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Abstract. In this paper we tackle the problem of coordinating mul-
tiple decentralised agents with continuous state variables. Specif-
ically we propose a hybrid approach, which combines the max-
sum algorithm with continuous non-linear optimisation methods. We
show that, for problems with acyclic factor graph representations, for
suitable parameter choices and sufficiently fine state space discretisa-
tions, our proposed algorithm converges to a state with utility close to
the global optimum. We empirically evaluate our approach for cyclic
constraint graphs in a multi-sensor target classification problem, and
compare its performance to the discrete max-sum algorithm, as well
as a non-coordinated approach and the distributed stochastic algo-
rithm (DSA). We show that our hybrid max-sum algorithm outper-
forms the non-coordinated algorithm, DSA and discrete max-sum by
up to 40% in this problem domain. Furthermore, the improvements in
outcome over discrete max-sum come without significant increases
in running time nor communication cost.

1 INTRODUCTION

There has been much recent interest in decentralised coordination
problems for multi-agent systems, where multiple physically dis-
tributed devices must communicate with each other in order to col-
laboratively achieve some objectives. For example, these problems
include coordinating systems of low power, locally communicat-
ing devices, such as sensor networks for wide-area security surveil-
lance [9] and environmental monitoring [12], and multi-agent rescue
robotics [14]. Typically, these sorts of problems can be represented
as distributed constraint optimisation problems (DCOPs), in which
interactions between the agents’ states is modelled by a constraint
graph. A number of algorithms have been developed for solving gen-
eral DCOPs. However, many of these algorithms, like OptAPO [8],
ADOPT [10] and DPOP [13] are designed to find globally optimal
solutions, but at a cost of either exponential computation or com-
munication requirements. Other algorithms, such as the distributed
stochastic algorithm (DSA) [4], are designed to operate on large scale
applications, but can often converge to poor quality solutions, due to
the simplicity of the communication between agents.

Recently, the max-sum algorithm has been proposed as a middle
ground between these two approaches [3], with the intention being
that it converges to good quality solutions whilst remaining fully de-
centralised and scalable. These qualities are highly desirable for the
class of applications mentioned above, where robustness is impor-
tant, there are large numbers of agents, and a low communication
or computational overhead is required. However, despite its advan-
tages, the max-sum algorithm (and indeed, all the aforementioned
approaches) is limited by the fact that it requires agents to have dis-
crete state spaces. There are many multi-agent applications where
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devices must coordinate actions which are best represented by con-
tinuous state variables. Examples include controlling the orientation
of sensors during target tracking [4], controlling mobile sensor tra-
jectories during exploration [5] and coordinating sense sleep cycles
to maximise coverage [6]. If agent states are continuous, this contin-
uous space must be discretised before the any of the aforementioned
algorithms can be applied. Furthermore, through the course of op-
eration of these algorithms, each agent conducts repeated searches
over the state spaces of itself and its interacting neighbours. Thus,
care must be taken to discretise the continuous space with sufficiently
few discrete states for such searches to be computationally tractable,
which in turn limits the expressiveness and efficiency of the algo-
rithms themselves.

Accordingly, we identify a need for decentralised coordination al-
gorithms that have scalable computational and communication costs,
and can seek good quality solutions for problems with continuous
control spaces which interact in complex ways. Some work has al-
ready been done in this direction, however it has relied on objective
functions being piece-wise linear, and suffers from unfavourable in-
creases in complexity as the number of agents grows [16]. Further-
more, there also exist decentralised non-linear optimisation methods
capable of accurately finding local optima over multi-dimensional
continuous state spaces. In particular, many complex resource al-
location algorithms in the field of flow control can be seen as
distributed multi-dimensional gradient based optimisation methods
(see [7] and [15] for an overview). However, these methods are most
useful for finding optima of convex global objective functions. They
are not designed to navigate complex interactions between local con-
straints in order to find globally optimal solutions, and would be
likely to converge to a sub-optimal local maximum if applied to a
non-convex DCOP. Thus, these algorithms would not be suitable for
the above mentioned applications.

Thus, against this background, in this paper we seek to extend the
functionality of discrete max-sum to situations where the accuracy
of control options is important (and thus a prohibitively high level
of discretisation is required), there is uncertainty about what control
range or level of discretisation is appropriate and the agents’ utility
functions can not be decomposed into piece-wise linear components.

