z||, < «ofz|- + 8

there exists § > 0 such that, for any
d(P P))=sup inf ¢ @« >0: y e Gp,, there exists 2 € Gp satisfying
>0
ly — =l < allzll; + 5

| A

Clearly, §(P, P,) < 05(P, P,), d(P, P,) < dg(P, P,), (P, P,) < d(P, P,) and 55 P, P))
dg(P Py) for any 8 > 0. In the case when Gp = Gp,, we have 6(P, P,) = d4(P, P,) =
d(P, P) = dB(P, P)=0.
It is noted that in the case when 8 = 0, we have
So(P,P)) = limsup sup inf

g =
o IinellgiloHﬁll %o |-

which is exactly the alternative gap metric studied in [9] (where the setting is slightly
different but won’t affect the results) and its generalizations in [11]. So the two J-
gap metrics above and the corresponding robust stability theorems below are direct

generalizations of those in [9, 11].

To describe the gap metrics alternatively, we denote by

O(P,P;;D) = {@ : ®: D C Gp— Gp is a surjective }

set-valued mapping with bounded values

and for any mapping @ : X C W, — W, and number 8 > 0, we let:
1@l = limsupinf{y > 0+ [ T,Qull, < 4| Toall, + 8, Va € X},
T—r00

Q¥ = su;g inf{y > 0: | T.Qz|, < | Trx|. + 8, VrelX},
T>

where, in the case when @ is set-valued, ||T.Qz|, = sup{||T>y|l- : v € Qz}. Note,
both [|Ql|(s) and [|Q||'® are generalizations of the induced operator norm [|Q| and
1Q[|® is called the B-gain in [2] or biased gain in [12].
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Proposition 3.1.

35(P, P) = inf {||(® — I)|p||(s : ® € O(P, P;;D),D C Gp}, (3.1)
dg(P, Py) = inf {|(® — I)|p|® : ® € O(P, P;;D),D C Gp} . (3.2)

Proof. We only prove (3.1) since the proof for (3.2) is similar.

For convenience, we denote the right hand sides of (3.1) and (3.2) by 6°(P, Py)
and d?(P, P,), respectively.

Let ® : D C Gp — Gp, is a surjective mapping. Then for any y € Gp,, there
exists z, € Gp such that y € ®x, and, therefore

-

d3(P, P;) =limsup inf {oz >0: [ly —ayll; < allzy|-+ B for all y € Gp, }

T—00

< lim sup inf{a >0: (@ — 1Dyl < allzy|lr+ B for all y € Gp, }

T—00

< limsup [|(® — I)|p||(s),

T—00
which 03(P, P,) < 6°(P, P}).

To show the reverse inequality, we let ¢ > 0. Then for any y € Gp,, there exists

at least one x € Gp such that
ly =zl < (55(P, P) + &)||z[l- + B, for large T > 0. (3.3)

Let D = {x € Gp : there exists y € Gp, such that z,y satisfy (3.3)} and define a
mapping ¢ : D C Gp — Gp, as:

O(z) = {y : x,y satisfy (3.3)} for z € D.
Clearly, ® is surjective mapping from Gp to Gp, with bounded values and
(@ — Dzl[; < (6s(P, P1) + &)l - + 8

for all z € D and large 7 > 0. So 6°(P, P,) < [[(® — I|p||(s) < 5(P, P) + €. Since ¢
is arbitrary, we see 6°(P, P;) < gB(P, Py). This completes the proof. O

We remark that 67 (P, P,) is a generalization of the main gap metric of [9] where,
and for all of other generalizations, the mappings ® in O(P, P;; D) are required to
be causal. In the case when the mappings ® are required causal, we can only have
the inequality gB(P, P) < gﬁ(P, Py). So, the g—gap metric defined in this paper is the
smaller than those defined using causal and surjective mappings between graphs and,

therefore, better in theory and applications.

The following theorems generalize the standard results from both linear and non-

linear robust control, see [9, 11] and the references therein.
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Theorem 3.2. Consider the feedback system described in Figure 1. Let P, Py: U, —
Vo, K: Y, — U, be stabilizable. Let 5 > 0, > 0 and [P, K| be globally well-posed
and [Py, K] is either globally or reqularly well-posed. If [P, K] is (v, 7)-gain stable and

gB(Pa Pl) < /y_l)
then [Py, K| is globally well-posed and (1, 11)-gain stable with

WGP QRPN+ |,
1_55(P7P1)7 7 1_(55(P7P1))7

The same conclusion holds if the gap metric 5B(P, Py) is replaced by 5(P, P),

— —

dB(P,Pl) or d(P, Pl)

Proof. Let p = EB(P, Py). By assumption, there exists a g > 0 such that (p+¢¢)r < 1.

