Deriving Safety Cases from Machine-Generated Proofs

Nurlida Basir and Bernd Fischer Ewen Denney
ECS, University of Southampton SGT, NASA Ames Research Center
SO171BJ, UK Mountain View, CA 94035, U.S.A
(nb206r, b.ti scher) @cs. sot on. ac. uk Ewen. W Denney @asa. gov
Abstract

Proofs provide detailed justification for the validity ofaghs and are widely used in formal
software development methods. However, they are often orapd difficult to understand, because
they use machine-oriented formalisms; they may also bedt@sassumptions that are not justified.
This causes concerns about the trustworthiness of usinggigroofs as arguments in safety-critical
applications. Here, we present an approach to developysadses that correspond to formal proofs
found by automated theorem provers and reveal the undgrygumentation structure and top-level
assumptions. We concentrate on natural deduction prodfsfamw how to construct the safety cases
by covering the proof tree with corresponding safety cazgrfrents.

1 Introduction

Demonstrating the safety of large and complex softwarensive systems requires marshalling large
amounts of diverse information, e.g., models, code or nmasttieal equations and formulas. Obviously
tools supported by automated analyses are needed to thiklproblem. For the highest assurance
levels, these tools need to produckagceable safety argumetitat shows in particular where the code as
well as the argument itself depend on any external assungpliot many techniques commonly applied
to ensure software safety do not produce enough usableneédee., justification for the validity of their
claims) and can thus not provide any further insights orments. In contrast, in formal software safety
certification [3], formal proofs are available as evideridewever, these proofs are typically constructed
by automated theorem provers (ATPs) based on machinetedi@alculi such as resolution [10]. They
are thus often too complex and too difficult to understanadabse they spell out too many low-level
details. Moreover, the proofs may be based on assumpti@isath not valid, or may contain steps
that are not justified. Consequently, concerns remain aling these proofs aggumentgather than
just evidencen safety-critical applications. In this paper we addrésssé concerns by systematically
constructing safety cases that correspond to formal pfoafsd by ATPs and explicitly highlight the use
of assumptions.

The approach presented here reveals and presents théspooolerlying argumentation structure
and top-level assumptions. We work with natural deductiB)(proofs, which are closer to human
reasoning than resolution proofs. We explain how to consthe safety cases by covering the ND proof
tree with corresponding safety case fragments. The arguiménilt in the same top-down way as the
proof: it starts with the original theorem to be proved asttigegoal and follows the deductive reasoning
into subgoals, using the applied inference rules as stemtég derive the goals. However, we abstract
away the ATPs book-keeping steps to reduce the size of the construcfety sases. The safety cases
thus provide a "structured reading guide” for the proofds gl@ws users to understand the claims without
having to understand all the technical details of the fonpnabf machinery. This paper is a continuation
of our previous work to construct safety cases from inforamatollected during the formal verification
of the codel([2], but here we concentrate on the proofs raltaer the verification process.

(nb206r,b.fischer)@ecs.soton.ac.uk
Ewen.W.Denney@nasa.gov

Deriving Safety Cases from Machine-Generated Proofs Baischer and Denney

2 Formal Software Safety Certification

Formal software safety certificationses formal techniques based on program logics to showttbat t
program does not violate certain conditions during its akea [3]. A safety propertys an exact char-
acterization of these conditions, based on the operatsmrahntics of the programming language. Each
safety property thus describes a class of hazards. They gmégderty is enforced by safety policyi.e.,
a set of verification rules that take initial set of safetyuiegments that formally represent the specific
hazards identified by a safety engineeér [8], and derive a rumiiproof obligations. Showing the safety
of a program is thus reduced to formally showing the validitithese proof obligations: a program is
considered safe wrt. a given safety property if proofs ferd¢brresponding safety proof obligations can
be found. Formally, this amounts to showibBgJ A = P = C for each obligation i.e., the formalization
of the underlyingdomain theory Dand a set oformal certification assumptions éntail a conjecture,
which consists of a set of premisBghat have to imply theafety condition C