In particular, to address this shortcoming, we propose the hybrid
continuous max-sum (HCMS) algorithm, which combines the dis-
crete max-sum algorithm with continuous non-linear optimisation
methods. Informally, the intention is to improve on continuous op-
timisation methods by using the max-sum process to escape undesir-
able basins of attraction and improve on the max-sum algorithm by
using continuous optimisation methods to evolve state space discreti-
sations over time so as to make the initial choice less critical.

In more detail, we make the following contributions.

• For problems with acyclic factor graphs, we derive theoretical op-
timality results for our algorithm. In particular, we can show that,



for suitable parameter choices, the HCMS algorithm outperforms
the discrete max-sum algorithm operating over the same discreti-
sation of the state space and, for sufficiently fine discretisations,
the HCMS algorithm converges to a near optimal state.

• We empirically evaluate our HCMS approach over a multi-sensor
target classification problem, and compare its performance to the
discrete max-sum algorithm, as well as a non-coordinated ap-
proach and the distributed stochastic algorithm (DSA). In so do-
ing, we show that HCMS can outperform the DSA and discrete
max-sum by over40%, with reference to the non-coordinated al-
gorithm performance.

• We further show that the improvements in outcome the HCMS
algorithm achieves over discrete max-sum come with neither sig-
nificant increases in running time nor communication cost.

The rest of the paper is organised as follows. Section 2 contains
a formal description of the hybrid continuous max-sum algorithm,
and statement and proof of our theoretical results. The results of our
empirical evaluation of the performance of our algorithm are in Sec-
tion 3. We conclude in Section 4.

2 ALGORITHM DESCRIPTION

The hybrid continuous max-sum algorithm is intended to solve gen-
eral coordination problems between multiple agents. More formally,
we consider the case where there areN cooperative agents andM
utility functionsU1, U2, . . . UM , where each agenti has a continu-
ous state variablexi and a set of utility functionsUi. We assume
each utility functionUj has a unique agenti such thatUj ∈ Ui,
andUj only depends on a subset of the set of agents which are in
direct communication withi. We writeUj = Uj(xj) wherexj is the
appropriate set of variables. The factor graph representation of this
problem is a bipartite graph with a vertex for each variable and each
utility function, and an edge between variablexi and functionUj if
and only ifxi ∈ xj . We do not assume anything more about the na-
ture of the individual utility functions, and it is not required that they
are known to other agents. The DCOP we consider is to find a set of
statesx∗ such that social welfare of the whole system (i.e. the sum
of the individual agents’ utilities) is maximised:

x
∗ = argmax

M
∑

i=1

Ui(xi).

To ensure low communication cost, and a fully decentralised solu-
tion, it should be expected that an agent will only directly commu-
nicate with agents whose states affect its own utility functions. Thus
in most applications, the computation and communication cost each
agent experiences would depend on its number of neighbours rather
than the size of the network.

The HCMS algorithm operates by combining the discrete max-
sum algorithm with non-linear optimisation techniques. Given a state
space discretisation for each variablexi, that is, a set of values
xi(1), xi(2), . . . , xi(ki) taken from its state space, the discrete max-
sum algorithm finds an approximately optimal set of states within
this discretisation. The HCMS algorithm improves on this by adjust-
ing this state space discretisation to seek better quality solutions. We
now describe the operation of the HCMS algorithm in more detail,
beginning with a description of the discrete max-sum algorithm.

2.1 Discrete Max-Sum

The max-sum algorithm proceeds by exchanging information be-
tween functions and variables along the edges of the factor graph.2

Each variablexi communicates to each utility functionUj ∈ Uj the
functionqi→j(·), where, forz = 1, 2, . . . , ki,

qi→j(z) = αij +
∑

k∈Mi\j

rk→i(z), (1)

whereMi is the set of function indexes, indicating which functions
depend onxi and the normalising constantsαij are chosen so that
the sum ofqi→j(·) over its domain is zero.

The functionsri→j(·) are communicated from utility functionsUi

to state variablesxj ∈ xi, where forz = 1, 2, . . . , kj

ri→j(z) = max
y:yj=z

(

Ui

(

{xm(ym)}m∈Ni

)

+
∑

k∈Ni\j

qk→i(yk)
)

,

(2)
whereNj is the set of agents whose states are inxj .