Let w € W,e € (0,&9) and 0 < T < w,,. By the well-posedness assumption, we
may suppose w = w; + wy with unique wy = (u1,y1)", wy = (uz, y2)" € W, such that
y1 = Pruy,up = Kyp. This tells Ilp ; gw = wy. By the stabilization assumptions,
there exist w] € Gp,, w) € Gg such that Trw, = Trw], Trwe = Trw). By the definition
of 0(P, Py), there exists © € Gp such that

[w) = =ll- < (p+ )|l + 5. (3-4)
Write w = x 4+ w). Since [P, K] is well-posed, we see
Hp//gw = x.
Therefore, by (3.4) and the (v, 7)-gain stability of Ilp//x, we see

e yxcwlly = llwillr = llwill- < (1+p+e)llzll- + 5

= (1+p+e)|lUpyxwl, + 5
<(A+p+en|o||l+Q+p+e)r+p. (3.5)

Again by (3.4), there exists z, € W such that ||z,||, <1 and
Tow = Towy + Trwy = Trx + Trwy + ((p + €)||z]l- + 8)Tr 2w
=Tyw+ ((p+e)lzl- + B)Trzw,

from which it follows:

@]l < llwll- + (p+e)llzll- + 8 = llwll- + (o + &) I Lpy/xwll- + B
< [Jwll- + (p+e)vll@lls +(p+e)r + 8

and therefore
e wle | (prar+s

—(p+e)y 1—(p+e)y
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Substituting into (3.5) to obtain

(14+p+e)y
L—(p+e)y

(I+p+e)ar+5)
L=(p+e)y

Since w € W, the right hand side is uniformly bound for all 0 < 7 < w,,, it follows

[wll- +

ITLp, yyxwlr < + 8.

that if [Py, K] is regularly well-posed, it is also globally well-posed. By letting ¢ — 0,
we obtain ||IIp //kw|; < y|wl- + 71, ie., [Py, K] is (71, r1)-gain stable.

If the gap metric 55(]3, Py) is replaced by 5 (P, Py), then the assumption 5 (P, P) <
~v~1 implies that there exists 3 > 0 such that 55(P, P) < 471 Therefore, the same

conclusion holds.

The proofs for the cases when gﬁ(P, Py) is replaced by the J—gap metrics are

similar. O

To close this section, we next present an estimate to gap metric for operators with
certain graph representations. This estimate will be useful when the above theorem is

applied to study the robust stability of some special systems in the rest of this paper.

Proposition 3.3. Let P, P, : U, — Y, be given. Suppose that there exist operators
M, AM:DcU —Y and N,AN :D CU — U such that

M M+ AM
gP:{<N>’UZUED},gp12{<N+AN)’U:’UED}. (3.6)

If there exist k > 0,8 > 0 such that

(&) (%)

then gB(P, Py) < k. If, in addition, k < 1, then 55(P, P) < ﬁ

<k

+ B for alluw € D and large 7 > 0, (3.7)

T

If (3.7) are satisfied for all T > 0, then the same conclusions hold for the gap
metric dg(Py, P) as well.

M+ AM M
Proof.Foranyyz( * )uEgpwithUED,letx:<N)uegp.By

N+ AN
the assumptions, we see that
M
<k ul| +
for large 7 > 0, which implies that gg(P P) <k.

ly - 2l aM
—z|, = u
Y AN

T

)

If £ < 1, then for any u € D, (3.7) implies

AM M+ AM ' s
AN N+aN )"

T
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and therefore
k
—yll. < ——
lz =yl < 7= llvll- + 8
which implies gﬁ(Pl, P) < ﬁ

If (3.7) is satisfied for all 7 > 0, using the same method, we can show the same

conclusions hold for the gap metric d}(Ph P). O

Note that the operators M, N, AM and AN are not required to be stable nor
invertible. Hence, (M, N) (resp. (M + AM, N+ AN)) is not necessarily the coprime
factorisation for P (resp. Py) (see [1, 13, 14]). However, if the operators admit
(right) coprime factorisations, then the graph representations (3.6) can be achieved
with (M, N),(M + AM, N + AN) the coprime factorisations. Interestingly, when
(AM, AN) is uniformly bounded, k& may be taken as 0 and we will have 55(P, P)=0.

