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Abstract: In this paper we propose a new crossover 
interaction operator between the individuals in 
structured Quantum Evolutionary Algorithms for 
improving the performance of Quantum Evolutionary 
Algorithms (QEA). The proposed structures for QEA 
are cellular, ring, star, grid, ladder and other 
structures. The proposed structures provides a better 
exploitation of local neighbourhoods before they move 
towards a global best, hence it increases population 
diversity. This paper compares the effects of the 
different structures and the proposed operator on the 
performance of the algorithm and diversity of the 
population. The proposed algorithm is tested on 
Knapsack problem, Trap problem and 14 numerical 
benchmark functions on several dimensions of 100, 250, 
500 and 1000. Experimental results show that the 
proposed algorithm consistently exceeds  the 
performance of QEA while keeping  than QEA. 
 
Keywords: Quantum Evolutionary Algorithms, 
Cellular Genetic Algorithms, Knapsack Problem, 
Optimization, Structured Evolutionary algorithms. 
 
1. Introduction 
 
There are at least two important ingredients for a 
successful evolutionary design: first is maintaining 
a sufficiently rich genetic pool to enable 
exploration of new solutions, and second is 
developing a proper set of genetic operators to 
guide each generation of possible solutions toward 
better solutions through exploitation of existing 
solutions. These two ingredients have been 
addressed in many of the research in the 
evolutionary community. For example, a 
biologically motivated tournament-based 
transposition mechanism is proposed in [1] that 
helps preserve genetic diversity. Transposition is a 

context sensitive operator that promotes gene 
movement intra or inter chromosomes. In other 
work, the microbial genetic algorithm included 
bacterial recombination [2] as a form of 
recombination related to bacterial conjugation. 
Pseudo-bacterial genetic algorithms (PBGA) [3] 
incorporate a modified mutation operator called 
bacterial mutation, based on a natural phenomenon 
of microbial evolution. Bacterial evolutionary 
algorithms (BEA) [4] introduce a new operator, 
called gene transfer operator, equally inspired by 
microbial evolution. 
The above strategies have mainly focused on 
genetic operators to preserve genetic diversity 
while a much neglected potential exists in the 
genetic representation. QEA is a different approach 
in which individuals are coded after quantum states 
of electrons in a probabilistic fashion. The 
resulting architecture is highly suitable to preserve 
diversity, i.e. each individual consists of m qubits 
that is equivalent to 2m states. In quantum 
informatics, the basic carrier of information is not 
a bit but a quantum system with two states such as 
in an atom, an ion or a photon with two polarized 
directions, or the qubit. A qubit is in a linear 
superposition state and are used to specify the 
amplitudes of two states.  In [5, 6] quantum-
inspired evolutionary algorithms are investigated 
for a class of combinatorial optimization problems 
in which quantum rotation gates act as update 
operators. This quantum rotation gate is also used 
in a novel parallel quantum GA for hierarchical 
ring model and infinite impulse response (IIR) 
digital filter design [7]. Reference [8] proposes 
quantum evolutionary algorithm for multi-
objective optimization and quantum rotation gate. 
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A third general approach to maintain diversity is 
cellular and distributed population [9, 10]. In 
distributed evolutionary algorithms, the population 
is partitioned in a set of islands which isolated EAs 
are executed in each island. In Cellular EAs 
(CEAs) the individuals are located in a grid 
structure and each individual interacts with its 
neighbours. These types of decentralized 
algorithms provide a better sampling of the search 
space and improve the performance of EAs [10]. In 
[11] the behaviour of Cellular Genetic Algorithms 
(CGA) and Dynamic CGA is analyzed. They claim 
that the behaviour of Dynamic CGA is more 
efficient and accurate than other evaluated 
structures. 
This paper proposes a several structures for QEA 
with crossover interaction between the neighbours. 
In our proposed algorithm the quantum individuals 
are located in a structured environment and are 
interacted only with their neighbours. The 
interaction between the quantum individual is a 
crossover operator. The experimental results on the 
proposed algorithm show that our proposed 
cellular structure and interaction operator can 
improve the performance of the QEA.  
This paper is organized as follow: Section 2 
describes the representation of the QEA; in Section 
3 the proposed algorithm is introduced. Section 4 
evaluates the proposed algorithm on some 
benchmark functions and finally Section 5 
concludes the proposed algorithm. 
 
