
4s-reasoner: RDFS Backward Chained Reasoning Support in 4store

Manuel Salvadores1, Gianluca Correndo1, Tope Omitola1,
Nick Gibbins1, Steve Harris2 and Nigel Shadbolt1

1IAM Group, School of Electronics and Computer Science,
University of Southampton, UK

{ms8,gc3,tobo,nmg,nrs}@ecs.soton.ac.uk
2Garlik Ltd.

steve.harris@garlik.com

Abstract

This paper describes the design and implementation of
backward chained clustered RDFS reasoning in 4store. The
system presented, called “4s-reasoner”, adds no overhead
to the import phase and yet performs reasonably well at the
query phase. We also demonstrate that our solution scales
over clusters of commodity servers providing an optimal
solution that balances infrastructure cost and performance
over tested data sets with up to 500M triples. In addition we
have shared our implementation under GNU license and a
first release is available to be used by the community.

1. Introduction

4store is an RDF storage and SPARQL query system that
became open source under the GNU license in July 2009.
Since then a growing number of users have been using it
as a high scalable quad store and different functionalities
such updates, deletes, lock-free and reasoning have started
to be implemented in different code branches. This pa-
per describes the initial design and implementation of the
RDFS entailment regime in 4store part of the rdfs-reasoner
branch 1. Our implementation of RDFS follows a backward
chained (BC henceforth) approach. We considered this type
of solution suitable to keep the current data import speed,
around 100kT/s for commodity servers. Moreover, a BC
approach allows us to easily parametrize SPARQLs to be
run with or without the RDFS entailment. Even though, at
this point we consider our work in a alpha state we have ob-
tained good results for well known benchmarks and datasets
containing up to 500M triples.

1http://4sreasoner.ecs.soton.ac.uk 4s-reasoner docu-
mentation and source code Accessed 15/04/2010

The remainder of the paper proceeds as follows: Section
2 describes the motivation and related research in the area,
Section 3 introduces basic 4store notions and explains the
modifications undertaken to implement 4s-reasoner, Sec-
tion 4 shows the results of initial benchmarks and finally
Section 5 analyzes some of results achieved by this work.

2. Motivation and Background

One of the current approaches to provide SPARQL query
answering with entailment regimes, as used in Sesame [1],
is to forward chain (FC) the knowledge bases (KB) expand-
ing the data before or during the assertion phase. In [7],
parallel reasoning was applied to expand the RDFS closure
over hundreds of millions of triples and more recent inves-
tigations even to one hundred billion triples using the OWL
Horst entailment regime [6]. However very little work has
been presented on how to make use of such vast amounts
of data and how to connect those solutions with SPARQL
engines. Furthermore, these type of solutions are suitable
for static datasets where updates and/or deletes are sparse or
non-existent. Applying this mechanism to dynamic datasets
with more frequent updates and deletes whose axioms need
to be recomputed will lead to processing bottlenecks.

A different approach called BC reasoning asserts the
original data, without expansions, and handles the axioms at
the query phase. Historically, BC reasoning has had worse
performance than FC at the query phase, however it adds
no overhead on data transactions. In the near future, due to
the SPARQL/Update specification to be ratified soon, we
expect more triple/quad stores to implement and support
transactions, which makes our solution more germane at
this particular period. Current research on BC reasoning
and SPARQL query answering has attempted to implement
solutions that distribute the processing on top of Distributed

Hash Tables and using p2p techniques [4]. To date such so-
lutions have not reached the community tools and recent
investigations have concluded that due to load balancing is-
sues they cannot scale [5].

4s-reasoner is attempting to make new grounds in BC
reasoning exploiting a clustered RDF store and as shown in
the following sections our solution scales up to hundreds of
millions of triples.

3. Design and Implementation

3.1. 4store basics

4store distributes the data in non-overlapping segments.
These segments are identified by an integer and the alloca-
tion strategy is a simple mod operation such that:

segment = rid(subject) mod segments

RIDs are 64-bit integers that either represent URIs, Lit-
erals or Blank Nodes, and an RID is made up of UMAC-64
hash function. As a quad store 4store represents its RDF to-
gether with the model/graph they belong to. The segments
contain the following indexes:

• One index per-predicate that contains two radix tries,
the keys for these tries are the subject or the object.
The tree node data points to the quad.

