
Deriving Safety Cases from Machine-Generated Proofs
Nurlida Basir and Bernd Fischer
ECS, University of Southampton

SO17 1BJ, U.K
(nb206r,b.fischer)@ecs.soton.ac.uk

Ewen Denney
SGT, NASA Ames Research Center
Mountain View, CA 94035, U.S.A
Ewen.W.Denney@nasa.gov

Abstract

Proofs provide detailed justification for the validity of claims and are widely used in formal
software development methods. However, they are often complex and difficult to understand, because
they use machine-oriented formalisms; they may also be based on assumptions that are not justified.
This causes concerns about the trustworthiness of using formal proofs as arguments in safety-critical
applications. Here, we present an approach to develop safety cases that correspond to formal proofs
found by automated theorem provers and reveal the underlying argumentation structure and top-level
assumptions. We concentrate on natural deduction proofs and show how to construct the safety cases
by covering the proof tree with corresponding safety case fragments.

1 Introduction

Demonstrating the safety of large and complex software-intensive systems requires marshalling large
amounts of diverse information, e.g., models, code or mathematical equations and formulas. Obviously
tools supported by automated analyses are needed to tackle this problem. For the highest assurance
levels, these tools need to produce atraceable safety argumentthat shows in particular where the code as
well as the argument itself depend on any external assumptions but many techniques commonly applied
to ensure software safety do not produce enough usable evidence (i.e., justification for the validity of their
claims) and can thus not provide any further insights or arguments. In contrast, in formal software safety
certification [3], formal proofs are available as evidence.However, these proofs are typically constructed
by automated theorem provers (ATPs) based on machine-oriented calculi such as resolution [10]. They
are thus often too complex and too difficult to understand, because they spell out too many low-level
details. Moreover, the proofs may be based on assumptions that are not valid, or may contain steps
that are not justified. Consequently, concerns remain aboutusing these proofs asargumentsrather than
just evidencein safety-critical applications. In this paper we address these concerns by systematically
constructing safety cases that correspond to formal proofsfound by ATPs and explicitly highlight the use
of assumptions.

The approach presented here reveals and presents the proof’s underlying argumentation structure
and top-level assumptions. We work with natural deduction (ND) proofs, which are closer to human
reasoning than resolution proofs. We explain how to construct the safety cases by covering the ND proof
tree with corresponding safety case fragments. The argument is built in the same top-down way as the
proof: it starts with the original theorem to be proved as thetop goal and follows the deductive reasoning
into subgoals, using the applied inference rules as strategies to derive the goals. However, we abstract
away the ATP’s book-keeping steps to reduce the size of the constructed safety cases. The safety cases
thus provide a ”structured reading guide” for the proofs that allows users to understand the claims without
having to understand all the technical details of the formalproof machinery. This paper is a continuation
of our previous work to construct safety cases from information collected during the formal verification
of the code [2], but here we concentrate on the proofs rather than the verification process.

1

(nb206r,b.fischer)@ecs.soton.ac.uk
Ewen.W.Denney@nasa.gov

Deriving Safety Cases from Machine-Generated Proofs Basir, Fischer and Denney

2 Formal Software Safety Certification

Formal software safety certificationuses formal techniques based on program logics to show that the
program does not violate certain conditions during its execution [3]. A safety propertyis an exact char-
acterization of these conditions, based on the operationalsemantics of the programming language. Each
safety property thus describes a class of hazards. The safety property is enforced by asafety policy, i.e.,
a set of verification rules that take initial set of safety requirements that formally represent the specific
hazards identified by a safety engineer [8], and derive a number of proof obligations. Showing the safety
of a program is thus reduced to formally showing the validityof these proof obligations: a program is
considered safe wrt. a given safety property if proofs for the corresponding safety proof obligations can
be found. Formally, this amounts to showingD∪A |= P⇒C for each obligation i.e., the formalization
of the underlyingdomain theory Dand a set offormal certification assumptions Aentail a conjecture,
which consists of a set of premisesP that have to imply thesafety condition C.