2. QEA 
 
QEA is inspired from the principles of quantum 
computation, and its superposition of states is 
based on qubits, the smallest unit of information 
stored in a two-state quantum computer. A qubit 
could be either in state “0” or “1”, or in any 
superposition of the two as described in (1): 
 

10 βαψ +=                                                    (1) 
 
Where α and β are complex numbers, which denote 
the corresponding state is appearance probability, 
constraint below: 
 

122 =+ βα                                                         (2) 
 
This probabilistic representation implies that if 
there is a system of m qubits, the system can 
represent 2m states simultaneously. At each 
observation, a qubits quantum state collapses to a 

single state as determined by its corresponding 
probabilities. 
2.1      Representation 
QEA uses a novel representation based on the 
above concept of qubits. Consider j-th individual in 
t-th generation defined as an m-qubit as (3): 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= t

jm

t
jm

t
ji

t
ji

t
j

t
j

t
j

t
jt

jq
β
α

β
α

β
α

β
α

......
2

2

1

1                                 (3) 

 
Where 1|||| 22 =+ t

ji
t
ji βα , i=1,2,…,m , m is the 

number of qubits, i.e., the string length of the qubit 
individual, j=1,2,…,m, n is the population size and 
t is generation number of the evolution. Since a 
qubit is a probabilistic representation, any 
superposition of states is simultaneously 
represented. If there is, for instance, a three-qubits 
(m = 3) individual such as (4): 
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Alternatively, the possible states of the individual 
can be represented as: 
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Note that the square of above numbers are true 
probabilities, i.e. the above result means that the 
probabilities to represent the state 

010,100,001,000  are 1/24, 1/8, 1/24 and 1/12 
respectively. Consequently, the three-qubits system 
of (4) could carry all eight states information at the 
same time. 
Evolutionary computing with the qubit 
representation has a better characteristic of 
diversity than classical approaches since it can 
represent superposition of states. Only one qubit 
individual such as (4) is enough to represent eight 
states, whereas in classical representation eight 
individuals are needed. Additionally, along with 
the convergence of the quantum individuals, the 
diversity will gradually fade away and the 
algorithm converges. 
3 New Structures for QEA 
In structured QEA, the q-individuals are located in 
a structured population and each individual 
interacts only with its neighbors. This paper 
compares 11 structures for QEA which are Ring, 
Star, Btree, Km,m, Cluster, Randomh and the 



structure which is proposed in [7]. The proposed 
structures are shown in Fig 1. Randomh structure is 
the structure in which the neighbours of each q-
individual are determined in each generation 
randomly. In this structure each q-individual is 
connected to h other q-individuals. The structured 
evolutionary algorithms have the advantage that 
the connections among neighbours help the 
algorithm to exploit possible solutions of the 
algorithm, and the overlapped small 
neighbourhoods help algorithm to explore the 
search space. This is similar to the Cellular 
Evolutionary Algorithms handling of population of 
diversity [5]. So the importance of the structured 
QEA is that the fitness and genotype diversity in 
the population is preserved for a long number of 
generations. This section tries to find the best 
structure for the QEA. 
The procedure of the Crossover Interaction QEA is 
described in the following steps: 
Procedure CQEA 
begin 

t•0 
1. initialize Q(0) based on cellular 

structure. 
2. make X(0) by observing the states of 

Q(0). 
3. evaluate X(0). 
4. for all binary solutions x0

ij in X(0) 
store x0

ij to Bestij 
5. while not termination condition do 

begin 
t•t+1 

6. make X(t) by observing the states 
of Q(t-1) 