After a fixed number of iterations, the resulting solution is given
by each variablexi taking the statexi(zi) where zi maximises
∑

j∈Mi
ri→j(·). The motivation here is that this sum is an approxi-

mation tohi(·), which is themarginal functionof xi, where for any
statey, hi(y) is equal to the maximum value the global objective
function can attain ifxi = y.

2.2 Hybrid Continuous Max-Sum

The HCMS algorithm involves implementing the same message
passing as described above for the discrete max-sum, using the cur-
rent discretisations of the variable state spaces. There is also addi-
tional information communicated between variables and functions.
Firstly, each variablexi must communicate to allj ∈ Mi the val-
ues of its state space discretisation. Secondly, each utility functionUi

communicates to each state variablexj for j ∈ Ni eitherf1

i→j(·), or
bothf1

i→j(·) andf2

i→j(·), where forn = 1, 2 andz = 1, 2, . . . , kj ,
fn
i→j(z) is given by:

dnUi

dxn
j

∣

∣

∣
arg max

y:yj=z

(

Ui

(

{xm(ym)}m∈Ni

)

+
∑

k∈Ni\j

qk→i(yk)
)

.

(3)
As described above, the key difference between the HCMS and

the discrete max-sum algorithm, is that each variablexi evolves its
state space discretisation,xi(1), xi(2), . . . , xi(ki) in order to find
better quality solutions. To do so, the variable employs continuous
non-linear optimisation techniques, which evolve as if maximising an

objective function which takes the value
∑

j:xi∈xj
rj→i(z) with nth

gradient
∑

j:xi∈xj
fn
j→i(z) at each pointxi(z) for z = 1, 2, . . . , ki.

The motivation for this is that, as a result of the discrete max-sum
message passing process, for each variablexi, for all z = 1 . . . , ki,
the received values of

∑

j:xi∈xj
rj→i(z) can be used as an approx-

imation tohi(xi(z)). Furthermore,
∑

j:xi∈xj
fn
j→i(z), can be used

as an approximation to the value ofdnhi/dx
n
i evaluated atxi(z).

2.3 Continuous Non-linear Optimisation

Since each variable is attempting to optimise its marginal function
using a series of approximations, it is important that robust optimi-
sation methods are chosen. We choose gradient methods, which are

2 Information is exchanged between functions and variables belonging to dif-
ferent agents by passing messages through the communication network.



robust to errors and can be implemented in a highly scalable, asyn-
chronous, decentralised fashion using only local information. Indeed,
the congestion control mechanism in use on the current Internet may
be seen as such an implementation [15]. This leads to the intuition
that the different state updates of the variables will not interact in
unpredictable or harmful ways.

Accordingly, after each iteration of the HCMS message passing
process, every state variablexi updates its states space discretisation,
by adding∆xi(z) to xi(z) for eachz = 1, . . . , ki, where

∆xi(z) = κi(z)
∑

j:xi∈xj

f1

j→i(z).

This determines the HCMS algorithm up to a choice of scaling factor
κi(z). In this paper, we consider two schemes for setting this param-
eter. Firstly, we consider a straightforward gradient method, which
has a fixed constantκi(z) = κi. This is the simplest way to choose
a stepsize, and the results from experimenting with this method for
different values ofκi should give intuition as to how sensitive the
HCMS algorithm is to stepsize choice. Secondly, we attempt to im-
prove on this simple scheme by making a choice of stepsize based on
the Newton method, where a fixed constantκi is given so that

κi(z) = κi

(

∑

j:xi∈xj

f2

j→i(z)
)−1

,

unless this value is negative or aboveκi, in which case we set
κi(z) = κi. This bounding ofκi(z) deviates from normal Newton
method behaviour, however it is necessary to prevent the algorithm
from converging to minima, or behaving unpredictably around points
of inflection.

The choice of these parameters must be, to some extent, fitted to
the problem in question. If the values ofκi(z) are too small, then
the algorithm will evolve slowly, and may not reach high quality so-
lutions in the specified number of iterations. If the values ofκi(z)
are too large, then the algorithm may be limited in how close it can
come to converging on a high quality solution, due to continually
overshooting the optimal point. We examine how the performance of
the fixed stepsize gradient and Newton based methods depend on the
parameterκi in Section 3.2. We find that there is a wide range of
choices which yield good results.

