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UNIVERSITY OF SOUTHAMPTON

ABSTRACT
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Doctor of Philosophy

by Mohamed Qasem

In this thesis, we introduce a novel approach to solving MAX-SAT problems. This

algorithm clusters good solutions, and restarts the search from the closest feasible con-

figuration to the centroid of each cluster. We call this method Clustered-Landscape

Guided Hopping (CLGH). In addition, where clustering does not provide an advantage

due to the non-clustered landscape configuration, we use Averaged-Landscape Guided

Hopping (ALGH). CLGH is shown to be highly efficient for finding good solutions of

large MAX-SAT problems. Systematic studies of the landscape are presented to show

that the success of clustering is due to the learning of large-scale structure of the fitness

landscape. Previous studies conducted by other researchers analysed the relationship

between local and global minima and provided an insight into the configuration of the

landscape. It was found that local minima formed clusters around global ones. We

expanded these analyses to cover the relationship between clusters, and found that local

minima form many correlated yet distant clusters. In addition, we show the existence of

a relationship between the size of the problem and the distance between local minima.

To rule out other possibilities of this success we test several other population based

algorithms, and compare their performances to clustering. In addition, we compare with

solo-search algorithms. We show that this method is superior to all algorithms tested.

CLGH produces results that might be produced by a solo-local search algorithm within

95% less time. However, this is not a standalone technique, and can be incorporated

within other algorithms to further enhance their performance.

A further application of clustering is carried out on the Traveling Salesman Problem

(TSP) in the discrete domain, and Artificial Neural Networks (ANN) using backpropa-

gation for the purpose of data classification in the continuous domain. Since TSP does

not show a clustered landscape configuration we find that ALGH is an effective method

for improving search results. Preliminary results are shown indicating that extensions

of the proposed algorithm can give similar improvements on these hard optimisation

problems.
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Chapter 1

Introduction

Propositional satisfiability is a well known and studied problem. The main body of liter-

ature consists of phase transition analyses (Mitchell et al., 1992; Zhang, 2001; Crawford

and Auton, 1996), landscape analyses (Parkes, 1997; Zhang et al., 2003; Parkes, 2001b),

and methods for solving them (Davis and Putnam, 1960; Crawford and Auton, 1993;

Stephan et al., 1996; Marques-Silva and Sakallah, 1999; Zhang et al., 2001). The analysis

started with the focus on a single characteristic of the satisfiability problem, i.e., phase

transitions, and gradually progressed into more comprehensive landscape analysis. In

this thesis, we shed some light on previous studies and attempt to broaden these anal-

yses further. We also propose a novel approach for exploring the landscape of solutions

of large scale satisfiability problems more efficiently.

Although our main contribution is a new search method, the landscape analyses are

invaluable on their own. They provide a substantially more expansive picture than pre-

viously reported. A great effort went into discovering the configurations of solutions

through hundreds of hours of empirical tests, and via the statistical analysis of hun-

dreds of thousands of data points. Moreover, we made these analyses more concrete by

modeling the data points. As a proof of concept we took advantage of our analysis by

introducing a new method of search.

This new method, which we call Landscape Guided Hopping (LGH) capitalises on the

structure of the solution space. We observed that local solutions of satisfiability problems

group together forming clusters. Within these clusters, better and better solutions tend

to gravitate towards the centre of these clusters. The most recent attempts at exploiting

these structures looked at the solution space as a single cluster (Zhang et al., 2003). It

seems that the analysis carried by previous researchers did not identify these multiple

clusters. However, even with one cluster they were able to obtain better results. We

show that with the Clustered-Landscape Guided Hopping (CLGH) method we are able

to outperform standard local search algorithms and the state of the art by a clear

margin most notably on random MAX-3-SAT problems. To show this we performed a

1



Chapter 1 Introduction 2

comparison with over 30 different local search algorithms. We have outperformed them

all in the quality of the solution and the time it takes to find a better solution. This

work has been developed into a Windows based software that was placed on the Internet.

It has been downloaded and used many researchers around the world. Not only do we

provide the algorithm within this software, but we also developed the fastest GSAT and

WALKSAT search algorithms, see sections B.1 B.2 in the Appendix.