4. Semilinear systems with bounded nonlinearities

In the rest of this paper, as applications of results in the last section, we will
address some stability problems in nonlinear feedback control regarding. We will
estimate the gap metrics between certain specific nominal plants and their perturba-

tions, and study the robust stability of the underlying control systems.

First of all, in this section, we consider the effect of initial state value to the sta-
bility of a control system. There has always been a creative tension in control theory
between state space and input-output methods, but the original formulation of gap
metric approach precludes the case of non-zero initial conditions as the assumptions
require both plant and controller map zero to zero. Although this condition has been
relaxed later and, particularly, recently in the biased notions [2, 5, 10], a problem
that is not addressed within the gap metric framework is: if a controller stabilizes
a system with a given initial state condition, does it stabilize the system when the
initial state condition changes? We will prove that under our framework, for semiliner
systems with bounded nonlinearities, changing initial state condition does not change

the robust stability and the stability margin.

The systems concerned are of the following form, denoted by =(f, x¢)

2 (t) = Ax(t) + f(t,x(t)) + Bu(t),z(0) =20 € Y

(4.1)
y(t) = Cx(t) + Du(t)

E(f,z0) i ur—y:

where U, Y are normed vector spaces, A : dom(A) C Y — Y is a linear operator,
C:Y =Y, B,D:U —Y are bounded linear operators and f(¢t,z) : RxY — Y
is measurable in ¢ and Lipschitz in z. Let U = L>®(R;,U),Y = L>®(R,,Y) be the

signal spaces. We assume the following two assumptions.

Assumption 1. D C U and for each u € D, (4.1) has a solution in ).
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Assumption 2. There exists a linear operator F' : Y — U such that A + BF
generates a co-semigroup of bounded linear operators S(t) and, for each v € U, the

equation
2'(t) = (A+ BF)x(t) + f(t,z(t)) + Bo(t), x(0) = x. (4.2)

has unique solution x € ).

We first give a graph representation for Z( f, z¢), which is a generalization of the

corresponding results in [13, 14].

graph(Z(f, zo)) = {( j\\f/j ) viwv EU}

Mu(t) = FS(t)xo + F/o S(t —s)[Bu(s) + f(s,z(s))]ds + v(t),

Lemma 4.1.
with

Nou(t) = (C+ DF)S(t)zo
t
+(C+ DF) / S(t— )[Bo(s) + f(s, 2(s))|ds + Do(t),
0
where x is the solution to (4.2) corresponding to input v.

Proof. 1t is known that M : v +— u and N : v +— y are the input-output mappings to
the closed loops

' (t) = (A4 BF)xz(t) + f(t,z(t)) + Bo(t), x(0) = zg (4.3)
u(t) = Fa(t) + v(t) (4.4)
y(t) = (C+ DF)x(t) + Dv(t). (4.5)

By our assumptions, both M and N are well-defined operators. Furthermore, M is

invertible with the inverse M ™! : u + v given by:
2/ (t) = Ax(t) + f(t, z(t)) + Bu(t), z(0) =z (4.6)
v(t) = u(t) — Fa(t). (4.7)
By Assumption 1, we see that dom(M~') D D. If u € dom(M 1), then v = M~'u €
Y and the z satisfying (4.6)-(4.7) is the solution to (4.2). From Assumption 2, it
follows # € Y and therefore dom(M~!) = D. Hence, the composition NM~! is the

input-out mapping associated with
2 (t) = Az(t) + f(t,2(t)) + Bu(t), z(0) = x (4.8)
v(t) = ult) — Fx(t), (4.9)
2(t) = (A+ BF)z(t) + f(t,2(t)) + Bv, 2(0) =g (4.10)
y(t) = (C + DF)z(t) + Du(t). (4.11)
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Substituting (4.9) into (4.10) and subtracted by (4.8), we have
7 —a'=(A+BF)(z—x)+ f(t,2(t) — f(t,z(t)).

Since S(t) is a co-semigroup, there exist w,r > 0 such that ||S(t)|| < re“ for all ¢ > 0.

Since f is Lipschitz and z, z have the same initial value, we see

|2(t) — (t)] = /0 S(t = s)[f(s,2(5)) = f(s,2(s))lds

t
< cr/ =) 2(s) — z(s)|ds with some ¢ > 0
0

and

t
e z(t) — z(t)] < cr/ e “%|z(s) — x(s)|ds, for allt > 0.
0

By Gronwall’s Inequality, z = 2. Therefore, NM ! = Z(f, ) and
u Mo
h(Z(f, = cu €Dy = vel,.
s =z ) #€7} =4 (0 ) o<

Remark: since no more information is given about the left invertibility of (M, N)T,

O

(M, N) is not necessarily the coprime factorisation of Z(f, x¢).