As a rough rule of thumb, we would suggest takingκi to be at
most inversely proportional to an approximate upper bound of

∑

j:xi∈xj

∣

∣

∣

d2Uj

d2xi

∣

∣

∣
.

This is because, when using a gradient method to converge to max-
imise an objective functionf , if the stepsize parameter is always cho-
sen to be less than2/K, whereK is an upper bound onf ′′, then each
iteration leads to an improved solution. For our problem domain (see
Section 3), we found that99% of evaluated values of|d2Uj/d

2xi|
were bounded by2.7. From the number of agents in our experiments
we get an order of magnitude forκi to be around0.1 or 0.01. This is
born out by our empirical results, whereκi larger than0.1 begins to
yield poorer results, andκi = 0.01 gives the best results over all.

2.4 Message Passing

There is one last aspect of HCMS algorithm operation which re-
mains to be described. In this subsection we discuss the timing of
the message passing. If the factor graph of the problem is a tree, then
each variable and utility function can simply send a message every

time it has received all messages required to calculate the contents
according to Equation (1), (2) or (3). Those messages that do not
require any information to calculate could simply be sent at regu-
lar intervals. As noted in [2], for these problems under the discrete
max-sum algorithm, the messagesri→j(z) and qj→i(z) represent
the maximum aggregate utility possible over the respective halves of
the graph formed by removing thei to j link, if variable xj is in
statexj(z). This means that under these circumstances the discrete
max-sum algorithm quickly converges to the global optimal solution.
In the next section we will demonstrate that good theoretical results
hold in this case for the HCMS algorithm also.

As with the discrete max-sum algorithm, in the more general set-
ting, if there are cycles in the factor graph, then the above does not
hold. It is not possible for all the variables and utility functions to
wait for all the necessary information before sending a message, for
otherwise, some messages would never be sent. Thus, if the factor
graph can not be expected to be acyclic, then we suppose that each
variable and utility function simply periodically sends all messages,
using the most up to date information available. Any unknown func-
tions are assumed to be zero for initial calculations, until the first set
of messages is received.

2.5 Theoretical Results

We now show some theoretical results that apply to the HCMS algo-
rithm over problems with acyclic factor graphs.

Proposition 1 Suppose we have an HCMS algorithm solving a
DCOP with an acyclic factor graph. If the stepsize is decreasing,
and is always sufficiently small, then the maximum achievable utility
given the set of possible states for each variable strictly increases
over time.

For every iteration, the message passing algorithm acts like the stan-
dard max-sum algorithm for the current variable state space discreti-
sations. Thus, once all messages have been sent, by the results in [2]
for the standard max-sum algorithm, for each agenti andj ∈ Mi,
for z = 1, . . . , ki,

ki
∑

j=1

rj→i(z) = max
y:yi=z

M
∑

i=1

Ui

(

{xm(ym)}m∈Nj

)

.

For each variablexi let zi be defined as

zi = arg max
z=1,...ki

∑

j:xi∈xj

rj→i(z).

By definition,

z = argmax
y

M
∑

i=1

Ui

(

{xm(ym)}m∈Nj

)

.

Furthermore, for each variablexi, the value of

∑

j:xi∈xj

f1

j→i(zi)

is equal to the partial derivative of the objective function byxi, eval-
uated at{xk(zk)}

M
k=1.

Hence, each update step moves{xk(zk)}
M
k=1 in the direction of

the gradient of the objective function at that point. Provided the step
sizes are sufficiently small, then utility at this point will strictly in-
crease (see, for example [1] chapters 8, 9). Thus, after each iteration,



Figure 1. Sensor Configuration 1 Figure 2. Sensor Configuration 2 Figure 3. Factor graph for the sensor layout in
Figures 1 and 2.

there is a combination of states which gives more utility than the
previously maximum possible. 2

As a corollary to this proposition, we can deduce that such an
HCMS algorithm operating over an acyclic factor graph will con-
verge to a state with higher utility than the discrete max-sum al-
gorithm, provided both algorithms begin with the same state space
discretisations. Furthermore, the utility of the solution provided by
such an HCMS algorithm can be made to be arbitrarily close to opti-
mal, if the initial state space discretisations are sufficiently fine. This
is because with a sufficiently fine discretisation, then there will be
at least one combination of initial possible states which is already
sufficiently close to the optimal solution, and the progress of the al-
gorithm can only improve upon this.