To see if LGH applies to other problems it was applied to another NP-Hard Problem.

The main problem we analysed was the well-known Traveling Salesman Problem (TSP)

(Applegate et al., 2006). Many methods were developed to solve this problem. One that

stands out is offered by (Helsgaun, 2006). The goal was not to outperform these methods,

but to explore the degree of effectiveness of clustering. The structural analysis performed

on maximum satisfiability cannot be directly implemented on this problem. In addition,

the implementation details are significantly different between the two. Although it

did not appear that these two problems shared the same clustered structure of the

satisfiability problem. However, the traveling salesman problem did appear to have a

single cluster that can still be utilized to improve results using Averaged-Landscape

Guided Hopping (ALGH).

The previously mentioned problems were combinatorial optimization problems. They

are discrete in nature. As a final experiment of CLGH, we applied it to a continuous

problem. The goal was to reduce the Mean Squared Error (MSE) of an Artificial Neu-

ral Network (Haykin, 1999) when classifying data sets by improving the weights of the

network. Different methods have been developed to optimise the weights of an artifi-

cial neural network. We chose backpropagation (Rumelhart et al., 1986) as a testing

ground. Here too, we showed that the weight in some problems can be optimized using

CLGH. However, examining one problem in the continuous domain is not sufficient to

demonstrate that CLGH works. More problems need to be tested, and further landscape

analysis should be performed. Despite this, it is a step in the right direction.

One of the most important aspects of LGH is the application of clustering or averaging

after performing several local searches. The stage at which clustering or averaging is

applied is crucial to the success of the method. Although the exact stage of application

has not determined theoretically, some empirical analyses have been done to show its

importance. This point is discussed more thoroughly in the conclusion and is left as an

open question for further research.

The structure of the thesis is as follows: in the next chapter we introduce propositional

satisfiability, discuss the NP-Complete concept, methods used for solving SAT and MAX-

SAT problems, and the structure of SAT and backbones. This work is mostly based on a

review of literature. In Chapter 3 we examine the number of flips required to reach local

solutions, and the probability of finding local solutions using a local search procedure and

complete-neighbourhood search. Moreover, we show the existence of a phase transition
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even for local search. We compare these results with the phase transitions obtained

by complete methods. The majority of papers were concerned with the effect of exact

algorithms on satisfiability problems. Some tested local search at and around the phase

transition (Parkes, 2001a, 1997). We shed some light on the relationship between the

phase transitions and local search with a slightly different approach. We will show

that local search behaves on maximum satisfiability problems in the same way exact

algorithms do on satisfiability problems when searching for local optimums.

In Chapter 4 we take the analysis a step further. We perform a comprehensive study of

the landscape looking for structures that we can exploit in the search. This is done on

relatively small problem sizes. We analyse the relationship between quasi-global solu-

tions, and local and quasi-global solutions. We model the solution landscape, and draw

conclusions on its nature. We follow this with the application of the CLGH approach

on large problem instances, chapter 5. The method we propose combines hill-climbing

and K-means clustering to efficiently explore solutions. We also compare this new ap-

proach to several algorithms such as Genetic Algorithms and Univariate Estimation of

Distribution Algorithms to show that averaging of solution clusters is very different from

these methods. We also compare our approach to state of the art algorithms, and show

that our algorithm is superior to them all. In comparison with Backbone guided search,

CLGH achieves 14.5% improvements in the results. When CLGH is compared with the

top local searchers, CLGH achieves same quality results in less than 95% of the time

alloted for the local searcher. Not only does our algorithm outperforms other algorithms,

but we will show that clustering of solutions can be used in conjunction with other local

searchers to improve their results too.

In Chapter 6 and 7 we go a step further to test how well LGH applies to other problems.

We start with the Traveling Salesman Problem as a discrete combinatorial optimization

problem, and then move to Artificial Neural Networks in the continuous domain. These

experiments will show that although CLGH is not as effective as in the case of Maximum

Satisfiability, ALGH does provide a new way of solving these problems. We also discuss

possible reasons for clustering in CLGH being not as effective in these cases.

Finally, we conclude and briefly discuss future work that needs to be done to understand

how to maximise gains in other problems. This approach is new, and much is left to be

studied. It needs further investigation of when and how to apply it with local search.