We now in the position to estimate the gap between Z=(f, zo) and Z(f, &) with

To,To € Y and xg # Tp.

Corollary 4.2. Consider the system given by equation (4.1). Let x¢,Z9 € Y and
xo # To. Let P = Z(f, o) be the nominal plant and Py = =Z(f,Zo) the perturbation.
Suppose F is a bounded operator and the semigroup of linear operators S(t) generated
by A+ BF is such that

1S < re* withr > 1,w >0 for all t > 0. (4.12)
If either
|f(t,z)|| < c withec>0 forallt >0,z €Y, (4.13)
or there exists d € [0,w/r) such that
| f(t,z1) — f(t, z2)|| < d||z1 — 22| for allt > 0,291,252 €Y, (4.14)

then §(P, Py) = 0.

Proof. As shown in Lemma 4.1, there exist operators N, Ny : Y — Y and M, M :
U — Y such that

graph(P)z{(j\vél)u:uel/I}, graph(PQz{(JZ\V{l )u:uel/{}
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and
AMu(t) =: (My — M)u(t) = FS(t)(F — o)
+ 8 [ 5= 9)[7(6.5069) = .10, (1.15)
ANu(t) =: (Ny — N)u(t) = (C + DF)S(t)(Zo — o)
+(C+ DF) /Ot S(t—s)[f(s,2(s)) — f(s,2(s))]ds. (4.16)
Here z is the solution to equations (4.2) and Z is the solution to
2(t) = (A+ BF)x(t) + f(t,z(t)) + Bu(t), x(0) = .
Therefore
() —2'(t) = (A+ BF)(z(t) — z(t)) + f(t,2(t)) — f(t, z(¢)). (4.17)
If condition (4.13) hold, then, for any 7 > 0, we have
AVl < IS = au)l, + 261 Pl [ s
< rl|F ||l 2o = ol + 2¢]| Fllw™,
|ANull, <|[(C+ DF)S(t)(Zy — w0)]|» + 2¢||C + DF|| /Ot e (=) ds
< 7||C + DF||||Zy — xo|| + 2¢||C + DF||w™

—

for all u € U, and by Proposition 3.3 with & =0, 6(P, P;) = 0.
If condition (4.14) hold, then, for any 7 > 0, from (4.17), it follows

30 = O] < IS0 = w0l + [ 18 = 9)f(5.5(5) = fs. () s
< re o = anll +rd | a(s) —a(s) s

This gives ||Z(t) — x(t)|| < r||Zo — wo|le” @7 < r||Zo — 20| and, therefore

(8 2() = f (& 2(@)]| < rdl[Zo — 2ol

—

Using the same argument as used above, we see 6(P, P;) = 0. O

By Theorem 3.2, we conclude:

Corollary 4.3. Consider the system given by equation (4.1). Under the assumptions
of Corollary, 4.2, if a controller K is such that [Z(f, xo), K] is y-gain stable with bias,
then [2(f, o), K] is also y-gain stable with bias for any Z.
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The existence of operator F' satisfying (4.12) indicates that the nominal plant
=(f,x) is stabilizable with the feedback controller u = Fz + v. If the system is
of finite dimension, it is equivalent to that A + BF is Hurwitz and, in that case,
S(t) = exp[(A+ BF)t] and —w is the maximal eigenvalue of A+ BF. However, if the

nominal plant is not stabilizable, it is known that the initial state value is essential.

The next result shows that if a linear system is perturbed by a uniformly bounded

(nonlinear) function, its stability remains the same.

Corollary 4.4. Consider the system given by equation (4.1). Under the assumptions

-

of Corollary 4.2 and condition (4.13), we have §(Z(0, x¢), Z(f, xo)) = 0.

Proof. As shown in Lemma 4.1, there exist operators N, Ny : Y — Y and M, M :
U — Y such that

graph(=Z(0, zg)) = {( ]]\\[4 ) u:uEU}, graph(Z(f, zo)) = {( ]]\\/}[11 )u:uEU}

and

AM o (MM Jo S(t = 5)f(s,2(s))ds
AN T\ M-N ~ \ (C+DF) [y S(t—s)f(s,x(s))ds |
where z is the solution to the equation (4.2). Since f is uniformly bounded, as shown

in Corollary 4.2, there exists a constant ¢y > 0 such that

()

-

By Proposition 3.3 with £ = 0, §(Z(0, z¢), =(f, zo)) = 0. .