7. evaluate X(t) 
8. update Q(t) based on Best and X(t) 

using Q-gates 
9. for all binary solutions xt

ij in X(t) do 
begin 

10. find Neighborsij in X(0). 
11. select binary solution y with 

best fitness in Neighborsij 
12. perform crossover operator on y 

and xt
ij and make two offspring 

13. select one offspring randomly 
14. if offspring is fitter than Bestij 

store it to Bestij 
end 

end 
end 

 
CQEA has a population of quantum individuals 

},...,2,1,|{)( SjiqtQ t
ij == , where t is generation step 

and S is the size of lattice-like population. 
The description of this algorithm can be as below: 
1. In the initialization step, the quantum-
individuals q0

ij are located in a lattice-like 
environment. Then T

kijkij ][ 0
,

0
, βα  of all q0

ij are 
initialized with 2

1 , where i,j=1,2,…,S is the 
location of the q-individuals in the lattice, 
k=1,2,...,m, m is the number of qubits in the 
individuals. This implies that each qubit individual 
q0

ij represents the linear superposition of all 
possible states with equal probability. 
2. This step makes a set of binary instants 

},...,2,1,|{)( SjixtX t
ij ==  at generation t=0 by 

observing  },...,2,1,|{)0( 0 SjiqQ ij ==  states, where 
X(t) at generation t is a random instant of qubit 
population and  S is the size of lattice. Each binary 
instant, xt

ij of length m, is formed by selecting each 
bit using the probability of qubit, either 2

, || t
kijα  or 

2
, || t
kijβ  of q0

ij. Observing xt
ij from qubit 

T
kijkij ][ 0

,
0

, βα  is performed as below: 
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Where R(.,.) is a uniform random number 
generator.  
3. Each instant xt

ij is evaluated to give some 
measure of its fitness. In this step, the fitness of 
all binary solutions of X(0) are evaluated. 
4. In this step, all binary solutions x0

ij in X(0) are 
stored in Bestij. 
5. The while loop is terminated when the 
condition is satisfied. The termination condition 
can be considered as maximum generation or 
convergence condition. 
6. Observing the binary solutions X(t) from Q(t). 
7. Evaluating the binary solutions X(t). 
8. The quantum individuals are updated using Q-
gate. 

Table 1. Lookup table OF θΔ . )(xf  is the fitness of possible 
solution x and )(bf is the fitness of best solution b  

ix  ib  )()( bfxf ≥  θΔ  

0 0 false  0  

0 0 true  0  

0 1 false  π01.0  

0 1 true  0  

1 0 false  π01.0−  

1 0 true  0  

1 1 false  0  

1 1 true  0  



9. The “for” loop is running for all binary solutions 
xt

ij (i,j=1,2,…,S) in the cellular structured 
population. 
10. Finding the neighbours of the binary solution 
located on the location i,j  and store it to 
Neighborsij. 
11. Find the best possible solution in the 
Neighborsij, and store it to y. 
12. Perform crossover operator on the possible 
solution y and xt

ij . The crossover operator makes 
two new offspring. 
13. Select one of two offspring randomly. 
14. If the selected offspring is fitter than Bestij, 
store it to Bestij. 
Table 2 shows the experimental results on the 
proposed structures. According to table 2 the best 
structure for QEA for the Knapsack problem and 

Trap problem is the cellular structure and the best 
structure for the numerical functions is the 
Random structure. For the numerical functions the 
best structure is Random2 and Random4 with 4 best 
results, after these structures, Random6 places in 
third place with 3 best results. According to table 
2, the original structure of QEA which is proposed 
in [5] can not reach the best results for any of the 
problems, so the proposed structures improve the 
performance of QEA consistently. 
3.1     Quantum Gates Assignment 
The common mutation is a random disturbance of 
each individual, promoting exploration while also 
slowing convergence. Here, the quantum bit 
representation can be simply interpreted as a 
biased mutation operator. Therefore, the current 
best individual can be used to steer the direction of 
this mutation operator, which will speed up the 
convergence. The evolutionary process of quantum 
individual is completed through the step of “update 
Q(t).” A crossover operator, quantum rotation gate, 
is described below. Specifically, a qubit individual 
qt

ij in the cellular structure is updated using the 
rotation gate U(θ) in this algorithm. The k-th qubit 
of the quantum individual which is located at 
location (i.j) in generation t Tt

kij
t

kij ][ ,, βα  is 
updated as: 
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In this paper we use Hε gate for updating the Q-bits 
[12]: 
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Figure 1.  The compared structures. The structures from top, left to bottom 
right are Ring, Cellular, Btree, Km,m, Cluster, Grid, Ladder and Crossed-

ladder. 

