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Abstract. In this paper we tackle the problem of coordinating mul- devices must coordinate actions which are best represented by con-
tiple decentralised agents with continuous state variables. Specifinuous state variables. Examples include controlling the orientation
ically we propose a hybrid approach, which combines the maxof sensors during target tracking [4], controlling mobile sensor tra-
sum algorithm with continuous non-linear optimisation methods. Weectories during exploration [5] and coordinating sense sleep cycles
show that, for problems with acyclic factor graph representations, foto maximise coverage [6]. If agent states are continuous, this contin-
suitable parameter choices and sufficiently fine state space discretisasus space must be discretised before the any of the aforementioned
tions, our proposed algorithm converges to a state with utility close talgorithms can be applied. Furthermore, through the course of op-
the global optimum. We empirically evaluate our approach for cycliceration of these algorithms, each agent conducts repeated searches
constraint graphs in a multi-sensor target classification problem, andver the state spaces of itself and its interacting neighbours. Thus,
compare its performance to the discrete max-sum algorithm, as wetlare must be taken to discretise the continuous space with sufficiently
as a non-coordinated approach and the distributed stochastic algfew discrete states for such searches to be computationally tractable,
rithm (DSA). We show that our hybrid max-sum algorithm outper- which in turn limits the expressiveness and efficiency of the algo-
forms the non-coordinated algorithm, DSA and discrete max-sum byithms themselves.

up to 40% in this problem domain. Furthermore, the improvements in  Accordingly, we identify a need for decentralised coordination al-
outcome over discrete max-sum come without significant increasegorithms that have scalable computational and communication costs,

in running time nor communication cost. and can seek good quality solutions for problems with continuous
control spaces which interact in complex ways. Some work has al-
1 INTRODUCTION ready been done in this direction, however it has relied on objective

functions being piece-wise linear, and suffers from unfavourable in-

There has been much recent interest in decentralised coordinatiameases in complexity as the number of agents grows [16]. Further-
problems for multi-agent systems, where multiple physically dis-more, there also exist decentralised non-linear optimisation methods
tributed devices must communicate with each other in order to coleapable of accurately finding local optima over multi-dimensional
laboratively achieve some objectives. For example, these problentntinuous state spaces. In particular, many complex resource al-
include coordinating systems of low power, locally communicat-location algorithms in the field of flow control can be seen as
ing devices, such as sensor networks for wide-area security surveitlistributed multi-dimensional gradient based optimisation methods
lance [9] and environmental monitoring [12], and multi-agent rescugsee [7] and [15] for an overview). However, these methods ast mo
robotics [14]. Typically, these sorts of problems can be representedseful for finding optima of convex global objective functions. They
as distributed constraint optimisation problems (DCOPs), in whichare not designed to navigate complex interactions between local con-
interactions between the agents’ states is modelled by a constraistraints in order to find globally optimal solutions, and would be
graph. A number of algorithms have been developed for solving genlikely to converge to a sub-optimal local maximum if applied to a
eral DCOPs. However, many of these algorithms, like OptAPO [8],non-convex DCOP. Thus, these algorithms would not be suitable for
ADOPT [10] and DPOP [13] are designed to find globally optimal the above mentioned applications.
solutions, but at a cost of either exponential computation or com- Thus, against this background, in this paper we seek to extend the
munication requirements. Other algorithms, such as the distributeflinctionality of discrete max-sum to situations where the accuracy
stochastic algorithm (DSA) [4], are designed to operate on large scalef control options is important (and thus a prohibitively high level
applications, but can often converge to poor quality solutions, due tof discretisation is required), there is uncertainty about what control
the simplicity of the communication between agents. range or level of discretisation is appropriate and the agents’ utility

