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Abstract. Quantum Evolutionary Algorithm (QEA) is a novel optimization 
algorithm which uses a probabilistic representation for solution and is highly 
suitable for combinatorial problems like Knapsack problem. Fractal image 
compression is a well-known problem which is in the class of NP-Hard 
problems. Genetic algorithms are widely used for fractal image compression 
problems, but QEA is not used for this kind of problems yet. This paper uses a 
novel Functional Sized population Quantum Evolutionary Algorithm for fractal 
image compression. Experimental results show that the proposed algorithm has 
a better performance than GA and conventional fractal image compression 
algorithms. 
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1.   Introduction 

Recently we proposed a ring structure sinusoid sized ring structure population for 
QEA (SRQEA) [1]. In another work several functions for the size of population in 
QEA is proposed in [2] and tested for several benchmark functions. Size of the 
population is an effective parameter of the evolutionary algorithms and has a great 
role on the performance of EAs. Several researches investigate the effect of 
population size and try to improve the performance of EAs with controlling the size 
of the population. A functional sized population GA with a periodic function of saw-
tooth function is proposed in [2]. Reference [3] finds the best population size for 
genetic algorithms. Inspired by the natural features of the variable size of the 
population [4] presents an improved genetic algorithm with variable population-size. 
In [5] an adaptive population size for the population is proposed for a novel 
evolutionary algorithm. Reference [6] proposes a scheme to adjust the population size 
to provide a balance between exploration and exploitation. To preserve the diversity 
in the population in QEA, [7] proposes a novel diversity preserving operator for QEA. 

Several works try to improve the algorithm of fractal image compression using 
Genetic algorithm. In [10] a new method for finding the IFS code of fractal image is 
developed and the influence of mutation and the crossover is discussed. The low 
speed of fractal image compression blocks its way to practical application. In [11] a 



genetic algorithm approach is used to improve the speed of searching in fractal image 
compression. A new method for genetic fractal image compression based on an elitist 
model in proposed in [12]. In the proposed approach the search space for finding the 
best self similarity is greatly decreased. Reference [13] makes an improvement on the 
fractal image coding algorithm by applying genetic algorithm. Many researches 
increase the speed of fractal image compression but the quality of the image will 
decrease. In [14] the speed of fractal image compression is improved without 
significant loss of image quality. Reference [15] proposes a genetic algorithm 
approach which increases the speed of the fractal image compression without 
decreasing of the quality of the image. In the proposed approach a standard Barnsley 
algorithm, the Y. Fisher based in classification and the genetic compression algorithm 
with quadtree partitioning are compared. In GA based algorithm a population of 
transformations is evolved for each range block. In order to prevent the premature 
convergence of GA in fractal image compression a new approach is proposed in [16] 
which control the parameters of GA adaptively. A spatial correlation genetic 
algorithm is proposed in [17] which speed up the fractal image compression 
algorithm. In the proposed algorithm there are two stages, first the spatial correlations 
in image for both the domain pool and the range pool is performed to exploit local 
optima. In the second stage if the local optima were not certifiable, the whole of 
image is searched to find the best self similarity. A schema genetic algorithm for 
fractal image compression is proposed in [18] to find the best self similarity in fractal 
image compression. 

While these approaches report a good improvement on fractal image compression, 
QEA which is highly suitable for combinatorial problems are not used for fractal 
image compression yet. Here we use a novel version of QEA which in fractal image 
coding has a better performance than GA. This paper is organized as follow: Section 2 
introduces the proposed functional sized population for QEA. In Section 3 QEA is 
used for fractal image compression. Section 4 shows the experimental results and 
finally Section 5 concludes the paper. 