More will also be discussed on the landscape of solutions in an effort to understand if

clustering would be a preferred tool over other algorithms.

1.1 Contributions

This work has culminated into three publications:
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• Qasem, M. and Prügel-Bennett, A. (2009). Learning the Large-Scale Structure of

the MAXSAT Landscape Using Populations. Evolutionary Computation, IEEE

Transactions on (In print).

• Qasem, M. and Prügel-Bennett, A. (2009). Improving Performance in Combina-

torial Optimisation Using Averaging and Clustering. In EvoCOP, pages 180-191.

• Qasem, M. and Prügel-Bennett, A. Complexity of MAX-SAT Using Stochastic

Algorithms, in Proc. Annu. Conf. Genetic Evol. Comput. (GECCO), 2008, pp.

615-616.



Chapter 2

Propositional Satisfiability

Propositional Satisfiability or Boolean Satisfiability is fundamental in solving many

problems in the fields of Artificial Intelligence, mathematical logic, and combinatorial

optimizations. Some of these areas are directly related to practical problems such as

Electronic Design Automation (EDA) (Marques-Silva and A. Sakallah, 2000), which in-

clude Automatic Test Pattern Generation (Larrabee, 1992), path delay faults (Chen and

Gupta, 1996), Field Programmable Gate Array routing (Gi-Joon et al., 1999), crosstalk

noise analysis (Chen and Keutzer, 1999), and functional vector generation (Fallah et al.,

1998). These types of problems, such as combinational logic circuits, are first reduced

to SAT expressions using algebraic methods, and then a solution is found using different

search methods (Marques-Silva and A. Sakallah, 2000).

2.1 The Satisfiability (SAT) Problem

A SAT expression f is composed from a set of m clauses in conjunction, C1∧C2∧...∧Cm,

where each clause Ci is formed by the disjunction of Boolean variables, X1, X2, ..., Xn or

their negation, where Xi ∈ {0, 1}. Here, we use 0 to represent false, and 1 to represent

true. This form of the conjunction of clauses and the disjunction of literals (variables

and their negation) is called Conjunctive Normal Form (CNF). The SAT problem asks if

there exists a truth assignment X such that the expression is true. The vector notation

X represents a string of 0 and 1 configurations. If the number of literals in each clause

is k then the problem is called k-SAT. When k ≥ 3, then k-SAT becomes NP-Complete.

Maximum Satisfiability, on the other hand, is a generalization of SAT. Where SAT is a

decision problem, MAX-SAT is an optimization one. The goal in MAX-SAT is to find

an assignment X such that the number of satisfied clauses is a maximum. MAX-k-SAT

is NP-Hard for k ≥ 2. The MAX-SAT problem is described in Equation 2.1.

5
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σ = max
X∈{0,1}n

m∑

i=1

Si(X) (2.1)

Where σ is the cost, and Si is a 1 if the clause is satisfied, and 0 if the clause is unsatisfied.

Another way of looking at this is by expressing the cost of MAX-SAT as the minimum

number of unsatisfied clause as in equation 2.2.

c = min
X∈{0,1}n

m∑

i=1

Zi(X) (2.2)

Where c is the cost, Zi is a 1 if the clause is unsatisfied, and a 0 otherwise. Current

literature uses the costs interchangeably in their interpretations of the results. We will

allow ourselves the same level of flexibility when necessary.

Weighted MAX-SAT is yet another generalization of MAX-SAT. A weight wi is associ-

ated with each clause in the satisfiability expression. While the goal of MAX-SAT is to

find the maximum number of satisfying assignments, the goal in weighted MAX-SAT is

to find the maximum sum of the weights for the satisfied clauses (Wah and Yi, 1997),

Equation 2.3.

ρ = max
X∈{0,1}n

m∑

i=1

wiSi(X) (2.3)

2.1.1 Non-Deterministic Polynomial Time Problems

Non-Deterministic Polynomial time (NP) refers to the set of decision problems that can

be solved in polynomial time with a non-deterministic algorithm, e.g. see (Garey and

Johnson, 1979). The polynomial time that is mentioned in this definition refers to the

idea that if a solution was somehow offered, the verification of the solution can be done

in polynomial time. Finding an optimal solution to this set of problems requires at the

worst case an exhaustive search through the entire solution space using a deterministic

algorithm. Unfortunately, as far as we know, to implement a non-deterministic algo-

rithm using a deterministic one requires an exponential time in the worst case. An

NP-Complete problem denotes a problem that is of the NP class, and all other problems

in its class can be transformed to it in polytime. Also, finding a polynomial solution to

one problem means polynomial solutions can be found for all NP-Complete problems.