The different parts of these proof obligations have diffiédevels of trustworthiness, and a safety
case should reflect this. The hypotheses and the safetytimmmdie inferred from the program by
a trusted software component implementing the safety yo#iod their construction can already be
explained in a safety casel [2]. In contrast, both the domfaory and the assumptions are manually
constructed artifacts that require particular care. Itipaar, the safety case needs to highlight the use
of assumptions. These have been formulated in isolatiohdgdfety engineer and may not necessarily
be justified, and are possibly inconsistent with the domiagoty. Moreover, fragments of the domain
theory and the assumptions may be used in different contsatthe safety case must reflect which of
them are available at each context. By elucidating the reagdoehind the certification process and
drawing attention to potential certification problems réhis less of a need to trust the certification tools,
and in particular, the manually constructed artifacts.

3 Converting Natural Deduction Proofs into Safety Cases

Natural deduction[[6] systems consists of a collection @ioprrules that manipulate logical formulas
and transform premises into conclusions. A conjecturedsgm from a set of assumptions if a repeated
application of the rules can establish it as conclusion.elHer focus on some of the basic rules; a full
exposition of the ND calculus can be found in the literati@e [

Conversion Process. ND proofs are simply trees that start with the conjectured@ltoven as root,
and have given axioms or assumed hypotheses at each ledf.nBadeaf node is recursively justified
by the proofs that start with its children as new conjecturEse edges between a node and all of its
children correspond to the inference rule applied in th@opistep. The proof tree structure is thus a
representation of the underlying argumentation structive can use this interpretation to present the
proofs assafety case§/], which are structured arguments as well and representithkage between
evidence (i.e., the deductive reasoning of the proofs frieenassumptions to the derived conclusions)
and claims (i.e., the original theorem to be proved). Thegaridea of the conversion from ND proofs to
safety cases is thus fairly straightforward. We considerctinclusion as a goal to be met; the premise(s)
become(s) the new subgoal(s). For each inference rule, firedesafety case template that represents
the same argumentation. The underlying similarity of psawid safety cases has already been indicated
in [[7] but to the best of our knowledge, this idea has nevenlfally explored or even been applied to
machine-generated proofs (see Figure 1 for the rules anplaées).

In the following we describe the safety case templates ferbtse rules of the calculus. We use
the Goal Structuring Notation [7] as technique to explcitépresent the logical flow of the proef
argumentation structure.

Deriving Safety Cases from Machine-Generated Proofs Baischer and Denney

ArB T
Show each Show a stronger .
N J1: A holds
conjunct (O) goal (1) if ACB holds
A A A
A4 B ‘ HI=A H HI=B ‘ HI=(ACB)
C-Rules
Safety Case Templates for C-Rules
4 Vi B \ =iy Hl|=(AOB) HI=C
AV B AV B -
Show at Show each case / J1: C holds if either
least one separately ((L) {A} or {B} holds
[‘ﬂ [B] case (0h) ‘
: i I T
AvVB ¢ ¢ [wEa [HEeoe [[ruwEc Plaa HUEBl=C | 128
e V=g assumed assumed
C from A OB from A [B
C-Rules Safety Case Templates for C-Rules
[4] Hl|= (A=B)
Assume temporary J1: {A} can be used Show derivation of
B _1 -I - B hypotheses to show as hypothesis to the implication (=)
_1 B — - # —= g conclusion (=) prove B
A4
£ =
HU{A} =B ‘ Hi=A H H = (A=B) ‘
=>-Rules
Safety Case Templates for =>-Rules
- = H|=A(ty
e st o
: Show for any Jl:tyis an Show for all J1: x can be
ATE P \ arbitrary fresh arbitrary objects (Oe) replaced by t ,
4 [.’}jﬁ] o Vx-A4 ., obiect (i) fresh obiect
", V-1 ; V=&
vx-A Alty/x]
HI=A(t) H [=0x A(X)
O-Rules
Safety Case Templates for O-Rules

Figure 1: Safety Case Templates for Natural Deduction Rules

Conjunctions. The rules for conjunction introduction and eliminationeditly represent the intuitive
interpretation of conjunctions: i is true andB is true, then evidenthA A B is true as well {-i), and

if AAB is true, then bottA and B must be as well -e; resp. A-&). The A -introduction rule can
be converted directly into a safety cases. For/helimination rule, the strategy is to show a logically
stronger goal: we can conclude(respB) if we have a proof oA A B.