Recently, the max-sum algorithm has been proposed as a middfenctions can not be decomposed into piece-wise linear components.
ground between these two approaches [3], with the intention being In particular, to address this shortcoming, we propose the hybrid
that it converges to good quality solutions whilst remaining fully de- continuous max-sum (HCMS) algorithm, which combines the dis-
centralised and scalable. These qualities are highly desirable for therete max-sum algorithm with continuous non-linear optimisation
class of applications mentioned above, where robustness is impomethods. Informally, the intention is to improve on continuous op-
tant, there are large numbers of agents, and a low communicatiatimisation methods by using the max-sum process to escape undesir-
or computational overhead is required. However, despite its advarable basins of attraction and improve on the max-sum algorithm by
tages, the max-sum algorithm (and indeed, all the aforementionedsing continuous optimisation methods to evolve state space discreti-
approaches) is limited by the fact that it requires agents to have disations over time so as to make the initial choice less critical.
crete state spaces. There are many multi-agent applications whereln more detail, we make the following contributions.
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for suitable parameter choices, the HCMS algorithm outperform?.1  Discrete M ax-Sum
the discrete max-sum algorithm operating over the same discreti-

sation of the state space and, for sufficiently fine discretisations! '€ Max-sum algorithm proceeds by exchanging information be-

the HCMS algorithm converges to a near optimal state. tween fu_nctions and vari_ables along the_gdges of the factor graph.
e We empirically evaluate our HCMS approach over a multi-sensol=ach variabler; communicates to each utility functidr; € Uj the

target classification problem, and compare its performance to thE/nctiongi—;(-), where, forz = 1,2, ... ki,

discrete max-sum algorithm, as well as a non-coordinated ap-

proach and the distributed stochastic algorithm (DSA). In so do- i~y (2) = aij + Z Th—i(2), @)

ing, we show that HCMS can outperform the DSA and discrete keMi\j

max-sum by oved0%, with reference to the non-coordinated al- \yhere A4, is the set of function indexes, indicating which functions

gorithm performance. ) . depend onc; and the normalising constants; are chosen so that
e We further show that the improvements in outcome the HCMSthe sum ofyi_,; (-) over its domain is zero
1] .

algorithm achieves over discrete max-sum come with neither sig- 11, fnctions-;_, ; (-) are communicated from utility functioris
nificant increases in running time nor communication cost. {0 state variables ¢ x.. where fors — 1.2, k.
J 7y — L&y hvy

The rest of the paper is organised as follows. Section 2 containsr;_,;(z) = max (Ui({xm (Ym)men;) + Z q;Hi(yk)),

a formal description of the hybrid continuous max-sum algorithm, Y= KENG\j

and statement and proof of our theoretical results. The results of our 2)
empirical evaluation of the performance of our algorithm are in SecwhereA; is the set of agents whose states are,in

tion 3. We conclude in Section 4. After a fixed number of iterations, the resulting solution is given

by each variabler; taking the stater;(z;) where z; maximises
2_jem, Ti—i(+). The motivation here is that this sum is an approxi-
mation toh;(-), which is themarginal functionof x;, where for any

2 ALGORITHM DESCRIPTION statey, h;(y) is equal to the maximum value the global objective
function can attain ifc; = y.

The hybrid continuous max-sum algorithm is intended to solve gen2 2 Hybrid Continuous M ax-Sum

eral coordination problems between multiple agents. More formally, . . . .

we consider the case where there Afecooperative agents and~ 1heé HCMS algorithm involves implementing the same message
utility functions Uy, Us, . .. U, where each agerithas a continu-  Passing as described above for the discrete max-sum, using the cur-
ous state variable; and a set of utility functiondJ;. We assume  ent discretisations of the variable state spaces. There is also addi-
each utility functionU; has a unique agertsuch thatl/; € Uj, ti(_)nal informatio_n communicated betyveen variables and functions.
andU; only depends on a subset of the set of agents which are iffirstly, each variable:; must communicate to aji € M, the val-
direct communication with. We writeU; = U; (x,) wherex; isthe ~ U€S of its state space dlscretlsatl_on. Secondly, ee_lch utqlty funBiion
appropriate set of variables. The factor graph representation of thigommunicates to each state variabjefor j € \; eitherf;_,;(-), or
problem is a bipartite graph with a vertex for each variable and eacROth fi—;(-) and fZ,;(-), where forn = 1,2 andz = 1,2,..., k;,

utility function, and an edge between variablgand functionU; if fit;(2) is given by:

and only ifx; € x;. We do not assume anything more about the na-

ture of the individual utility functions, and it is not required that they —
are known to other agents. The DCOP we consider is to find a set of da}

i

arg max (Ui({l‘m(ym)}mg,/\[i)‘f' Z Qk%i(yk)).