Non-deterministic polynomial time hard (NP-Hard) problems are the class of problems

that are at least as hard as the hardest problem in the NP-Complete class. Since MAX-

SAT is not a decision problem it automatically falls outside the NP class. No longer

is the problem asking if there exists a solution that satisfies the formula. Instead the
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question is, what is the maximum number of satisfiable clauses? Compare a systematic

search that traverses the 0 and 1 tree in an effort to solve a SAT problem with one that

tries to solve a MAX-SAT problem. In SAT, we can prune the search tree as soon as

single clause is not satisfied. Having a single clause unsatisfied in the MAX-SAT search

does not necessarily amount to directly pruning the tree. Instead the condition would

have to be that the number of unsatisfied clauses found so far is less than the one that

was found previously. In practice, this makes MAX-SAT much harder than SAT.

SAT is known to be NP-Complete for k ≥ 3 (Cook, 1971). When k ≤ 2, the SAT

problem is in P. However, MAX-k-SAT for k ≥ 2 is NP-Hard. Having SAT in the

NP-complete set of problem does not necessarily make all instances of it hard to solve.

Assuming P 6= NP , it is just that some problems require a superpolynomial number of

truth assignment tests to guarantee finding a solution. In other words, the complexity of

exhaustive search algorithms that attempt to solve NP-Complete SAT problems require

an order 2n/h tests, where h is a constant.

The importance of the SAT problem not only stems from its relationship to real world

problems, but due to its representational simplicity of NP-Complete problems it has

received the attention of many researchers. Historically, it was the first problem proven

to be NP-Complete (Cook, 1971).

2.2 Methods for Solving SAT and MAX-SAT

There are two types of approaches that are applied to solving SAT or MAX-SAT prob-

lems, and they fall into two categories: complete methods that find optimum solutions

mainly via depth first search, and incomplete methods that find optimal or near optimal

solutions mainly through local search methods. Both complete and incomplete methods

use exact search methods (these that do not incorporate probabilistic heuristics, and

which include some form of a systematic search algorithm), probabilistic heuristics or

a combination of both. A list of solvers have been included in the a survey in (Gomes

et al., 2008). We will discuss some of these in here.

A fundamental complete procedure that guarantees finding solutions to SAT or MAX-

SAT problems is the Davis-Putnam-Logemann-Loveland (DPLL) algorithm (Martin

et al., 1962). The method is also known as a modified form of Backtracking algorithm.

In backtracking a search tree comprising of all combinations of the assignments of X is

traversed. The individual values Xi of X are either assigned values of X ∈ {0, 1}, or

they are unassigned. The initial cost of the expression f is considered only with the full

assignment of X. Once the first cost ct has been determined using a full depth search,

a chronological backtrack is performed, the subsequent cost is computed at every node,

and the search tree is pruned if the new cost ct+1 is greater than the lowest cost found

so far, ct. This is how branch and bound is applied to MAX-SAT. With SAT, the tree
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is pruned as soon as a clause is unsatisfied since the goal is to find X that satisfies f .

DPLL, on the other hand, systematically searches every possible Boolean combination of

X through backtracking while reducing the CNF expression by a process of elimination

of unit clauses. Unit clauses are clauses that have all their variables assigned values

except one. In MAX-SAT, unit clause elimination is no longer applicable making the

problem considerably more difficult. The DPL procedure was introduced in 1960, and

it was later modified, DPLL, in 1962 (Martin et al., 1962; Davis and Putnam, 1960). To

date, it is used as the foundation for the most effective complete algorithms.