Table 2. The best Structure for QEA. The bold results are the best Ones. The results are averaged over 30 runs. The 
dimension of problem is set to m=100. 

 Reference 
[7] Cellular Ring Star Ladder Crossed 

Ladder Cluster Km,m Grid Btree Random2 Random4 Random6

KP 1 396.32 409.65 411.75 405.13 411.05 408.41 407.12 405.42 411 410.53 372.74 377.88 387.92 
KP 2 396.51 397.82 397.77 393.89 397.52 396.93 395.31 395.63 397.69 397.36 386.05 387.95 392.73 
KR 1 558.41 569.77 569.77 569.77 569.77 569.77 569.77 569.5 569.77 569.77 510.67 537.23 551.84 
KR 2 414.03 426.87 430.1 417.9 427.99 426.55 420.52 419.13 426.77 426.71 380.98 394.75 399.97 
Trap 72.167 80.333 79.917 66.33 78.75 76 70.25 71.08 80.25 78.17 77.16 75.83 74.75 

Schwefel 2.26 32211 40686 36000 34158 35779 35864 35178 35793 39451 37118 42921 39886 38626 
Rastrigin -1996.2 -1883.2 -2076.8 -2131.5 -1962.6 -2016.3 -2095.3 -1975.9 -1910.9 -2115 -1889.9 -1739.7 -1864.8
Ackley -17.25 -17.18 -17.19 -17.85 -17.18 -17.19 -17.30 -17.63 -17.16 -17.20 -17.17 -17.20 -17.30 

Griewank -39.88 -36.18 -43.81 -42.16 -40.55 -37.77 -40.79 -37.45 -37.35 -41.17 -36.57 -34.31 -33.59 
Penalized 1 -1.64e5 -1.58e5 -1.80e5 -1.82e5 -1.63e5 -1.64e5 -1.65e5 -1.64e5 -1.62e5 -1.80e5 -1.43e5 -1.27e5 -1.29e5
Penalized 2 -38381 -35606 -38797 -40565 -36923 -38030 -37729 -36021 -36454 -39727 -34043 -36755 -36746 

Michalewicz 23.21 25.11 22.39 21.61 23.92 22.39 23.12 25.93 24.44 23.82 24.91 25.36 27.19 
Goldberg 41.21 42.46 38.87 38.50 40.87 41.07 41.77 41.52 41.27 39.64 45.00 43.29 43.90 

Sphere Model -4.22e5 -4.03e5 -4.73e5 -5.47e5 -4.47e5 -4.56e5 -4.68e5 -4.49e5 -4.10e5 -4.50e5 -3.80e5 -4.08e5 -3.91e5
Schwefel 2.22 -4.84 -4.5152 -5.07 -5.3371 -5.00 -4.98 -4.94 -4.98 -4.89 -5.09 -4.66 -4.83 -4.41 
Schwefel 2.21 -177.47 -175.91 -177.86 -178.26 -174.22 -176.95 -177.73 -176.95 -175.52 -175.39 -175.52 -176.3 -174.74

Dejong -2.60e7 -2.08e7 -2.70e7 -3.73e7 -2.82e7 -2.68e7 -2.42e7 -2.55e7 -2.39e7 -2.84e7 -2.39e7 -1.94e7 -2.24e7
Rosenbrock -1.12e5 -95848 -1.16e5 -1.31e5 -96417 -1.01e5 -1.09e5 -94559 -99086 -1.08e5 -84035 -80515 -82034 

Kennedy -1.08 -0.221 -0.0003 -12.42 -0.010 -0.210 -2.17 -6.90 -0.14 -0.125 -0.214 -1.17 -1.82 
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Where ( )iR θΔ  is rotation Gate and nii ,...,2,1, =Δθ  
is the angel of rotation for each Q-bit. 