yiy;=2

statesx™ such that social welfare of the whole system (i.e. the sum (©)]
of the individual agents’ utilities) is maximised: As described above, the key difference between the HCMS and
the discrete max-sum algorithm, is that each variablevolves its
M state space discretisation; (1), x:(2),...,x:(k;) in order to find
x* = arg maXZ Ui (). better quality solutions. To do so, the variable employs continuous
Pt non-linear optimisation techniques, which evolve as if maximising an

objective function which takes the vaIEj:xiexj rji(2) with pth

To ensure low communication cost, and a fully decentralised solugradientzmie,(j fi—:(2) ateach point;(z) for z = 1,2,..., k;.
tion, it should be expected that an agent will only directly commu- The motivation for this is that, as a result of the discrete max-sum
nicate with agents whose states affect its own utility functions. Thusnessage passing process, for each variahléor all z = 1.. ., k;,
in most applications, the computation and communication cost eacthe received values @j:mﬁx‘ r;_i(z) can be used as an approx-
agent experiences would depend on its number of neighbours rathghation tohi(zi(2)). Furthérrﬁorezj . [7,i(2), can be used

1T EX

than the size of the network. Lo 4
The HCMS algorithm operates by combining the discrete max-as an approximation to the valuedth; /dz;* evaluated a; (z).

sum algorithm with non-linear optimisation technigues. Given a state
space discretisation for each variablg that is, a set of values 2.3 Continuous Non-linear Optimisation

2i(1), 2:(2), . .., 2:(k:) taken from its state space, the discrete max-g; o ooy variable is attempting to optimise its marginal function
sum algorithm finds an approximately optimal set of states within™ . . tempting o op 9 L
using a series of approximations, it is important that robust optimi-

this discretisation. The HCMS algorithm improves on this by adjust- ation methods are chosen. We choose aradient methods. which are
ing this state space discretisation to seek better quality solutions. WE ) 9 '

now describe the operation of the HCMS algorithm in more detail,2 |nformation is exchanged between functions and variablesiging to dif-
beginning with a description of the discrete max-sum algorithm. ferent agents by passing messages through the communicatieorke




robust to errors and can be implemented in a highly scalable, asynime it has received all messages required to calculate the contents
chronous, decentralised fashion using only local information. Indeedaccording to Equation (1), (2) or (3). Those messages that do not
the congestion control mechanism in use on the current Internet magquire any information to calculate could simply be sent at regu-
be seen as such an implementation [15]. This leads to the intuitiofar intervals. As noted in [2], for these problems under the discrete
that the different state updates of the variables will not interact inmax-sum algorithm, the messages.;(z) and ¢;—:(z) represent
unpredictable or harmful ways. the maximum aggregate utility possible over the respective halves of
Accordingly, after each iteration of the HCMS message passinghe graph formed by removing theto j link, if variable z; is in

process, every state variableupdates its states space discretisation,statez; (z). This means that under these circumstances the discrete

by addingAz;(z) to z;(z) foreachz = 1, ..., k;, where max-sum algorithm quickly converges to the global optimal solution.
In the next section we will demonstrate that good theoretical results

Azi(z) = ki(2) Z fisi(2). hold in this case for the HCMS algorithm also.
jimiEx; As with the discrete max-sum algorithm, in the more general set-

ting, if there are cycles in the factor graph, then the above does not
This determines the HCMS algorithm up to a choice of scaling factomold. It is not possible for all the variables and utility functions to
ki(2). In this paper, we consider two schemes for setting this paramwait for all the necessary information before sending a message, for
eter. Firstly, we consider a straightforward gradient method, whichotherwise, some messages would never be sent. Thus, if the factor
has a fixed constamt;(z) = ;. This is the simplest way to choose graph can not be expected to be acyclic, then we suppose that each
a stepsize, and the results from experimenting with this method foyariable and utility function simply periodically sends all messages,
different values ofx; should give intuition as to how sensitive the ysing the most up to date information available. Any unknown func-

HCMS algorithm is to stepsize choice. Secondly, we attempt to im+ions are assumed to be zero for initial calculations, until the first set
prove on this simple scheme by making a choice of stepsize based @ messages is received.
the Newton method, where a fixed constants given so that

m(z):m( 3 f;%(z))-{ 2.5 Theoretical Results

Jiws € We now show some theoretical results that apply to the HCMS algo-

. . . . . rithm over problems with acyclic factor graphs.
unless this value is negative or aboxg in which case we set