The different parts of these proof obligations have different levels of trustworthiness, and a safety
case should reflect this. The hypotheses and the safety condition are inferred from the program by
a trusted software component implementing the safety policy, and their construction can already be
explained in a safety case [2]. In contrast, both the domain theory and the assumptions are manually
constructed artifacts that require particular care. In particular, the safety case needs to highlight the use
of assumptions. These have been formulated in isolation by the safety engineer and may not necessarily
be justified, and are possibly inconsistent with the domain theory. Moreover, fragments of the domain
theory and the assumptions may be used in different contexts, so the safety case must reflect which of
them are available at each context. By elucidating the reasoning behind the certification process and
drawing attention to potential certification problems, there is less of a need to trust the certification tools,
and in particular, the manually constructed artifacts.

3 Converting Natural Deduction Proofs into Safety Cases

Natural deduction [6] systems consists of a collection of proof rules that manipulate logical formulas
and transform premises into conclusions. A conjecture is proven from a set of assumptions if a repeated
application of the rules can establish it as conclusion. Here, we focus on some of the basic rules; a full
exposition of the ND calculus can be found in the literature [6].

Conversion Process. ND proofs are simply trees that start with the conjecture to be proven as root,
and have given axioms or assumed hypotheses at each leaf. Each non-leaf node is recursively justified
by the proofs that start with its children as new conjectures. The edges between a node and all of its
children correspond to the inference rule applied in this proof step. The proof tree structure is thus a
representation of the underlying argumentation structure. We can use this interpretation to present the
proofs assafety cases[7], which are structured arguments as well and represent the linkage between
evidence (i.e., the deductive reasoning of the proofs from the assumptions to the derived conclusions)
and claims (i.e., the original theorem to be proved). The general idea of the conversion from ND proofs to
safety cases is thus fairly straightforward. We consider the conclusion as a goal to be met; the premise(s)
become(s) the new subgoal(s). For each inference rule, we define a safety case template that represents
the same argumentation. The underlying similarity of proofs and safety cases has already been indicated
in [7] but to the best of our knowledge, this idea has never been fully explored or even been applied to
machine-generated proofs (see Figure 1 for the rules and templates).

In the following we describe the safety case templates for the base rules of the calculus. We use
the Goal Structuring Notation [7] as technique to explicitly represent the logical flow of the proof’s
argumentation structure.

2

Deriving Safety Cases from Machine-Generated Proofs Basir, Fischer and Denney

∧∧∧∧-Rules

∨∨∨∨-Rules

=>-Rules

∀∀∀∀-Rules

H |= A

H |= (A ∧∧∧∧ B)

Show each
conjunct (∧∧∧∧i)

H|=B

Show a stronger
goal (∧∧∧∧e1)

H |= (A ∧∧∧∧ B)

H |= A

J1: A holds
if A ∧∧∧∧B holds

Safety Case Templates for ∧∧∧∧-Rules

Show derivation of
the implication (�e)

H |= (A�B) H |= A

H |= B

Safety Case Templates for =>-Rules

H |= A (t x)

H |= ∀∀∀∀x A(x)

J1: t x is an
arbitrary
fresh object

Show for any
arbitrary fresh
object (∀∀∀∀i)

J1: x can be
replaced by t x

Show for all
objects (∀∀∀∀e)

H |=∀∀∀∀x A(x)

H |= A (t x)

Safety Case Templates for ∀∀∀∀-Rules

H |= (A ∨∨∨∨ B)

Show at
least one
case (∨∨∨∨1)

H |= A

H |= C

J1: C holds if either
{A} or {B} holds

H U {A} |= C H U {B} |= C J2: A
assumed
from A ∨∨∨∨B

Show each case
separately (∨∨∨∨e)

J2: B
assumed
from A ∨∨∨∨B

H |= (A ∨∨∨∨ B)

Safety Case Templates for ∨∨∨∨-Rules

H U {A} |= B

H |= (A�B)

J1: {A} can be used
as hypothesis to
prove B

Assume temporary
hypotheses to show

conclusion (�i)

Figure 1: Safety Case Templates for Natural Deduction Rules

Conjunctions. The rules for conjunction introduction and elimination directly represent the intuitive
interpretation of conjunctions: ifA is true andB is true, then evidentlyA∧B is true as well (∧-i), and
if A∧B is true, then bothA andB must be as well (∧-e1 resp. ∧-e2). The∧ -introduction rule can
be converted directly into a safety cases. For the∧-elimination rule, the strategy is to show a logically
stronger goal: we can concludeA (respB) if we have a proof ofA∧B.