• One index to store the models. This index is a hash
table where the key is the model RID and the elements
a list of triples (the list of triples held by a model on a
given segment).

The data segments are allocated in Storage Nodes and
the query engine in a Processing Node. The query engine
accesses the data remotely via sending TCP/IP messages to
Storage Nodes. It also decomposes a SPARQL query into
its algebra and for each quad pattern requests a bind oper-
ation against all the segments2. The bind operation returns
Qs which is a set of quads of the form (m,s,p,o), in a given
segment s, and given multiset <M, S, P, O> such that:

{(m, s, p, o) ∈ Qs : m ∈M ∨M = ∅, s ∈ S ∨ S = ∅,
p ∈ P ∨ P = ∅, o ∈ O ∨O = ∅}

The quads returned by each segment are projected to pro-
duce a multiset of n-tuples where n is the number of quad-
parts to be extracted. The n-tuples multiset is handled by
the query engine that in essence follow a Relational Alge-
bra computation to return the query final resultset.

2In 4store there are query optimisations that avoid requesting all the
segments and binds are just targeted to where the quads are known to be
held (see section 8 [2])

3.2. bind’ and 4s-reasoner extensions

In bind′ we modify the binding function making it
RDFS-aware. Our modifications to the 4store architecture
are shown in Figure 1 for a hypothetical 2 storage-node de-
ployment.

Storage Node 0

Processing Node

QE

bind'(M,S,P,O)

Reasoner Node

Storage Node 1

bind'(M,S,P,O)

RDFS
statements

RDFS
statements

SPARQLApplicationsApplicationsApplicationsApplications

Figure 1. 4s-reasoner architecture

The new components are:

• A new entity called Reasoner Node. This entity gath-
ers all RDFS statements from all the storage nodes and
keeps a synchronized copy of such information acces-
sible to the bind’ in all the segments. After every im-
port, update or delete this process extracts the new set
of RDFS statements in the KB and sends it to the Stor-
age Nodes. Even for large KBs this synchronization is
fast because RDFS statements are a very small propor-
tion of the dataset.

• A new bind function bind’ that matches the quads not
just taking into account the explicit knowledge but also
the extensions from the RDFS semantics. bind’ is de-
picted in detail in Section 3.3.

3.3. bind’ and RDFS Semantics

The original 4store bind operation has been modified
so as to follow the RDFS semantics. The current ver-
sion of 4s-reasoner implements rule entailments related
to rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain and
rdfs:range. These semantics include the rules rdfs2, rdfs3,
rdfs5, rdfs7, rdfs9, rdfs11, ext1, ext2, ext3 and ext4 (see sec-
tion 7.3 in [3]). Our solution is an implementation of the
RDFS semantics for the selected rules that can decomposed
in the phases described in Figure 2.

P & O
solution

expansion

P & O
closured
match

domain & range
rdf:type

generation

RDFSexpand Qseg' bindʼ

phase 1 phase 2 phase 3

seg'
seg
M
S
P
O

Qseg'

Figure 2. Bind’ processing

• rdfsexpand(seg,KB): Expands the segment quads to
generate the rdf:type for rdfs:range and rdfs:domain
(rules rdfs2 and rdfs3) only when rdf:type is part of
P . The union of rdfsexpand(seg,KB) with the initial
segment seg produces seg′.

• Qseg′ : Gets the closured match following rules: rdfs5,
rdfs7, rdfs9, rdfs11. Since this evaluation is match
against seg′ the Extensional Entailment Rules: ext1,
ext2, ext3 and ext4 are evaluated as well.

• bind′(Qseg′): Expands the solutions if either P or O
or both are empty. The same rules as in the Qseg′ phase
are applied at this point.