#i(2) = rs. This bounding ofk;(z) deviates from normal Newton  proposition 1 Suppose we have an HCMS algorithm solving a
method behaviour, however it is necessary to prevent the algorithmcop with an acyclic factor graph. If the stepsize is decreasing,
from converging to minima, or behaving unpredictably around pointsand is always sufficiently small, then the maximum achievable utility

of inflection. given the set of possible states for each variable strictly increases
The choice of these parameters must be, to some extent, fitted t/er time.

the problem in question. If the values ef(z) are too small, then
the algorithm will evolve slowly, and may not reach high quality so- For every iteration, the message passing algorithm acts like the stan-
lutions in the specified number of iterations. If the values:gf) dard max-sum algorithm for the current variable state space discreti-
are too large, then the algorithm may be limited in how close it carsations. Thus, once all messages have been sent, by the results in [2]
come to converging on a high quality solution, due to continuallyfor the standard max-sum algorithm, for each agemmd; € M;,
overshooting the optimal point. We examine how the performance ofor z = 1, ... k;,
the fixed stepsize gradient and Newton based methods depend on the
parameters; in Section 3.2. We find that there is a wide range of ki
choices which yield good results. Z ri—i(2) = gax, Z Ui ({zm (ym) }men; )
As a rough rule of thumb, we would suggest takingto be at J=1 i=1
most inversely proportional to an approximate upper bound of

Z U z; = arg max Z ri—i(2).
d?z; I ‘ 2=1,...k; I

Jis €x; fjimiex;

M

For each variable; let z; be defined as

This is because, when using a gradient method to converge to ma®y definition,
imise an objective functioff, if the stepsize parameter is always cho-

sen to be less thaty K, whereK is an upper bound ofi”, then each

iteration leads to an improved solution. For our problem domain (see Z = argmax Z Ui({zm (ym) bmen; )
Section 3), we found thai9% of evaluated values dt>U, /d>x;| =1

were bounded bg.7. From the number of agents in our experiments ;thermore, for each variable, the value of

we get an order of magnitude feg to be around).1 or 0.01. This is

born out by our empirical results, whesg larger tharD.1 begins to Z fjlﬂ'(zz-)

yield poorer results, and; = 0.01 gives the best results over all.

M

Jixi €x;

is equal to the partial derivative of the objective functionyyeval-
uated at{zy (z1) } AL ;.

There is one last aspect of HCMS algorithm operation which re- Hence, each update step moves, (z)}+L, in the direction of
mains to be described. In this subsection we discuss the timing ahe gradient of the objective function at that point. Provided the step
the message passing. If the factor graph of the problem is a tree, theiizes are sufficiently small, then utility at this point will strictly in-
each variable and utility function can simply send a message evergrease (see, for example [1] chapters 8, 9). Thus, after eactidtera

2.4 Message Passing
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there is a combination of states which gives more utility than theacyclic factor graph representation, as with the discrete max-sum al-
previously maximum possible. O gorithm, there are no theoretical guarantees on the performance of
As a corollary to this proposition, we can deduce that such arthe hybrid continuous max-sum algorithm. Thus, to further evaluate
HCMS algorithm operating over an acyclic factor graph will con- our approach, we must turn to empirical data. In this section we eval-
verge to a state with higher utility than the discrete max-sum al-uate the HCMS algorithm through a series of simulated experiments
gorithm, provided both algorithms begin with the same state spaci a target classification domain. This domain is particularly suit-
discretisations. Furthermore, the utility of the solution provided byable as a testbed for decentralised coordination algorithms because
such an HCMS algorithm can be made to be arbitrarily close to optiof the presence of devices with limited communication and computa-
mal, if the initial state space discretisations are sufficiently fine. Thigion capabilities, and because the need for robustness and reliability
is because with a sufficiently fine discretisation, then there will beexcludes the possibility of using centralised algorithms. Moreover,
at least one combination of initial possible states which is alreadyhis domain features an inherently continuous optimisation problem,
sufficiently close to the optimal solution, and the progress of the alwhich is of specific interest for benchmarking the HCMS algorithm
gorithm can only improve upon this. against various discrete ones. Thus, we use this domain as an illus-
trative example, but it should be noted that the HCMS algorithm is
2.6 Communication and Computation Cost more broadly applicable. We pegin with a more dgtailed description
of the specific problem scenario under consideration.
The HCMS algorithm involves a slightly increased communication
gnd comput_e_ltlon overhgad compared to the dls.crete max-sum alg%—'l Problem Domain
rithm. Specifically, the differences are as follows:

) . . ) We consider a network of wireless sensing devicgs =
¢ Messages passed from functibinto variablez; includef;-, ; (-), {s1,...,s,} that are tasked with classifying targes =

and possiblyf?, () (Equation 3), instead of just ., (-) (Equa- {t1,...tn }. Targets are assumed to be stationary, and can be one
tion 2). This results in an increase in communication cost of aty; ~ _ {c1,ca, ...} classes. Sensors are able to take (imprecise)
most a factor of three. _ _ _ measurements of targets within a fixed sensing range, and are able

* Messages passed from variahbie to function U; include the 5 yotate to change their viewing direction. When pointing directly
new space discretisatian(1), . .., ;(k:), instead of jushi—;(-)  (owards a target, the probability of a sensor correctly classifying it is
(Equation 1). This results in an increase in communication cost Ofnaximised, but when rotated away from a target, the sensor acquires
afactorof two. , less information about the target, and this probability is reduced.

e In termslof addmonthI computation overhead, for each= More formally, given a target whose (unknown) class is mod-
L... ki, fiy;(2), andfiZ, ;(z) may be calculated using three eval- gjieq with random variabl€; (with domainC), a sensos obtains
uations ofU; (if there is no fast closed form expression for these 5 measurement, denoted by random varidtle(also with domain
derivatives). However these extra function evaluations do not réPr), based on its type and viewing direction. For each sensor/target
r_esent a significant computational CQSt co_mpar_ed to _the optimisabair, the probability of classifying a target ad., given its actual
tion used to calculate the_,; (-) functions, in whichl; is evalu- - ¢jassc, is given byp(M.|C:, 6), whered is the angle between the
ated for the entire discrete state space. sensor’s viewing direction and targetand ranges betwednand-.

So, the increase in communication and computation costs in opef:0f ¢ = 7 (i.e. the sensor looks away from the target)/|C:, 0)
ating the HCMS algorithm compared to the standard discrete max$ & uniform probability distribution ovet;, such that no informa-
sum algorithm is at most a factor of three and does not depend on tHiPN about the target's class is gained. The following equation has the
number of agents. Thus, the HCMS algorithm would seem to hav&esired properties:
the same desirable scalability properties as the discrete max-sum. 1

However, it is worth noting that the above result applies when p(Ms|Ct,0) = (1 — f(0)) ps(Ms|Ct) + f(@@ 4)
comparing the two algorithms operating for the same number of it-
erations. From Proposition 1, we might expect that it is beneficiaHere,p,(M,|C}) is sensow’s optimal sensing signature, which ap-
to operate the HCMS algorithm for more iterations than the discretelies whenf = 0, and f(6) is some function of) with f(0) = 0
max-sum algorithm. In Subsection 3.2, we empirically explore howand f(w) = 1, such that whe® = =, p(M,|Cy, 6) is a uniform
the performance of the HCMS approach is affected by how many itdistribution.
erations are run, and compare this to the behaviour of the discrete Figures 1 and 2 illustrate this problem domain with two example

max-sum algorithm. scenarios. In both scenarios, there are two targets of ¢laasd two
sensors. Sensaf is capable of classifying targets of class but
3 EMPIRICAL EVALUATION is unable to distinguish between classesndcs. Similarly, sensor

so detects targets of class, but can not distinguish between and
Proposition 1 is in accordance with theoretical results available for;. In Figure 1, sensas; is directed towardg;, ands, towardst,.
the discrete max-sum algorithm. For DCOPs which do not have asiven this configuration, the posterior probability distribution over



the class of; andt. is shown on the left in Figure 1. If, however, the  minimised, fixing the current angle of its neighbours. DSA is an

sensors are configured as in Figure 2, no information is gained about alternative to discrete max-sum, but has more limited information

to’s class, but;’s class is correctly determined. propagation, and has been shown to be outperformed by max-sum
Now, given this, the goal of the sensor network is to minimise in general settings [3].