Disjunctions. Any disjunction can be introduced as long as one of the disjuncts is already known i.e.,
if A (resp.B) is true, then evidentlyA∨B is true as well. In the safety case, a goalA∨B is constructed,
which is justified by the subgoalA (resp. B) via the strategy∨-i1 (resp.∨-i2).

In disjunction elimination, we only know thatA∨B holds, but not which ofA or B is true, so that we
need to reason by cases to concludeC from A∨B, i.e., separately consider each of the two cases for the
disjunction to be true. In the first case we thus assumeA together with the available hypotheses and try
to deriveC, in the second case we assumeB together with the available hypotheses and try to deriveC.
If both cases succeed, we can concludeC. The safety case fragment makes this argument explicit, and,
in particular, explicitly justifies the use of the respective asssumptions in the two cases.

Implications. The implication elimination follows the standard pattern but in the introduction rule we
again temporarily assumeA as hypothesis together with the list of other available hypotheses, rather than
deriving a proof for it. We then proceed to deriveB, anddischargethe hypothesis by the introduction

3

Deriving Safety Cases from Machine-Generated Proofs Basir, Fischer and Denney

of the implication. The hypothesisA can be used at given in the prove ofB, but the conclusionA⇒ B
no longer depends on the hypothesisA after B has been proved. In the safety case fragment, we use a
justification to record the use of the hypothesisA, and thus to make sure that the introduced hypotheses
are tracked properly.

Universal quantifiers. The ND proof rules for quantifiers focus on the replacement ofthe bound
variables with objects and vice versa. For example, in the elimination rule for universal quantifiers, we
can conclude the validity of the formula for any chosen object tx.

In the introduction rule, however, we need to show it for an arbitary but fresh objecttx. If we can
derive a proof ofA, wherex is replaced by the objecttx, we can then discharge this assumption by
introduction of the quantifier. The safety case fragments record this replacement as justification.

4 Hypothesis Handling

An automated prover typically treats the domain theoryD and the certification assumptionsA as hy-
potheses and tries to deriveD∧A∧P⇒ C from an empty set of hypotheses. As the proof tree grows,
these premises will be turned into hypotheses, using the⇒- introduction rule (see Figure 1). In all other
rules, the hypotheses are simply inherited from the goal to the subgoals. However, not all hypotheses will
actually be used in the proof, and the safety case should highlight those that are actually used. This is
particularly important for the certification assumptions.We can achieve this by modifying the template
for the⇒- introduction. We can distinguish between the hypotheses that are actually used in the proof
of the conclusion (denoted byA1, ...,Ak) and those that are vacuously discharged of the⇒- introduction
(denoted byA1, ...,Ak,Ak +1, ..,An).
We then use two different justifications to mark this distinction.
Note that this only a simplification of the presentation and does
not change the structure of the underlying proof, includingthe
validity of the original goal. It is thus different from using a
relevant implication[1] under whichA⇒ B is only valid if all
of the hypotheses A are actually used.

H U {A1,..,Ak} |= B

H |= A1…∧∧∧∧Ak ∧∧∧∧ Ak+1∧∧∧∧…AN � B

J1: {A1,..,Ak} used to
prove B Assume temporary

hypotheses to show
conclusion (�i) J1: {Ak+1,…,AN } not

used to prove B

In order to minimize the number of hypotheses tracked by the safety case, we need to analyze the
proof tree from the leafs up, and propagate the hypotheses towards the root. By revealing only these
used hypotheses as assumptions, the validity of their use inderiving the proof can be checked easier.
In our work, we also highlight the use of the external assumptions that has been formulated in isolation
by the safety engineer. External hypothesis typically is derived from the program by a trusted software
component implementing the safety policy. We track the number of external hypotheses to check the
validity of their use in deriving the proofs.