2.6 Communication and Computation Cost

The HCMS algorithm involves a slightly increased communication
and computation overhead compared to the discrete max-sum algo-
rithm. Specifically, the differences are as follows:

• Messages passed from functionUi to variablexj includef1

i→j(·),
and possiblyf2

i→j(·) (Equation 3), instead of justri→j(·) (Equa-
tion 2). This results in an increase in communication cost of at
most a factor of three.

• Messages passed from variablexi to function Uj include the
new space discretisationxi(1), . . . , xi(ki), instead of justqi→j(·)
(Equation 1). This results in an increase in communication cost of
a factor of two.

• In terms of additional computation overhead, for eachz =
1 . . . ki, f1

i→j(z), andf2

i→j(z) may be calculated using three eval-
uations ofUi (if there is no fast closed form expression for these
derivatives). However these extra function evaluations do not rep-
resent a significant computational cost compared to the optimisa-
tion used to calculate theri→j(·) functions, in whichUi is evalu-
ated for the entire discrete state space.

So, the increase in communication and computation costs in oper-
ating the HCMS algorithm compared to the standard discrete max-
sum algorithm is at most a factor of three and does not depend on the
number of agents. Thus, the HCMS algorithm would seem to have
the same desirable scalability properties as the discrete max-sum.

However, it is worth noting that the above result applies when
comparing the two algorithms operating for the same number of it-
erations. From Proposition 1, we might expect that it is beneficial
to operate the HCMS algorithm for more iterations than the discrete
max-sum algorithm. In Subsection 3.2, we empirically explore how
the performance of the HCMS approach is affected by how many it-
erations are run, and compare this to the behaviour of the discrete
max-sum algorithm.

3 EMPIRICAL EVALUATION

Proposition 1 is in accordance with theoretical results available for
the discrete max-sum algorithm. For DCOPs which do not have an

acyclic factor graph representation, as with the discrete max-sum al-
gorithm, there are no theoretical guarantees on the performance of
the hybrid continuous max-sum algorithm. Thus, to further evaluate
our approach, we must turn to empirical data. In this section we eval-
uate the HCMS algorithm through a series of simulated experiments
in a target classification domain. This domain is particularly suit-
able as a testbed for decentralised coordination algorithms because
of the presence of devices with limited communication and computa-
tion capabilities, and because the need for robustness and reliability
excludes the possibility of using centralised algorithms. Moreover,
this domain features an inherently continuous optimisation problem,
which is of specific interest for benchmarking the HCMS algorithm
against various discrete ones. Thus, we use this domain as an illus-
trative example, but it should be noted that the HCMS algorithm is
more broadly applicable. We begin with a more detailed description
of the specific problem scenario under consideration.

3.1 Problem Domain

We consider a network of wireless sensing devicesS =
{s1, . . . , sn} that are tasked with classifying targetsT =
{t1, . . . tm}. Targets are assumed to be stationary, and can be one
of C = {c1, c2, . . . } classes. Sensors are able to take (imprecise)
measurements of targets within a fixed sensing range, and are able
to rotate to change their viewing direction. When pointing directly
towards a target, the probability of a sensor correctly classifying it is
maximised, but when rotated away from a target, the sensor acquires
less information about the target, and this probability is reduced.

More formally, given a targett whose (unknown) class is mod-
elled with random variableCt (with domainC), a sensors obtains
a measurement, denoted by random variableMs (also with domain
C), based on its type and viewing direction. For each sensor/target
pair, the probability of classifying a target asMs, given its actual
classCt is given byp(Ms|Ct, θ), whereθ is the angle between the
sensor’s viewing direction and targett, and ranges between0 andπ.
For θ = π (i.e. the sensor looks away from the target)p(M |Ct, θ)
is a uniform probability distribution overCt, such that no informa-
tion about the target’s class is gained. The following equation has the
desired properties:

p(Ms|Ct, θ) = (1− f(θ)) ps(Ms|Ct) + f(θ)
1

|C|
(4)

Here,ps(Ms|Ct) is sensors’s optimal sensing signature, which ap-
plies whenθ = 0, andf(θ) is some function ofθ with f(0) = 0
andf(π) = 1, such that whenθ = π, p(Ms|Ct, θ) is a uniform
distribution.