3.   Functional Sized population QEA (FSQEA) 

One of the main approaches to maintain the diversity of the population and improve 
the performance of the evolutionary algorithms is using a variable size for the 
population. In [1] a variable size population is proposed for QEA that improves the 
performance of QEA. They use a sinusoid function for the size of the population with 
partially reinitialization of the q-individuals. Here to improve the performance of 
QEA for fractal image compression, a functional population size for QEA is 
proposed. In addition to the sinusoid function, this paper uses some other functions 
for QEA; the functions are saw-tooth [2], inverse saw-tooth, triangular, sinusoid [1] 
and square functions. Fig. 1 shows the functions which are examined in this paper.  
The pseudo code of the proposed Functional Size QEA (FSQEA) is described as 
below: 
Procedure FSQEA 
begin 

t=0 



1. initialize quantum population Q(0) with the size of nn =)0(  
2. make X(0) by observing the states of Q(0). 
3. evaluate X(0). 
4. for all binary solutions x0

i in X(t) do 
begin 

5. find neighborhood set Ni in X(0). 
6. find binary solution x with best fitness in Ni 
7. save x in Bi 

end 
8. while not termination condition do 

begin 
t=t+1 

9. )()( tftn =  
10. if n(t)>n(t-1) create random q-individuals 
11. if n(t)<n(t-1) eliminate the q-individuals with worst observed fitness 
12. make X(t) by observing the states of Q(t-1) 
13. evaluate X(t) 
14. update Q(t) based on Bi and X(t) using Q-gates 
15. for all binary solutions xt

i in X(t) do 
begin 

16. find neighborhood set Ni in X(t). 
17. select binary solution x with best fitness in Ni 
18. if x is fitter than Bi save x in Bi 

end 
end 

end 

The pseudo code of FSQEA is described as below: 
1. In the initialization step, the quantum-individuals q0

i are located in a structured 

 
                     (a)                                       (b)                                       (c) 
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Fig. 1. a) The functions which are used for the population size. a) saw-tooth b) inverse saw-tooth c) triangular 
d) sinusoid e) square. T is the period of the functions, A is the amplitude and P-size is the size of the population 
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population. Then [αi
0 βi

0]T of all q0
i are initialized with 2

1 , where i=1,2,…,n is the 
location of the q-individuals in the population, k=1,2,...,m, and m is the number of 
qubits in the individuals. This implies that each qubit individual q0

i represents the 
linear superposition of all possible states with equal probability. 
2. This step makes a set of binary instants X(0)={xi

0|i=1,2,…,n} at generation t=0 by 
observing  Q(0)={qi

0|i=1,2,…,n} states, where X(t) at generation t is a random instant 
of qubit population and  n is the size of population. Each binary instant, x0

i of length 
m, is formed by selecting each bit using the probability of qubit, either |αi,k

0|2 or  | 
βi,k

0|2 of q0
i. Observing the binary bit xt

i,k from qubit [αi,k
t βi,k

t]T performs as: 
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Where ),R( ⋅⋅ is a uniform random number generator.  
3. Each binary instant x0

i is evaluated to give some measure of its objective. In this 
step, the fitness of all binary solutions of X(0) are evaluated. 
4,5,6,7. In these steps the neighborhood set Ni of all binary solutions x0

i in X(0) are 
found and the best solution among Ni is stored in Bi. In the structured proposed 
algorithm each individual is the neighbor of itself that is xi belongs to neighborhood 
set Ni. Bi is the best possible solution, which the q-individual qt

i has reached. 
8. The while loop is terminated when the termination condition is satisfied. 
Termination condition here is when maximum number of iterations is reached. 
9. In the proposed algorithm, the size of the population is a function of the iteration 
number. In this step, n(t), the size of the population in iteration t, is calculated as a 
function. The functions that used in this paper are: 
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Where n(t) is the size of the population in generation t, n is the average size of the 
population, A is the amplitude of the periodic function of population size, T is the 
period of the functional population, Round(.) is the round function (rounds its input to 
nearest integer), and mod(.,.) is modulus after division function. Fig 1 shows the 
functions which are used in this paper. The best values for T and A are found in the 
following of this section. 