Disjunctions. Any disjunction can be introduced as long as one of the disguis already known i.e.,
if A (resp.B) is true, then evidentlAV B is true as well. In the safety case, a géal B is constructed,
which is justified by the subgo@ (resp. B) via the strategy-i; (resp.V-iz).

In disjunction elimination, we only know th&tV B holds, but not which oA or B is true, so that we
need to reason by cases to concl@tom AV B, i.e., separately consider each of the two cases for the
disjunction to be true. In the first case we thus asstmgether with the available hypotheses and try
to deriveC, in the second case we assuBiogether with the available hypotheses and try to de€ive
If both cases succeed, we can concl@eThe safety case fragment makes this argument explicit, and
in particular, explicitly justifies the use of the respeetasssumptions in the two cases.

Implications. The implication elimination follows the standard pattertr im the introduction rule we
again temporarily assunfeas hypothesis together with the list of other available liypses, rather than
deriving a proof for it. We then proceed to deriBe anddischargethe hypothesis by the introduction

3

Deriving Safety Cases from Machine-Generated Proofs Baischer and Denney

of the implication. The hypothesi can be used at given in the proveRfbut the conclusio = B

no longer depends on the hypothegigfter B has been proved. In the safety case fragment, we use a
justification to record the use of the hypotheajsand thus to make sure that the introduced hypotheses
are tracked properly.

Universal quantifiers. The ND proof rules for quantifiers focus on the replacementhef bound
variables with objects and vice versa. For example, in tmaihtion rule for universal quantifiers, we
can conclude the validity of the formula for any chosen dfdfjec

In the introduction rule, however, we need to show it for dnitary but fresh object,. If we can
derive a proof ofA, wherex is replaced by the objedf, we can then discharge this assumption by
introduction of the quantifier. The safety case fragmentenathis replacement as justification.

4 Hypothesis Handling

An automated prover typically treats the domain theDrand the certification assumptiodsas hy-
potheses and tries to derilieA AA P = C from an empty set of hypotheses. As the proof tree grows,
these premises will be turned into hypotheses, usingsthetroduction rule (see Figuté 1). In all other
rules, the hypotheses are simply inherited from the godléstibgoals. However, not all hypotheses will
actually be used in the proof, and the safety case shouldidfiglthose that are actually used. This is
particularly important for the certification assumptioifge can achieve this by modifying the template
for the =-- introduction. We can distinguish between the hypothelsasdre actually used in the proof
of the conclusion (denoted By, ..., Ax) and those that are vacuously discharged ofthantroduction

(denoted byA;, ..., A, A+ 1,.., An).

We then use two different justifications to mark this ditiioie.

Note that this only a simplification of the presentation andsd | ”‘:A""EAk‘““””'AN:B |
not change the structure of the underlying proof, includhme Assume emporary
validity of the original goal. It is thus different from ugjra hypotheses to show

conclusion (=i)

prove B

relevant implication1] under whichA = B is only valid if all \
of the hypotheses A are actually used. Hukerre |

In order to minimize the number of hypotheses tracked by &fiety case, we need to analyze the
proof tree from the leafs up, and propagate the hypothesegrds the root. By revealing only these
used hypotheses as assumptions, the validity of their ugeriking the proof can be checked easier.
In our work, we also highlight the use of the external assionptthat has been formulated in isolation
by the safety engineer. External hypothesis typically sved from the program by a trusted software
component implementing the safety policy. We track the nemdd external hypotheses to check the
validity of their use in deriving the proofs.