Although DPLL is a clever method for finding solutions to satisfiability problems, its

systematic traversal of the NP problem renders it ineffective with large problems. Many

methods have been designed to incorporate a modified version of DPLL as part of their

search engines, and, in fact, have been turned into applications that are used in the Elec-

tronic Design Automation (EDA) industry. Some such methods include Tableau (Craw-

ford and Auton, 1993), TEGUS (Stephan et al., 1996), BCP (Zabih and McAllester,

1988), GRASP (Marques-Silva and Sakallah, 1999), and zChaff (Zhang et al., 2001).

Hybrid methods that use both exact and probabilistic methods to achieve complete

solutions are abundant. A simple form takes a probabilistic procedure as a precursor

to DPLL, e.g., the Two-Phased Exact algorithm (Borchers and Furman, 1999). In this

method a lower bound to the number of satisfied clauses is found using GSAT (Selman

et al., 1992), a probabilistic procedure, in the first phase. In the second phase, DPLL

is applied to find costs larger than the lower bound. Another more complicated method

relies on three different procedures: unit propagation (as in DPLL) based on nonlinear

integer programming, look ahead based on linear programming (LP) to estimate the

largest number of satisfiable clauses and dynamic weight ordering (Zhao and Zhang,

2004).

Incomplete methods do not guarantee optimality. They rely on heuristic procedures to

search for solutions in satisfiability problems. Although they are categorized as local

searches, analysis of their effectiveness on small problems, i.e., problems with a rela-

tively small number of variables, have shown that they almost always converge to global

maxima rapidly (Selman et al., 1994; Parkes and Walser, 1996; Gent and Walsh, 1993;

Zhang et al., 2003; Selman and Kautz, 1993).

The first inception of a local search for random 3-SAT came in the form of a greedy hill-

climb1 search called GSAT (Selman et al., 1992). GSAT starts with a random assignment

of X, and changes the Boolean assignment of a variable Xi that yields the most number

of satisfied clauses. This process is repeated a set number of times. In SAT, if a

satisfying assignment is found, the procedure is stopped, otherwise it is restarted with

another initial random assignment. However, in MAX-SAT the procedure is restarted an

1Most literature looks at SAT or MAX-SAT problems in terms of the minimum number of unsatisfied

clauses as apposed to the maximum number of satisfied clauses. A hill-climber algorithm should more

appropriately be called descent in this case.
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unspecified number of times while keeping track of the best local optimum2. This greedy

approach has been the building block for lots of other incomplete methods. Methods

such as WALKSAT (Papadimitriou, 1991), WSat/G, WSat/SKC (Parkes and Walser,

1996), UnitWalk (Hirsch and Kojevnikov, 2005), BGWALKSAT (Zhang et al., 2003),

and Novelty (McAllester et al., 1997) are examples of methods based on it. Variations

of this greedy approach include random walks, unit clause elimination, and variable

greediness.

Another stochastic local search approach that is quasi-greedy, yet not related to previ-

ously mentioned methods, is Simulated Annealing (SA) (Kirkpatrick et al., 1983). SA

is a modification of a hill-climber that allows the searcher to occasionally make a move

which decreases the number of satisfied clauses. This allows the searcher to escape from

local minima in which a hill-climber would normally get stuck. The probability of mak-

ing such a move is controlled by the “annealing temperature” which is typically reduced

over time. Consequently, SA initially behaves similarly to a random walk, allowing most

moves, but over time reduces the probability of making moves that maximizes the cost

until it resembles a hill-climber.

Another powerful method for finding solutions to satisfiability problems is Tabu search

(TS). This method is based on two main concepts: adaptive memory and responsive

exploration (Glover and Laguna, 2002). In contrast to memoryless systems such as

hill-climbing algorithms or simulated annealing, TS uses memory to prevent the search

from moving to a region that has already been explored. This, again, prevents the

search algorithm from getting trapped in local minima. It differs from Backtracking

also by adaptively storing information as opposed to inflexibly branching through all

possibilities. Reactive Search (RS) method (Battiti and Protasi, 1997), and Iterated

Robust TABU Search (IRoTS) (Smyth et al., 2003), are two examples of TS, both are

used for solving MAX-SAT problem.