10. If n(t), the size of the population in iteration t is greater than n(t-1), it means that 
the size of the population is increased. So creating random q-individuals, until the size 
of ring structured population be equal to n(t). 
11. If n(t), the size of the population in iteration t is smaller than n(t-1), eliminate the 
q-individuals which have the worst observed solution, until the size of  ring 
structured population reaches n(t). 
12. Observing the binary solutions X(t) from Q(t). 
13. Evaluating the binary solutions X(t). 
14. The quantum individuals are updated using Q-gate. 
15. The “for” loop is for all binary solutions xt

i (i=1,2,…,S) in the population. 
16. Finding the neighbors of the binary solution located on the location i. 
17. Find the best possible solution in the neighborhood Ni, and store it to x. 
18. If x is fitter than Bi, store x to Bi. 

Table 1. the best parameters for the proposed FSQEA. The best results are the best ones. 

 Saw-Tooth Inverse-Saw Sinusoid Square Triangular QEA 
 A T Best A T Best A T Best A T Best A T Best Best 

KR1 0.4 25 406.7 0.2 100 407.51 0.4 100 407.23 0.2 250 407.67 0.1 50 407.18 387.74 
KR2 0.9 100 412.62 0.4 100 412.8 0.2 50 413.05 0.4 500 412.59 0.4 100 412.72 407.43 
KP1 0.2 50 556.69 0.1 50 556.69 0.2 50 556.69 0.2 25 556.69 0.2 50 556.69 517.66 
KP2 0.4 50 406.44 0.4 25 407.56 0.2 25 407.19 0.4 250 407.49 0.1 25 405.35 388.88 
Trap 0.2 250 82.6 0.4 500 83.7 0.2 500 83.7 0.2 500 84.4 0.1 500 84.2 79.737 

f1 0.2 100 44932 0.6 100 47227 0.9 100 47678 0.4 100 45464 0.2 100 45973 32471 
f2 0.2 100 -1420 0.4 100 -1274 0.2 50 -1398 0.2 100 -1419 0.2 250 -1374 -2281 
f3 0.2 250 -17.07 0.4 100 -16.88 0.2 50 -16.98 0.2 25 -17.00 0.4 100 -17.00 -17.24 
f4 0.2 500 -22.85 0.2 250 -17.44 0.4 100 -21.22 0.2 250 -21.33 0.4 100 -20.74 -47.744 
f5 0.2 100 -1.0e5 0.4 500 -78259 0.4 500 -94385 0.4 250 -3.8e4 0.4 100 -9.0e4 -2.05e5 
f6 0.2 100 -22786 0.4 250 -18903 0.4 250 -21103 0.2 100 -2.2e4 0.4 250 -2.1e4 -49138 
f7 0.2 250 32.38 0.4 250 35.40 0.4 100 32.36 0.4 500 32.45 0.2 50 33.33 19.33 
f8 0.2 250 50.17 0.4 250 53.64 0.4 250 52.28 0.2 100 50.67 0.2 100 51.36 37.49 
f9 0.2 500 -2.5e5 0.4 250 -1.94e5 0.2 100 -2.27e5 0.2 100 -2.3e5 0.2 100 -2.3e5 -5.69e5 
f10 0.2 250 -3.55 0.4 500 -2.99 0.2 100 -3.33 0.2 250 -3.38 0.4 100 -3.3591 -5.5741 
f11 0.2 25 -162.19 0.2 500 -158.75 0.2 100 -161.56 0.2 250 -159 0.2 500 -163.13 -143.63 
f12 0.2 250 -7.1e6 0.4 500 -6.22e6 0.4 500 -7.8e6 0.2 100 -7.7e6 0.4 500 -7.1e6 -2.54e7 
f13 0.2 100 -39280 0.4 250 -31939 0.2 500 -37418 0.2 500 -36826 0.4 100 -34912 -1.10e5 
f14 0.6 25 -0.0057 0.6 25 -0.004 0.6 25 -0.009 0.9 50 -0.001 0.9 25 -0.0058 -1.13 



The proposed functions for the population have two cycles. One cycle is increasing 
the size of population. In the increasing cycle, the new quantum individuals are 
created and inserted in the population. Creating new random quantum individuals 
increases the diversity of the population and improves the exploration performance of 
the algorithm. The other cycle is the decreasing cycle. In this cycle, the worst 
quantum individuals of the population are eliminated. This treatment improves the 
exploitation of the algorithm by exploiting the best solutions and ignoring the inferior 
ones. This means that the proposed algorithm has two cycles: exploration cycle and 
exploitation cycle. 