 
 
4.     Experimental Results 
Here we used the Knapsack Problem, Trap 
Problem and 14 numerical benchmark functions 
for testing our proposed algorithm (see Appendix).  
The population size for all of the experiments is set 
at 25 (S=5), and maximum generation termination 
condition is used. All results were averaged over 
20 runs. The value of Δθ is considered as Table 1 
and the Hε Gate is used with ε=0.01. In numerical 
function optimization problems, the binary coding 
is used and the number of bits for each binary 
number is set to 10 bits (per variable). Fig 2 shows 
the experimental results on Knapsack and Trap 
problems for m=1000. As it seen, our proposed 
algorithm can work better than QEA in knapsack 

and trap problem with dimension of 1000. We 
evaluated our proposed algorithm in dimension of 
m=100, m=250, m=500 and m=1000. Table 3 is 
summarized the experimental results. The number 
of runs for all experiments is 20. The time 
complexity of the proposed algorithm is similar to 
the conventional version of QEA but the 
performance of the proposed algorithm is better 
than QEA. 
 
5.     Conclusion 
In this paper we proposed a cellular structure with 
a crossover interaction for neighbourhood 
interaction. The cellular structure of our proposed 
algorithm can make better population diversity and 
a better performance. Also the crossover 
interaction in our proposed algorithm can combine 
the advantages of the genetic algorithms with 
QEA. The crossover interaction can make a fine 
exploitation and the cellular structure and 
probabilistic representation of our algorithm can 
improve the exploration of proposed algorithm. In 
section 3 we showed that our proposed algorithm 
can work better than the QEA. 
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Table 3. Experimental results on the Knapsack problem, Trap problem and fourteen numerical function optimization problems. 
The number of runs was 20. Mean and Std represent the mean and standard deviation of best for 20 runs respectively. KP1 and 
KR1 means Knapsack penalty1 and Knapsack repair1 

 
 100=m  250=m  500=m  1000=m  
 QEA CQEA QEA CQEA QEA CQEA QEA CQEA 
 MEAN STD MEAN STD MEAN STD MEAN STD QEA STD QEA STD QEA STD QEA STD 

Schwefel [13] 4.98×104 1.87×103 5.75×104 1.89×103 8.7×104 3.8×103 9.9×104 5.9×103 1.3×105 2.2×103 1.5×105 6.7×103 2.1×105 7.5×103 2.7×105 1.1×104

Rastrigin [13] -1.16×10-3 95.25 -8.7×102 63.7 -4.9×103 1.8×102 -4.2×103 3.0×102 -1.2×104 2.9×103 -1.2×104 3.8×102 -2.7×104 4.1×102 -2.4×104 5.4×102

Ackley [13] -17.7 0.05 -17.6 0.04 -18.10 5.7×10-2 -17.99 3.4×10-2 -18.37 1.3×10-2 -18.27 2.4×102 -18.45 1.0×10-2 -18.35 3.3×10-2

Griewank [13] -13.5 3.33 -8.97 1.19 -91.7 5.2 -69.3 4.4 -268.8 7.13 -239.7 12.3 -608.8 13.09 -548.8 18.38 

Penalized 1 [13] -6.14×104 7.2×103 -3.74×104 5.6×10-3 -3.98×105 2.3×104 3.1×105 2.4×104 -1.1×106 2.3×104 -9.9×105 2.5×104 -2.3×106 2.18×104 -2.1×106 5.9×104

Penalized 2 [13] -1.5×104 1.9×103 -1.04×104 2.9×103 -9.2×104 3.4×103 -7.6×104 6.3 -2.7×105 1.0×104 -2.4×105 4.0×103 -5.9×105 1.5×104 -5.1×105 1.4×104

Michalewicz [15] 35.6 1.97 45.2 1.94 56.5 2.78 69.5 4.16 77.05 5.52 101.9 2.12 121.7 5.89 190.1 5.65 

Goldberg [14] 56.06 2.72 63.64 1.28 101.1 3.7 116.7 5.2 162.44 3.42 177.07 6.78 308.5 8.1 342.2 4.4 

Sphere Model [13] -1.7×105 2.4×103 -1.0×105 1.8×104 -9.8×106 4.5×104 -8.5×10-5 6.3×104 -3.02×106 9.4×104 -2.69×106 1.2×105 -6.75×106 1.2×105 -5.87×106 2.3×105