2.3 Population Based Algorithms

The methods mentioned earlier are solo-search algorithms. Another category of search

algorithms is based on populations. These include Genetic Algorithms (De Jong and

Spears, 1989; Boughaci et al., 2004), Particle Swarm Optimisation, Ant Colony Opti-

misation (Villagra and Barán, 2007), and Quantum Evolutionary Algorithms (Layeb

and Saidouni, 2008; Xiaoyue et al., 2008). All of these methods were applied to the

satisfiability problem with limited success. Usually, they are applied to small problems,

and even then they have not been shown to outperform solo-search algorithms on the

2The term “local optimum” refers to an assignment that is obtained by the search in a particular

locality, and that this assignment cannot be improved upon by the search method any further. However,

the “best local optimum” is the best cost local optimum that was obtained through several searches

starting from different initial points and ending at different localities.
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whole. In fact, the program that has consistently outperformed (or at least has been

on equal footing with) all population search algorithms is WALKSAT. We believe that

many researchers have abandoned this genre of research prematurely, because they have

not achieved substantial success against even the most basic of the solo-search algo-

rithms. This explains the dearth of published papers on population based algorithms

with regards to satisfiability.

Genetic algorithms (GA) have been applied to find optimal solutions in satisfiability

problems. Due to the simple binary representation that satisfiability problems possess,

it makes it easy for researchers to apply GA for solving them. A GA algorithm can

be applied to the problem via direct binary string representation of the assignment X

with the normal crossover and mutation operators (De Jong and Spears, 1989). Others

combine hill-climbing with GA to avoid having GAs prematurely converge to a local

minima (Boughaci et al., 2004). The procedure alternates between crossover in the

population and hill-climbing over the members of the population.

Ant Colony Optimisation (ACO) was applied to MAX-SAT problems by (Villagra and

Barán, 2007). This heuristic is inspired by the foraging behaviour of ant colonies.

The ant or agents iteratively construct candidate solutions through the guidance of

pheromone trails. With satisfiability problems, ACO cannot be directly implemented

in its native form. Here, ants look for a minimum cost path in which they lay their

pheromones. Appropriately, the problem is coded as fully connected construction graph

where the variables and their assignments, 〈Xi, Vi〉, are the nodes, and the edges con-

nect the variables that are in the clause. The desired optimum path is of length

m = {〈X1, V1〉, 〈X2, V2〉, ..., 〈Xn, Vn〉} such that 〈Xi, Vi〉 ∈ m and 〈Xi, Vj〉 /∈ m where

Vi 6= Vj . Each ant constructs a path or model, and sets a pheromone. The pheromone

evaporation procedure is simulated according to ACO rules. The results reported show

that ACO is outperformed by WALKSAT in some problems, and is competitive in other

problems. The authors of this paper claim that there has not been a successful ACO

algorithm for MAX-SAT problem prior to their work.

A more recent method is based on the Quantum Mechanics is called, Quantum-Inspired

Evolutionary Algorithm (QEA). It is based on quantum bits (qubits) and the super-

position of states. This method is also an evolutionary based algorithm, and requires

the processing of a number of quantum states in parallel. This algorithm was originally

developed by Kuk-Hyun Han and jong-Hwan Kim (Kuk-Hyun and Jong-Hwan, 2002),

and because it directly maps to satisfiability assignment it has been used for solving

MAX-3-SAT using QSAT (Layeb and Saidouni, 2008). In QSAT, QEA was directly

applied to the problem with the addition of a basic local search algorithm. The results

reported provided very little improvement if any over GSAT even on problems with a

maximum of 200 variables and 400 clauses. Another more enhanced version of QEA

is the Improved QSAT (IQSAT) (Xiaoyue et al., 2008). It was applied to 3-SAT. The

authors cited the Benchmark satisfiability problems obtained from SATLIB (Hoos and
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Stützle, 2007) for their tests, but there was no mention of the size of the problems used.

Regardless, the largest benchmark problem they could have used would not have exceed

250 variables with 1065 clauses. Their results show that WALKSAT performed either

equally as well or better.

One dominant feature of the majority of these population based algorithms is that they

incorporated a form of solo-search algorithm to enhance the search. On their own they

produce weak results. The main reason for employing evolutionary algorithms is because

they provide a way to explore the search space, while the solo-search algorithm exploit

outcomes. Doing away with solo-search algorithms makes the search impractical. We

have done some experiments on GA and Estimation of distribution in sections 5.4 and

5.2. We will show that unless these algorithms are hybridised with a local-search method

they become inefficient. Without local-search, the search becomes slow. This is mainly

due to the population size, and hence would easily lose the race.