3.  Finding the best parameters 

As it seen in Fig. 1, the proposed functions have some parameters that are A, the 
amplitude and T the period of the functions. In order to find the best values for these 
parameters some experiments are performed. Because fractal image compression is a 
time consuming algorithm and finding the best parameters for the algorithm needs to 
execute the algorithm for several parameters and for several times, it is not possible to 
set the parameters of the proposed algorithm for the fractal image compression 
problem. So the best parameters for the proposed algorithm are found for some 
benchmark functions like Knapsack Problem, Trap Problem and 14 numerical 
benchmark functions (see Appendix). Fig. 2 shows the finding of the best parameters 
for the proposed FSQEA for Knapsack Problem penalty type 1 and Generalized 
Schwefel Function 2.26. The best parameters for the Knapsack problem, Trap 
Problem and 14 numerical benchmark functions are found similar to the Fig 2. The 
best parameters and the best functions for the size of the population are summarized 
in Table 1. According to Table 1 the Inverse Saw-Tooth function has the best results 
for 11 benchmark objective functions, the Square for 3 benchmark functions, sinusoid 
for 2 functions, saw-tooth function for 1 benchmark function, and Triangular with no 

 

Fig. 2. parameter setting of FSQEA for T and A for (a) Knapsack Problem Penalty 1 (b) Generalized 
Schwefel Function 2.26 for several functions for the population. The parameters are set to   
T1 … T5=(25,100,250,500,1000) and A1 … A5= ×n (0.1,0.2,0.4,0.6,0.9) 

px py pt 
Fig 3. The structure of the q-individuals. px shows the horizontal position of domain 

block, py shows the vertical position of domain block and pt shows the transformation. 
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objective function, so the best function for the size of the population is Inverse Saw-
Tooth function. Only for one objective function the best result is reached by original 
version of QEA and the proposed algorithm improves the performance of QEA for 
most of the objective functions. In order to find the best parameters for the proposed 
algorithm Table 2 shows the median and standard deviation of the best parameters for 
5 proposed functions. According to this table the best amplitude for the proposed 
functions in 0.2 and best period T is 100. 

4.   FSQEA for Fractal Image Compression 

The proposed FSQEA for fractal image compression searches among the domain 
blocks to find the best domain block and the best transformation for each range block. 
For each range block, QEA searches among all the domain pool too find the best 
domain block and the best transformation. Fig 3 shows the coding method for the q-
individuals in the proposed method. In the proposed approach each q-individual, has 
three parts: px shows the horizontal position of domain block, py shows the vertical 
position of the domain block and pt shows the transformation. The transformations are 
the 8 ordinary transformations: rotate 0°, 90°, 180°, 270°, flip vertically, horizontally, 
flip relative to 45°, and relative to 135°. The size of px and py part of each q-individual 
depends on the size of the picture and the size of the pt part is 3 bit. The gray coding 
is used for the coding of the individuals. 

4.   Experimental Results 

       
                a) GA                                   b) FSQEA 
Fig 4. The comparison between the proposed FSQEA and GA for Lena. The size 

of the picture is 256×256, the size of range blocks is 8×8 and the size of domain 
block is 16×16. 



Section 3 shows that the best function for FSQEA is the Inverse Saw-Tooth, the best 
parameters for the proposed algorithm are 0.2 for the amplitude and 100 for T period 
of the function. This section experiments the proposed algorithm and compares the 
proposed algorithm with the performance of GA in fractal image compression. We 
examine the proposed algorithm on images Lena, Pepper and Baboon with the size of 
256×256 and gray scale. The size of range block is considered as 8×8 and the size of 
domain block is considered as 16×16. In order to compare the quality of results, the 
PSNR test is performed: 
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Where m×n is the image size. 

 

The crossover rate in GA is 0.8 and the probability of mutation is 0.003 for each 
allele. Table 3 shows the experimental results on the proposed algorithm and GA. The 
number of iterations for all the experiments is 200. According to table 3 the proposed 
algorithm improves the performance of fractal image compression for all the 
experimental results. 