The following formulas describe the semantics tested on
each of the phases:

Phase 1:
{(, s, type, d) ∈ rdfsexpand(seg,KBrdfs) :
(∃(, s, p, o) ∈ seg ∧
∃(, p, domain, d) ∈ KBrdfs) ∨

(∃(, o, p, s) ∈ seg ∨
∃(, p, range, d) ∈ KBrdfs)}

In Phase 1 rdfs2 and rdfs3 are applied if rdf:type is
part of P . KBrdfs represents the RDFS axioms gath-
ered by the Reasoner Node and replicated in all the
segments. In the next phase seg′ is considered to be:
seg′ = seg ∪ rdfsexpand(seg,KB)

Phase 2:
{(m, s, p, o) ∈ Qseg′ :
m ∈M ∨M = ∅, s ∈ S ∨ S ∈ ∅,
p ∈ closurep(P) ∨ P = ∅,
(p ∈ Prdfs ∧ o ∈ closureo(O)) ∨ o ∈ O ∨ O = ∅}

In Phase 2 for the bounded P and O the transitive
sub-closure of properties and classes are made part
of the matching process. closurep(P) is the transi-
tive closure of the set of properties P according to
rdfs5. Analogously, closureo(O) is the closure of sub-
classes following rule rdfs11. Prdfs is considered to be
{subClassOf, type, subPropertyOf}.

Phase 3:
{(, s, p, o) ∈ bind’(Qseg′ ,M,S,P,O) :
(P 6= ∅ ∧O 6= ∅ ∧ (, s, p, o) ∈ Qseg′)∨
(P = ∅ ∧O 6= ∅ ∧ (, s, p′, o) ∈ Qseg′ ∧ p ∈ closure′p(p

′))∨
(P 6= ∅ ∧O = ∅ ∧ (, s, p, o′) ∈ Qseg′ ∧ o ∈ closure′o(o

′))∨
(P = ∅ ∧O = ∅ ∧ (, s, p′, o′) ∈ Qseg′∧

p ∈ closure′p(p
′) ∧ o ∈ closure′o(o

′))}
The last step is to expand Qseg′ if either P or O are
empty. closure′p(p

′) are the transitive super properties for a
given property p′ and closure′o(o

′) are the transitive super
classes for a given class o′. The bind′ expansion described
in the formula above expands unbounded P or O according
to the super properties or super classes respectively.

3.4. Disabling the RDFS Entailments

Disabling the reasoning is important for some type of
queries, for instance when drawing a class hierarchy. One
of the benefits of BC reasoning is that is trivial to en-
able/disable the reasoner. With FC reasoning the imple-
mentation of such functionality is complex because adds the
overhead of tracking which triples are entailed.

In our implementation reasoning can be disabled with
the flag –no-reasoning3 in the 4s-query tool and in the
HTTP SPARQL endpoint.

4. Evaluation and Benchmark

This work is driven by the idea of enabling 4store
with RDFS reasoning without degrading the import phase.
In that sense we measured import throughput and bench-
marked the query phase for different datasets. Our deploy-
ment infrastructure is made of 5 Dell PowerEdge R410,
each of them with 4 dual core processors at 2.27GHz, 48G
memory and 15k rpm disks. The network connectivity is
standard gigabit ethernet. These 5 servers are set up in a
4+1 infrastructure with 1 server dedicated for the Process-
ing Node and the Reasoner Node and the other 4 set up
as Storage Nodes. We have evaluated KBs of 32 and 64
segments therefore 8 and 16 segments per server respec-
tively. The benchmark presented in this paper measures
the performance of 4s-reasoner for rdfs:subClassOf and
rdfs:subPropertyOf semantics. To test them two different
datasets where selected:

• The Barton dataset4 that contains around 80M triples
contains rdfs:subClassOf and rdfs:subPropertyOf ax-
ioms. It is a suitable dataset for testing due to the

3http://4sreasoner.ecs.soton.ac.uk 4s-reasoner docu-
mentation contains samples of how to use the -no-reasoner flag.

4http://simile.mit.edu/wiki/Dataset:_Barton
accessed 14/04/2010

combination of such axioms. However, the hierarchies
are small. The import throughput for this dataset was
140kT/s.

• The Berlin SPARQL Benchmark for 100M and 500M
triples, henceforth bsb100m and bsb500m. These
datasets contain hierarchies of several thousand of
nodes which makes them suitable to test the scalabil-
ity of rdfs:subClassOf. The import throughput for this
datasets were 110kT/s for bsb100m and 92 kT/s for
bsb500m.