2.4 Problem Sizes

In the majority of the previous search techniques, the problems examined were small.

Early research in this area was limited by less powerful computers with limited capacity.

Performing analyses on large scale problems was not feasible then. However, with more

powerful computers nowadays these obstacles should not exist. Despite the increase

of computing power, the problems examined remain small. This is due to the newer

methods relying on population based algorithms that still require a great of deal of

computational power. Having a multiple number of large assignments, and applying the

search operators on each assignment still requires more capacity and more computational

power. In comparison, solo-search algorithms do not require as much power and capacity.

As a consequence, comparisons can only be drawn between these types of algorithms on

smaller problems.

Another problem we believe why researchers still perform tests on small problems is

because most researchers still use the SATLIB benchmark library. It contains small

random problem instances. It has not been updated since 11/8/2000. This library

should be updated with larger problems to drive researchers into developing more so-

phisticated algorithms. The only experiments done on large scale problems was done on

the Backbone-Guided algorithm (discussed later). In our research, we worked on large

MAX-SAT problems, and we developed our own WinSATS application (talked about in

section 5.9). It can generate very large problems. We have used those problems to test

our novel approach. The problems tested here are much larger than what is reported in

current literature. We will discuss these results and Zhang’s results in Chapter 5.
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2.5 The Structure of Satisfiability Problems

The focus of both complete and incomplete algorithms has been on two main issues.

First, since satisfiability is an NP-Complete problem—hence time complexity for com-

plete algorithms grows super-polynomially with the problem size—most methods con-

centrated on finding solutions rapidly. This is especially necessary in real world applica-

tions with thousands of variables and hundreds of thousands of clauses. Second, most of

the literature investigated the structure of satisfiability problems to determine the most

difficult regions. This provided scientists with an understanding of the relationship be-

tween the ratio of the number of variables to the number of clauses, and their effect on

the complexity of the problem.

2.5.1 Generating Hard Satisfiability Problems

Studying the structure of satisfiability problems required the generation of random in-

stances of CNF formulas for benchmarking purposes. The best known method for gen-

erating hard satisfiability problems is known as the Fixed Clause Length (FCL) model

(Mitchell et al., 1992). Prior to the introduction of the FCL model, the random CNF

formulas that were generated were shown to be typically easy to solve (Mitchell et al.,

1992; Selman et al., 1992). In contrast, the FCL model was capable of generating prob-

lems that are hard to solve using complete and incomplete methods if a certain criterion

was met. In addition, FCL generated problems that are claimed to be representative of

real world problems (Selman, 1995).

The generation of hard random k-SAT or MAX-k-SAT formulas using FCL is straight-

forward:

• Generate m clauses by randomly selecting k different variables from n variables

for each clause.

• During the selection of the k variables, negate each variable with a probability of

0.5.

• Discard any duplicate clauses.

2.5.2 The Phase Transition

The phase transition is defined as the transition of the complexity of the satisfiability

problem from easy to hard and then to easy again for SAT problems or from easy to

hard for MAX-SAT problems. One caveat should be kept in mind with regards to this

definition: all literature reviewed for this report has analyzed the phase transition using
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depth first search algorithms. Applications of local search methods have been directed

to solving problems at and around the transition point. In addition, some have tested

for the existence of the phase transition (Parkes, 2001a, 1997). We will later extend this

definition to include local search heuristics on local optimums.

The phase transition in most SAT papers has been associated with the point where

50% of the randomly generated formulas are satisfiable. At this point the ratio of

the number of variables to number of clauses is α = m/n is 4.3. This was empirically

shown by Mitchell and Selman (Mitchell et al., 1992). Using emprical analysis they have

demonstrated that SAT problems follow an easy-hard-easy transition about that point.

Zhang, on the other hand, showed that with respect to MAX-SAT the problem follows an

easy-hard transition (Zhang, 2001). A more comprehensive study of the phase transition

was carried by Crawford and Auton (Crawford and Auton, 1996). Using millions of

instances of CNF formulas they have found that the transition point asymptotically

reaches 4.258.