Figures 1 and 2 illustrate this problem domain with two example
scenarios. In both scenarios, there are two targets of classc1 and two
sensors. Sensors1 is capable of classifying targets of classc2, but
is unable to distinguish between classesc1 andc3. Similarly, sensor
s2 detects targets of classc3, but can not distinguish betweenc1 and
c2. In Figure 1, sensors1 is directed towardst1, ands2 towardst2.
Given this configuration, the posterior probability distribution over



the class oft1 andt2 is shown on the left in Figure 1. If, however, the
sensors are configured as in Figure 2, no information is gained about
t2’s class, butt1’s class is correctly determined.

Now, given this, the goal of the sensor network is to minimise
the remaining uncertainty in the classification of the targets after the
having taken measurements. This is equal to the conditional entropy
H(C1, . . . , Cm|M1, . . . ,Mn) of the target’s classes given that the
measurements of all sensors are known. Since the classes of any
two targets(t, t′) are assumed to be independent,H(Ct, Ct′ |M) =
H(Ct|M) +H(Ct′ |M), and the problem is reduced to minimising
a sum of conditional entropies of the classification of individual tar-
gets. For an individual targett and a set of sensorsS that are in range,
the conditional entropy ofCt givenMS is given by:

H(Ct|MS) =
∑

m∈C|S|

H(Ct|MS = m)

=
∑

m∈C|S|,c∈C

p(m, c) log
p(m, c)

p(m)

=
∑

m∈C|S|,c∈C

p(m|c)p(c) logαp(m|c)p(c)

(5)

whereC|S| denotes the set of all possible measurements that sensors
S can collectively make,α is a normalising constant, andp(c) is a
prior over the target, which we assume is a uniform distribution.

Since the viewing angle of a sensor is a continuous parameter,
taking values from[0, 2π], this problem is a DCOP with continuous
state spaces. Given this, and the fact that the sensors’ actions interact
in complex ways, this domain is particularly suitable for benchmark-
ing the HCMS algorithm against existing discrete ones.

In order to use our HCMS algorithm (as well as the discrete max-
sum algorithm), we now show how to build a factor graph of this
problem. Firstly, we assign a continuous variablexj to sensorj rep-
resenting its viewing direction, ranging from0 to 2π. Secondly, for
eachtarget i, we define a functionUi(xi) with parametersxj ∈ xi

iff target i is in range of sensorj. Thus,Ui is a continuous function
of the sensors’ viewing directions and is equal to the conditional en-
tropyH(Ci|{Mj : xj ∈ xi}) given these viewing directions of sen-
sors in range as in Equation 5. Thirdly and finally, to obtain a truly
decentralised approach, we assign the responsibility of computing
the outgoing messages forUi to one of the sensorsi : xi ∈ xj in
range, while taking care that the computation load is balanced over
these sensors. For the simple scenarios in Figures 1 and 2, the factor
graph is shown in Figure 3.

3.2 Results

We benchmark our algorithm against five algorithms:3

Discrete Max-Sum This algorithm is run on the same factor graph
as used by our approach. By benchmarking against discrete max-
sum, we can determine the improvement of coordinating in con-
tinuous state spaces using HCMS.

Local Greedy This algorithm selects the angle that minimises en-
tropy on targets within range, regardless of the angles of its neigh-
bours. This algorithm shows the performance that can be achieved
without coordination.

Distributed Stochastic Algorithm (DSA) [4] This is an iterative
best-response algorithm: sensors are randomly activated and up-
date their angle such that the entropy of targets within range is

3 Since the functions in this domain are not piece-wise linear,we were un-
able to benchmark against continuous max-sum for piece-wise linear func-
tions [16].

minimised, fixing the current angle of its neighbours. DSA is an
alternative to discrete max-sum, but has more limited information
propagation, and has been shown to be outperformed by max-sum
in general settings [3].

Random For each sensor, this algorithm selects a viewing angle
at random. The random algorithm is included to provide a lower
bound on achievable performance.

Centralised Simulated Annealing This is a centralised continuous
algorithm for computing a solution that is often optimal. We in-
clude this algorithm as an upper bound for achievable perfor-
mance.