J1: {As,.., A} used to

5 Proof Abstraction

We illustrate our approach to proofs found by the Muscadghi@rem prover during the formal certifi-
cation of the initialization safety of a component of antatte control system as an example. Muscadet
is based on ND, but to improve performance, it implementsriztyaof derived rules in addition to the
basic rules of the calculus. This includes rules for a dedicaquality handling axiomatically, as well
as rules that the system builds from the definitions and lesnama that correspond the application of
the given definitions and lemmas. While these rules makeribafpshorter, they also make them more
opaque and cluttered with technical detail, which makemthreturn more difficult to understand. This
partially negates the original goal of using a ND prover. ¢H&e plan to optimize the resulting proofs by
collapsing the instances of Muscadebook-keeping rules; grouping similar rules that are basethe

4

Deriving Safety Cases from Machine-Generated Proofs Baischer and Denney

same reasoning strategies e.g., arithmetic and partiael oedsoning rules; identifying and restucturing
the similar patterns in the resulting proof presentationcstire.

6 Conclusions

We have described an approach whereby safety case is uséstastired reading guide” for the safety
proofs. Here, assurance is not implied by the trust in thesdiR follows from the constructed argument
of the underlying proofs. However, the straightforwardamsion of ND proofs into safety cases to be
far from satisfactory as they typically contains too mantade. In practice, a superabundance of such
details is overwhelming and unlikely to be of interest anywa careful use of abstraction is needed [5].

The work we have described here is still in progress. So farhave automatically derived safety
cases for the proofs found by Muscadet prover [9]. This warknglements our previous workl[2]
where we used the high-level structure of annotation imieeeto explicate the top-level structure of
such software safety cases. We consider the safety caserasstep towards a fully-fledged software
certificate management system [4]. We also believe thatesaarch will result in a comprehensive safety
case (i.e., for the program being certified the safety logie] the certification system) that will clearly
communicate the safety claims, key safety requirementd,esidence required to trust the software
safety.

Acknowledgements. This material is based upon work supported by NASA under dsv&CC2-1426 and
NNAO7BB97C. The first author is funded by the Malaysian Gaweent, IPTA Academic Training Scheme.

References

[1] A.R. Anderson and N. BelnajEntailment: the logic of relevance and necessRyinceton University Press,
1975.

[2] N. Basir, E. Denney, and B. Fischer. Constructing a Sat&se for Automatically Generated Code from
Formal Program Verification Informatiotn SAFECOMP’08pages 249-262, 2008.

[3] E. Denney and B. Fischer. Correctness of Source-LevetgRolicies . InProc. FM 2003: Formal Methods
2003.

[4] E. Denney and B. Fischer. Software Certification and\Bafe Certificate Management Systems (position
paper). Proceedings of the ASE Workshop on Software Certificate yjinant Systems (SoftCeMent ;05)
pages 1-5, 2005.

[5] E. Denney, J. Power, and K. Tourlas. Hiproofs: A HieracehNotion of Proof Tree. IrProceedings of
the 21st Annual Conference on Mathematical Foundationsajf@mming Semantics (MFPS XX¥plume
155, pages 341 — 359, 2006.

[6] M. Huth and M. Ryan.Logic in Computer Science Modelling and Reasoning aboue8ysvolume 2nd
Edition. Cambridge University Press, 2004.

[7]1 T. P. Kelly. Arguing Safety - A Systematic Approach to Managing Safese€#&hD thesis, University of
York, 1998.

[8] N. G. LevesonSafeware: System Safety and Computdddison-Wesley, 1995.

[9] D. Pastre. MUSCADET 2.3: A Knowledge-Based Theorem Brd®®ased on Natural Deduction. IBCAR
pages 685-689, 2001.

[10] J. A. Robinson. A Machine-Oriented Logic Based on thed®eation Principle ACM, 1965.

	Introduction
	Formal Software Safety Certification
	Converting Natural Deduction Proofs into Safety Cases
	Hypothesis Handling
	Proof Abstraction
	Conclusions