Table 2. Median and Standard deviation of the best parameters for the proposed FSQEA. 

 A T 
 Mean Std Mean Std 

Saw-Tooth 0.2 0.184 100 144 
Inverse-Saw 0.4 0.124 250 177 

Sinusoid 0.2 0.18 100 179 
Square 0.2 0.17 250 168 

Triangular 0.2 0.18 100 161 



6.   Conclusion 

This paper proposes a Functional Sized population QEA for fractal image 
compression. The proposed functional sized population QEA has some parameters 
and this paper finds the best parameters for the proposed algorithm. Since the fractal 
image compression is a time consuming algorithm, and finding the best parameters 
needs several run of algorithm for several times, some benchmark functions are used 
to find the best parameters for the proposed FSQEA. Finally the experimental results 
on Lena picture show an improvement on fractal image compression. The time 
complexity of the proposed FSQEA is equal to original version of QEA because the 
average size of the population for FSQEA is equal to QEA and the number of 
function evaluations for both of algorithms is equal. 

Table 3. comparison between the proposed algorithm and GA. 
 

Picture Method Population 
size 

MSE 
computations PSNR 

Full Search - 59,474,944 28.85 
15 3,072,000 27.44 
20 4,096,000 27.93 
25 5,120,000 28.32 FSQEA 

30 61,440,000 28.51 
15 3,072,000 27.27 
20 4,096,000 27.55 
25 5,120,000 28.04 

Lena 

GA 

30 6,144,000 28.11 
Full Search - 59,474,944 29.85 

15 3,072,000 29.53 
20 4,096,000 29.12 
25 5,120,000 28.81 FSQEA 

30 61,440,000 28.17 
15 3,072,000 29.14 
20 4,096,000 28.92 
25 5,120,000 28.64 

Pepper 

GA 

30 6,144,000 28.11 
Full Search - 59,474,944 20.04 

15 3,072,000 19.31 
20 4,096,000 19.14 
25 5,120,000 18.94 FSQEA 

30 61,440,000 18.52 
15 3,072,000 19.17 
20 4,096,000 19.02 
25 5,120,000 18.65 

Baboon 

GA 

30 6,144,000 18.41 



5.   Appendix 

In this section two combinatorial optimization problems, Trap problem and Knapsack 
problem, and 14 function optimization problems are discussed to evaluate the 
proposed SRQEA. 
Trap problem is defined as: 

∑
−

=
+++++=

1

0
5545352515 ),,,,(Trap)(

N

i
iiiii xxxxxxf                                     (2) 

Where N is the number of traps and  

⎩
⎨
⎧

=
≤−

=
5)(onesif5
4)(onesif),(ones4

)(Trap
x
xx

x                                             (3) 

Where the function “ones” returns the number of ones in the binary string x. Trap 
problem has a local optimum in ( )0,0,0,0,0  and a global optimum in ( )1,1,1,1,1 . 
Knapsack problem is a well-known combinatorial optimization problem which is in 
class of NP-hard problems [7]. Knapsack problem can be described as selecting 
various items ix (i=1,2,…,m) with profits ip and weights iw  for a knapsack with 
capacity C. Given a set of m items and a knapsack with capacity C, select a subset of 
the items to maximize the profit f(x): 
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This paper considered: 
),1(R vwi = , ),1(R vpi =  

Where ),(R ⋅⋅ is a uniform random number generator and v=10. 
The use of QEA for solving Knapsack problem is described in [7]. 
The objective functions which are used here are f1:Schwefel 2.26 [6], f2:Rastrigin [6], 
f3:Ackley [6], f4:Griewank [6], f5:Penalized 1 [6], f6:Penalized 2 [6], f7:Michalewicz 
[7], f8:Goldberg [2], f9:Sphere Model [6], f10:Schwefel 2.22 [6], f11:Schwefel 2.21 [6], 
f12:Dejong [7], f13:Rosenbrock [2], and f14:Kennedy [2]. 
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