For our experimental evaluation, the sensors’ viewing domain is dis-
cretised into 5 angles for the algorithms with a discrete state space
(i.e. discrete max-sum, DSA and Local Greedy). The HCMS algo-
rithm starts with the same initial discretisation as the discrete max-
sum algorithm. We considered problem instances in which the sen-
sors are laid out in a square lattice formation, consisting ofk2 sen-
sors, withk ∈ [3, 8], and the range of each sensor is chosen as1

k

to ensure the sensors’ ranges are overlapping (but not the extent that
the coordination problem becomes so dense that coverage of all tar-
gets is trivially ensured). We then randomly generated 100 problem
instances (i.e. target locations) for each lattice formation.

First, we tuned the scaling factorκi for the gradient and Newton
method, as discussed in Section 2.3. The results are shown in Figures
4 and 5, where solution quality is expressed as a fraction of the so-
lution computed by simulated annealing. These figures clearly show
that the Newton method is much less sensitive to the chosen value of
κi than the gradient method. However, the gradient method, if prop-
erly tuned, gives slightly better results.

Second, we took the best gradient (κi = 10−1.5) and Newton
(κi = 10−1) variants of our HCMS algorithm and benchmarked
them against the discrete algorithms. The results are shown in Figure
6, and indicate that, using the performance of the random algorithm
as a point of reference, our hybrid max-sum algorithm outperforms
the discrete coordination algorithms (DSA and discrete max-sum)
by roughly 40%.4 Moreover, and more importantly, the normalised
solution quality shows that our algorithm performs comparably to
the simulated annealing algorithm.

Finally, we evaluated the speed of convergence of the gradient and
Newton variants of HCMS on an 8 by 8 lattice, as compared to the
discrete max-sum algorithm. The results are shown in Figure 7. This
shows that, while discrete max-sum converges more quickly than
HCMS, the solution quality of HCMS variants grows much faster
over time. Around 20 iterations, both HCMS variants achieve a solu-
tion quality that is 30% better than discrete max-sum. However, since
the gradient method exchanges the first derivative, and the Newton
method both the first and second derivative (see Section 2.3), this
comes at a cost of a twofold and threefold increase in message size
respectively. Importantly though, the number of messages remains
unchanged.

4 CONCLUSIONS

In this paper we identified a need for a scalable decentralised co-
ordination algorithm for continuous distributed constraint optimisa-
tion problems. Such an algorithm would have applications in sce-
narios where robustness, scalability or low computational or com-
munication overhead is desired. For this setting, we proposed a hy-
brid approach, combining the max-sum algorithm with continuous
non-linear optimisation methods. We showed that, for problems with

4 In this particular problem domain, discrete max-sum outperformed DSA by
an almost negligible amount.
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method)
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Figure 7. Speed of convergence of the gradient and Newton variants of
HCMS compared to discrete max-sum.

acyclic factor graphs, for suitable parameter choices, our proposed
algorithm converges to a state with utility close to the global op-
timum. We also empirically evaluated our approach over a target
classification problem, and compared its performance to the discrete
max-sum algorithm, as well as DSA, a non-coordinated algorithm
and a centralised simulated annealing algorithm. The hybrid con-
tinuous max-sum algorithm was found to perform comparably with
the centralised simulated annealing algorithm and can outperform
DSA and discrete max-sum considerably. Furthermore, the improve-
ments in outcome over discrete max-sum come without significant
increases in running time nor communication cost.

There are several questions left open to tackle in future work. An
interesting question is whether or not the HCMS algorithm can be
improved by employing different non-linear optimisation techniques.
For example, variables could use exploratory techniques, such as
Bayesian Gaussian process regression based optimisation [11]. Un-
der such a method, each variable would test out different state space
discretisations, using the received information to update a model of
its marginal function. Such an approach would avoid the possibility
of converging to a local rather than global maximum, which could
happen under our gradient method based HCMS if the initial state
space discretisations were too coarse. A further question would be
on whether algorithm performance could be improved by altering
the nature of the communications between agents. Our algorithm
provides agents with information on the effects of their choices on
the global objective function by directly informing them of their ef-
fects on local utility functions. However, this is not the only way to
express such information. Methods to compress transmissions could
reduce communication overhead, while more expressive communi-
cation protocols could be developed to facilitate more complex op-
timisation techniques. A final, further reaching open problem, along
a similar vein would be to attempt to form methods for automat-
ically constructing optimal protocols, either through prior problem

set training before deployment, or on-the-fly during operation.
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