<c¢p forallvel,r>.

T

5. Stability of realizations

It is known that, for a given transfer function, there are possibly infinite many
different state space realizations of which the stability may vary. We now use Corol-
lary 4.2 to show that the gap between any two realizations which are stabilizable
is zero and, therefore, by Theorem 3.2, a controller stabilizing one realization also

stabilizes the other one.

We first present a lemma regarding the estimate of gap metric.

Lemma 5.1. Let P\, Py, Py : U, — Y, and 0(P1, Py) < ki,0(Py, P3) < ko with

k?l, k?g < 0. Then 5(P1, Pg) < k?l + k?g + k?lkfg.
The same results hold if the gap metric § is replaced by d.
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Proof. Suppose € > 0. By the definition of the gap metric, there are 5; > 0,8, > 0
such that for each ws € graph(Ps), there exist wy € graph(FP;) and, therefore, w; €
graph(P;) satisfying:

||w3 — w2||7 < (ko + €)||w2||7 + Ba, ||w2 - w1||7 < (k1 + €)||w1||T + 5
for all 7 > 0. So

|ws — w1z < [Jws — wall; + [lws — w1~

< (ko + &) [lwa — willr + [lwi|l-] + B2 + (k1 + &) lwi - + B
< (ko) [(1+ k1 4+ o)Jwnllr + Bi] + a2 + (k1 + ) |lwil- + Bu.

—

So §(Py, P3) < (k2 +¢)(14+ k1 +¢) + ki +e. By let € = 0 we obtain

-

(P, P3) < ky + ko + kiko.
]

Corollary 5.2. Suppose that G(s) is a transfer matriz having the following two re-

alizations of the same dimension
Po(xg) : 2'(t) = Az(t) + Bu(t),z(0) = xo,
y(t) = Ca(t) + Du(b),
Py(z1) : 2'(t) = A12(t) + Byu(t), 2(0) = a1,
y(t) = C1z(t) + Dyu(t),

where A, B,C, D and Ay, By, Cy, Dy are matrices of finite dimensions. If both Py(xo)
and Py(x) are stabilizable, then 6(Py(xo), Pi(z1)) = 0. Consequently, if K is a
suitable controller such that [Py(xo), K| is v-gain stable, then [Pi(x1), K] is y-gain

stable.

Proof. By our assumptions and Corollary 4.2, we see

— —

5(P0($0),P0(0)) =0 and 5(P1([L‘1),P1(0)) = 0.

By Lemma 5.1

—

3(Po(z0), Pr(@1)) < 8(Py(x0), Po(0)
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As Py(0) and P;(0) have the same graph given by {(u,y)" : y = Gu}, we have

d(Fy(0), P1(0)) = 0. The v-gain stability of [Py(z), K] follows from Theorem 3.2.
This completes the proof. O

6. A nonlinear system with time delay

In this section, we consider the stability of integrator system with saturation and
delay in the input. We let the nominal plant be the system without delay and the
perturbation be the system with delay, then applying the results in Section 3 to show
the stability of systems with delay.

Let Y =Y = L*(R,,R). The nominal and perturbed plants P, P; are described,
respectively, by

where sat(u;) = u; when |ug] < 1 and is equal to sign(u;) when |u| > 1.

It is known that

graph(P) = { < j\\f/j ) uu € dom(P)} , graph(P) = { ( ]]\\/}[11 ) uiu € dom(P)} :

where M = M; = I (the identity), N = P and N; = P;. Moreover
AM M, — M 0
u(t) = ! u(t) = .
AN N, — N x(t — h) — x(t)

z(t —h) —z(t)] < sup [2'(s)]h < sup [sat(u(s))|h,
s€[t—h,t] s€[t—h,t]

AM
u
AN

for all 7 > 0. Hence, by Proposition 3.3, gh(P, P)=46(P,P)=0.

Choose the feedback controller to be K = —1. Then both [P, K] and [P, K]
are well-posed and [P, K] is 4-gain stable with zero bias (see [9]). By Theorem 3.2,
[Py, K] is 4-gain stable with bias for all A > 0.

Since

we have

< hljsat(u)ll> < h

T

However, if we apply the dy-gap metric, since |[sat(u)| < |Ju/|, we would have
So(P, P1) < h and [Py, K] is 4-gain stable with zero bias for h < 1/4.
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