the remaining uncertainty in the classification of the targets after th&kandom For each sensor, this algorithm selects a viewing angle

having taken measurements. This is equal to the conditional entropy at random. The random algorithm is included to provide a lower

H(Ch,...,Cn|M,..., M,) of the target’s classes given that the  bound on achievable performance.
measurements of all sensors are known. Since the classes of a@entralised Simulated Annealing This is a centralised continuous
two targets(t, t') are assumed to be independdi#{(C;, Cy |M) = algorithm for computing a solution that is often optimal. We in-

H(Cy|M) + H(Cy|M), and the problem is reduced to minimising  clude this algorithm as an upper bound for achievable perfor-
a sum of conditional entropies of the classification of individual tar- mance.
gets. For an individual targétand a set of sensofsthat are in range,

the conditional entropy of’; given Ms is given by: For our experimental evaluation, the sensors’ viewing domain is dis-
cretised into 5 angles for the algorithms with a discrete state space
H(Cy|Ms) = Z H(Cy|Ms = m) (?.e. discrete max-sum, DS_A_ z_and !_ocaI_Gr_eedy). The HCMS algo-
mec s rithm starts with the same initial discretisation as the discrete max-
sum algorithm. We considered problem instances in which the sen-
= Z p(m, c) log p(m, ) (5) sors are laid out in a square lattice formation, consisting?o$en-
mecC!Sl cec p(m) sors, withk € [3,8], and the range of each sensor is chose% as
to ensure the sensors’ ranges are overlapping (but not the extent tha
= Z p(m|c)p(c) log ap(mlc)p(c) the coordination problem becomes so dense that coverage of all tar-
meClS] cec gets is trivially ensured). We then randomly generated 100 problem

S| . instances (i.e. target locations) for each lattice formation.

whereC'”! denotes the set of all possible measurements that sensors First, we tuned the scaling facter for the gradient and Newton

S can colltehctl\t/ely Takﬁ_a r'ls a normaI|S|_ng con?tant,dgir;:q;) tIS a method, as discussed in Section 2.3. The results are shown in Figures

prlgr overh € target, w lcl W? assume Is a uniform distribution. 4 anq 5 where solution quality is expressed as a fraction of the so-
ince the viewing angle of a sensor Is a continuous parametefy;;q, computed by simulated annealing. These figures clearly show

taking values frc_)nj(), 27?]’ this problem is a DCOP W'th, continious -yt the Newton method is much less sensitive to the chosen value of
state spaces. Given this, and the fact that the sensors’ actions interact

; . s : , *; than the gradient method. However, the gradient method, if prop-
in complex ways, this domain is particularly suitable for benchmark-erly tuned, gives slightly better results
ing the HCMS algorithm against existing discrete ones. Secondl we took the best gradiem;- (= 10~"%) and Newton

In order to use our HCMS algorithm (as well as the discrete max- '

laorith how h build a f h of this (% = 10™") variants of our HCMS algorithm and benchmarked
sum agorlt. m), we now show how to bui a actor graph o tIS them against the discrete algorithms. The results are shown in Figure
problem. Firstly, we assign a continuous variabjeo sensorj rep-

A o9 . 6, and indicate that, using the performance of the random algorithm
resenting 'FS Viewing dlrectlon,_ ranging ”fmo 2n. Secandly, for as a point of reference, our hybrid max-sum algorithm outperforms
_eachtargg’_[z,_we define a funct'lorliJi (i) V\."th parameter&j € X the discrete coordination algorithms (DSA and discrete max-sum)
iff target is myra_nge_ of Sensqf. Th”S'Ui IS a continuous fu_n_c‘uon by roughly 40%* Moreover, and more importantly, the normalised
of the sensors’ viewing dlrectl_ons andis e_q”"?" to t_he c_ondltlonal eN5olution quality shows that our algorithm performs comparably to
tropy H(C;|{M; : z; € x;}) given these viewing directions of sen-

. . ! . ) . the simulated annealing algorithm.
SOrS In range as in Equation 5. Thlrdly and flnally, .t9 obtain a tru!y Finally, we evaluated the speed of convergence of the gradient and
decentralised approach, we assign the responsibility of computing . ton variants of HCMS on an 8 by 8 lattice, as compared to the
the outgoing messages foF; to one of the sensors: z; € x; in !