Schwefel 2.22 [13] -2.85 0.19 -1.93 0.14 -4.57 0.17 -3.9 0.19 -6.22 0.17 -5.86 0.11 -6.4 0.08 -6.1 0.13 

Schwefel 2.21 [13] -139.45 2.27 -145.15 9.02 -117 2.13 -177 2.32 -190.23 4.02 -188.83 1.37 -196.1 1.46 -194.8 0.75 

Dejong [15] -3.9×106 7.15×105 -2.9×106 4.3×105 -1.36×108 8.77×106 -8.91×108 1.44×107 -9.8×109 5.9×107 -7.6×109 9.3×107 -4.87×109 2.16×108 -3.65×109 2.37×108

Rosenbrock [14] -2.12×104 2.2×103 -1.6×104 2.7×103 -2.1×106 9.6×104 -1.6×105 1.8×104 -8.3×105 3.1×104 -6.2×105 4.5×104 1.88×106 9.1×104 -1.39×106 1.17×105

Kennedy [14] -7.9×10-2 5.9×10-2 -1.2×10-2 6.1×10-3 -9.93 3.28 -1.73 0.64 -60.9 5.6 -34.2 4.12 -147.14 9.77 -113.56 6.32 

KP1 493.5 1.7×10-13 493.5 1.7×10-13 1371.1 9.4 1398.4 2.4×10-13 2499.7 42.9 2745.5 10.1 4424.08 66.72 5101.26 44.13 

KP2 425.2 1.3 426.4 0.5 978.3 7.0 1003.8 1.6 1878.6 11.8 2004.7 6.1 3588.35 46.07 3935.21 29.13 

KR1 412.4 0.89 410.5 1.48 1023.3 6.5 1025.7 6.9 1865.7 14.3 1893.9 20.4 3601.9 34.7 3753.2 50.8 

KR2 461.8 0.38 462.0 0.24 1044.6 1.2 1046.1 0.5 1974.4 7.3 2003.1 1.4 3899.43 33.04 4148.75 10.07 

TRAP 85.2 1.43 87.5 1.92 193.5 3.27 212.8 3.16 335.5 6.9 389.2 6.9 579.73 8.27 672.4 18.92 
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Appendix 
In this section two combinatorial optimization 
problems, Trap problem and Knapsack problem, 
and 14 function optimization problems are 
discussed to evaluate the proposed PDCQEA. 
1.    Trap problem 
Trap problem is defined as: 

∑
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Where N is the number of traps and  
 

 

 
Fig 2. Experimental results on the Knapsack and Trap Problem. The number of runs was 20. The dimension of the problems in experiments is set 

at 1000=m . 
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Where the function “ones” returns the number 
of ones in the binary string x. Trap problem 
has a local optimum in ( )0,0,0,0,0  and a global 
optimum in ( )1,1,1,1,1 . 
2.    Knapsack problem 
Knapsack problem is a well-known combinatorial 
optimization problem which is in class of NP-hard 
problems [19]. Knapsack problem can be described 
as selecting various items ix (i=1,2,…,m) with 
profits ip and weights iw  for a knapsack with 
capacity C. Given a set of m items and a knapsack 
with capacity C, select a subset of the items to 
maximize the profit f(x): 

∑
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In this paper we are considered: 
),1(R vwi =  
),1(R vpi =  

Where ),(R ⋅⋅ is a uniform random number generator 
and v=10. 
The use of QEA for solving Knapsack problem is 
described in [19]. 
3.    Numerical Function Optimization 
Global numerical optimization problems arise in 
many fields of science, engineering, and business. 
Since many of these problems cannot be solved 
analytically, GAs becomes one of the popular 
methods to address them [13]. There are some 
benchmark numerical functions for testing the 
optimization algorithms. Here we used 14 
benchmark functions for testing the algorithms. 
The numerical benchmark functions are listed in 
Table 3. 
These functions have some local minima and a 
global minimum. We used them for maximization 
process, so we used –f(x) as fitness function. 