To benchmark the queries we measured the time that the
tool 4s-query takes to execute the query without formatting
the SPARQL resultset and printing the solutions. The query
templates used against the Berlin datasets are:

q1) SELECT * WHERE {
%ProductInstance% a ?o }

q2) SELECT * WHERE {
%ProductType% rdfs:subClassOf ?o }

q3) SELECT * WHERE { ?s a %ProductType% .
?s berlin:productFeature %Feature% }

q4) SELECT * WHERE {
?x a berlin:ProductType1 . }

Queries q1, q2 and q3 were run 128 times for random
URIs of ProductInstance, ProductType and Feature. q4 gets
all the product in the datasets over a closure of 2010 and
3948 subclass relationships in bsb100m and bsb500m re-
spectively. The average response times are shown in Figure
3 and no major measurement deviations where detected.

0	

50	

100	

150	

200	

250	

q1-­‐32	
 q1-­‐64	
 q2-­‐32	
 q2-­‐64	
 q3-­‐32	
 q3-­‐64	
 q4-­‐32	
 q4-­‐64	

berlin100m	

berlin500m	

Figure 3. Query Response in milliseconds for
the Berlin 100M and 500M datasets

The rdfs:subPropertyOf semantics have been tested
against the Barton dataset with the following queries:

q5) SELECT * WHERE { %Item% ?p ?o . }
q6) SELECT * WHERE {

%Item% barton:description ?o .}
q7) SELECT * WHERE {

?s barton:description ?o . }

q5 evaluates the expansions of both superclasses and
super-properties. q6 and q7 evaluates the match of a sub-
property for a given super-property. Analogously to the
previous tests these queries were run 128 times for random
instances of Item. The best time results were obtained for
the 32 segment configuration where with 3.52, 1.9 and 280
milliseconds respectively. q7 returns more than 1 million
solutions, that is why the response time is much longer than
in q5 and q6 where no more than 25 solutions are given.

Throughout the benchmark we identified a performance
degradation from the 32 to the 64 segments configuration.
This is due to that the optimal 4store configuration is as
many segments as there are physical cores.

5. Conclusions

In this paper we presented the design and implementa-
tion of 4s-reasoner. The design is based on the substitu-
tion of the original bind function for a bind’ where quads
are matched and expanded taking into account the RDFS
semantics. Furthermore, we presented a preliminary bench-
mark with datasets up to 500 millions triples obtaining re-
sponse times from 1.5 to 200 milliseconds for a 32 segment
configuration.

6 Acknowledgements

This work was supported by the EnAKTing project
funded by EPRSC under contract EP/G008493/1.

References

[1] J. Broekstra, A. Kampman, and F. V. Harmelen. Sesame:
A Generic Architecture for Storing and Querying RDF and
RDFS pages 54–68. Springer, 2002.

[2] S. Harris, N. Lamb, and N. Shadbolt. 4store: The Design
and Implementation of a Clustered RDF store. In Scalable
Semantic Web Knowledge Base Systems - SSWS2009, pages
(p. 94–109), 2009.

[3] P. Hayes and B. McBride. RDF Semantics, W3C Recommen-
dation 10 February 2004. http://www.w3.org/TR/rdf-mt/

[4] Z. Kaoudi, I. Miliaraki, and M. Koubarakis. RDFS reason-
ing and query answering on top of DHTs. In International
Semantic Web Conference, pages 499–516, 2008.

[5] S. Kotoulas, E. Oren, and F. van Harmelen. Mind the Data
Skew: Distributed Inferencing by Speeddating in Elastic Re-
gions. In Proceedings of the WWW 2010, Raleigh NC, USA.

[6] J. Urbani, S. Kotoulas, J. Maassen, F. van Harmelen, and
H. Bal. OWL Reasoning with Webpie: Calculating the Clo-
sure of 100 Billion triples. In Proceedings of the Seventh Eu-
ropean Semantic Web Conference, LNCS. Springer, 2010.

[7] J. Weaver and J. A. Hendler. Parallel Materialization of the Fi-
nite RDFS Closure for Hundreds of Millions of Triples. In In-
ternational Semantic Web Conference, pages 682–697, 2009.