5 Proof Abstraction

We illustrate our approach to proofs found by the Muscadet [9] theorem prover during the formal certifi-
cation of the initialization safety of a component of an attitude control system as an example. Muscadet
is based on ND, but to improve performance, it implements a variety of derived rules in addition to the
basic rules of the calculus. This includes rules for a dedicated equality handling axiomatically, as well
as rules that the system builds from the definitions and lemmas and that correspond the application of
the given definitions and lemmas. While these rules make the proofs shorter, they also make them more
opaque and cluttered with technical detail, which makes them in turn more difficult to understand. This
partially negates the original goal of using a ND prover. Here we plan to optimize the resulting proofs by
collapsing the instances of Muscadet’s book-keeping rules; grouping similar rules that are basedon the

4

Deriving Safety Cases from Machine-Generated Proofs Basir, Fischer and Denney

same reasoning strategies e.g., arithmetic and partial order reasoning rules; identifying and restucturing
the similar patterns in the resulting proof presentation structure.

6 Conclusions

We have described an approach whereby safety case is used as a”structured reading guide” for the safety
proofs. Here, assurance is not implied by the trust in the ATPs but follows from the constructed argument
of the underlying proofs. However, the straightforward conversion of ND proofs into safety cases to be
far from satisfactory as they typically contains too many details. In practice, a superabundance of such
details is overwhelming and unlikely to be of interest anyway so careful use of abstraction is needed [5].

The work we have described here is still in progress. So far, we have automatically derived safety
cases for the proofs found by Muscadet prover [9]. This work complements our previous work [2]
where we used the high-level structure of annotation inference to explicate the top-level structure of
such software safety cases. We consider the safety case as a first step towards a fully-fledged software
certificate management system [4]. We also believe that our research will result in a comprehensive safety
case (i.e., for the program being certified the safety logic,and the certification system) that will clearly
communicate the safety claims, key safety requirements, and evidence required to trust the software
safety.

Acknowledgements. This material is based upon work supported by NASA under awards NCC2-1426 and
NNA07BB97C. The first author is funded by the Malaysian Government, IPTA Academic Training Scheme.

References

[1] A.R. Anderson and N. Belnap.Entailment: the logic of relevance and necessity. Princeton University Press,
1975.

[2] N. Basir, E. Denney, and B. Fischer. Constructing a Safety Case for Automatically Generated Code from
Formal Program Verification Information.In SAFECOMP’08, pages 249–262, 2008.

[3] E. Denney and B. Fischer. Correctness of Source-Level Safety Policies . InProc. FM 2003: Formal Methods,
2003.

[4] E. Denney and B. Fischer. Software Certification and Software Certificate Management Systems (position
paper).Proceedings of the ASE Workshop on Software Certificate Management Systems (SoftCeMent ’05),
pages 1–5, 2005.

[5] E. Denney, J. Power, and K. Tourlas. Hiproofs: A Hierarchical Notion of Proof Tree. InProceedings of
the 21st Annual Conference on Mathematical Foundations of Programming Semantics (MFPS XXI), volume
155, pages 341 – 359, 2006.

[6] M. Huth and M. Ryan.Logic in Computer Science Modelling and Reasoning about Systems, volume 2nd
Edition. Cambridge University Press, 2004.

[7] T. P. Kelly. Arguing Safety - A Systematic Approach to Managing Safety Cases. PhD thesis, University of
York, 1998.

[8] N. G. Leveson.Safeware: System Safety and Computers. Addison-Wesley, 1995.

[9] D. Pastre. MUSCADET 2.3: A Knowledge-Based Theorem Prover Based on Natural Deduction. InIJCAR,
pages 685–689, 2001.

[10] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle.ACM, 1965.

5

	Introduction
	Formal Software Safety Certification
	Converting Natural Deduction Proofs into Safety Cases
	Hypothesis Handling
	Proof Abstraction
	Conclusions