. . i ; discrete max-sum algorithm. The results are shown in Figure 7. This
range, while taking care that the computation load is balanced OV&l| ows that, while discrete max-sum converges more quickly than

these SENsars. l_:or Fhe simple scenarios in Figures 1 and 2, the faCHQE:MS, the solution quality of HCMS variants grows much faster
graph is shown in Figure 3. over time. Around 20 iterations, both HCMS variants achieve a solu-
tion quality that is 30% better than discrete max-sum. However, since
3.2 Resaults the gradient method exchanges the first derivative, and the Newton
method both the first and second derivative (see Section 2.3), this
comes at a cost of a twofold and threefold increase in message size
Discrete Max-Sum This algorithm is run on the same factor graph "espectively. Importantly though, the number of messages remains
as used by our approach. By benchmarking against discrete magnchanged.
sum, we can determine the improvement of coordinating in con-
tinuous state spaces using HCMS. 4 CONCLUSIONS
Local Greedy This algorithm selects the angle that minimises en- ) ) -~ )
tropy on targets within range, regardless of the angles of its neigh? this paper we identified a need for a scalable decentralised co-
bours. This algorithm shows the performance that can be achieve@ydination algorithm for continuous distributed constraint optimisa-
without coordination. tion problems. Such an algorithm would have applications in sce-
Distributed Stochastic Algorithm (DSA) [4] This is an iterative narios where robustness, scalability or low computational or com-
best-response algorithm: sensors are randomly activated and ugunication overhead is desired. For this setting, we proposed a hy-

date their angle such that the entropy of targets within range i®rid approach, combining the max-sum algorithm with continuous
non-linear optimisation methods. We showed that, for problems with

We benchmark our algorithm against five algorithins:

3 Since the functions in this domain are not piece-wise linearwere un-
able to benchmark against continuous max-sum for piece-wisarlfunc- 4 In this particular problem domain, discrete max-sum outparéa DSA by
tions [16]. an almost negligible amount.
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Figure7. Speed of convergence of the gradient and Newton variants of
HCMS compared to discrete max-sum.
(5]

acyclic factor graphs, for suitable parameter choices, our proposed
algorithm converges to a state with utility close to the global op- 6]
timum. We also empirically evaluated our approach over a target
classification problem, and compared its performance to the discrete
max-sum algorithm, as well as DSA, a non-coordinated algorithm 7]
and a centralised simulated annealing algorithm. The hybrid con-
tinuous max-sum algorithm was found to perform comparably with [g]
the centralised simulated annealing algorithm and can outperform
DSA and discrete max-sum considerably. Furthermore, the improve-
ments in outcome over discrete max-sum come without significant[g]
increases in running time nor communication cost.

There are several questions left open to tackle in future work. An
interesting question is whether or not the HCMS algorithm can bé10]
improved by employing different non-linear optimisation techniques.
For example, variables could use exploratory techniques, suchjﬁ]
Bayesian Gaussian process regression based optimisation [11]. Un-
der such a method, each variable would test out different state space
discretisations, using the received information to update a model dt2]
its marginal function. Such an approach would avoid the possibility
of converging to a local rather than global maximum, which could
happen under our gradient method based HCMS if the initial statf13]
space discretisations were too coarse. A further question would be
on whether algorithm performance could be improved by alterin
the nature of the communications between agents. Our algorith
provides agents with information on the effects of their choices on
the global objective function by directly informing them of their ef-
fects on local utility functions. However, this is not the only way to [15]
express such information. Methods to compress transmissions COU]:PB]
reduce communication overhead, while more expressive communi-
cation protocols could be developed to facilitate more complex op-
timisation techniques. A final, further reaching open problem, along
a similar vein would be to attempt to form methods for automat-
ically constructing optimal protocols, either through prior problem

14]

Figure5. Effect of scaling factor (Newton

Figure6. Average performance of evaluated
algorithms

set training before deployment, or on-the-fly during operation.
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