There are two important points that have to be observed with respect to the transition

phase. One, the term phase-transition denotes an abrupt change in the properties of a

system. The transition phase in most SAT literature, however, has been associated with

the 50% point where the randomly generated problems gradually progress from mostly

satisfiable to mostly unsatisfiable, i.e., there is no immediate change. Yet the phase

transition analogy has been applied to the satisfiability problem because it does appear

to have a phase transition (in the abrupt sense) when the problem size becomes large

enough. Second, the phase-transition of the hardness of the problem is associated with

the 50% point, and that might not always be true. This association has been shown by

empirical results, and might just be coincidental.

It should be noted that the easy-hard-easy or easy-hard transitions refer to the complex-

ity of the problem. Researchers either considered the time by which an algorithm takes

to solve problems or the number of bit flips required to reach a solution. It is at the tran-

sition point, the critically constrained region, that the problem becomes computationally

prohibitive (Zhang et al., 2003).

2.5.3 Backbone Structures

There are three separate definitions of backbones for SAT and MAX-SAT (Zhang et al.,

2003; Zhang, 2001; Kilby et al., 2005; Parkes, 1997), but a more comprehensive definition

is found in (Prugel-Bennett, 2007): A backbone is defined as the set of variables that

remain fixed in all globally optimal solutions. Changing the value of one backbone

variable will not allow for finding an optimal solution (Zhang, 2001). Parkes (Parkes,

1997) refers to the set of frozen/backbone variables as the Unary Prime Implicates

(UPIs). These UPIs are the set of literals which are logically entailed by a satisfiability
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expression such that every solution of the expression makes these literals true.

Parkes has shown that, slightly below the phase transition, as the number of variables

increase, the percentage of the problems having UPIs decrease . The number of UPIs also

increase abruptly at a certain point when α is increased. Furthermore, the empirical tests

showed that the performance of WSAT is affected by the size of the backbone. Zhang

(Zhang, 2001) showed that the size of the backbones increases abruptly around α = 3.6,

and he also showed that the transition from a structure with almost no backbone to one

with a backbone correlates closely with the phase transition. The reason no backbone

structure is found below the critically constrained region is because of the diverse number

of optimal solutions found in such problems that diversify the configurations of the

solution assignments. As α gets larger, and becomes over-constrained the number of

solutions decrease, and the backbone becomes larger.

Zhang found that the number of optimal solutions decreased as α increased (Zhang,

2001). Then he related this to backbones, and he made the assumption that these few

optimal solution are clustered in a small region. In our experiments (Chapter 4) we

have shown that Zhang’s assumption is not entirely true. Although a great majority of

optimal solutions are clustered, there still exist optimal solutions that are further apart

in Hamming distance, and hence have different backbone arrangements.

Although finding a backbone structure is NP-Complete as proven by (Kilby et al., 2005),

using a pseudo-backbone as an estimation of a true-backbone was valuable in solving

over-constrained problems (Zhang et al., 2003). The pseudo-backbone was determined

by statistical analysis of many runs performed by a method based on WALKSAT called

BGWALKSAT.

A recent publication (Prugel-Bennett, 2007) contrasts backbones with a new, related

concept of Critical Backbones. A critical backbone is a subset of a backbone that lies

within the basin of attraction of the global solution. Once a set of critical variables

are found, finding the optimal solution becomes easy. This definition differentiates itself

from the definition of backbones which are independent of the neighbouring structure.

Using a toy problem and a hybrid-GA algorithm it was shown that the critical backbone

served as a vessel for faster convergence towards the global optimum. The Hybrid-GA

consisted of a hill-climbing algorithm coupled with selection and crossover.
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Phase Transition Analysis

The majority of the algorithms mentioned previously exploit hidden structures in SAT or

MAX-SAT problems. Researchers gathered empirical information, analyzed, modeled,

and improved their search procedures to obtain better results. Our work extends this

complexity analysis to more difficult MAX-SAT problems. These problems consist of

many variables and have a high clause to variable ratio. As a consequence of having many

variables complete methods could not be used for collecting statistical data. They are

not efficient enough to study large problems in a reasonable amount of time. Therefore,

we used local search methods for our tests.

3.1 Local Search and Phase Transitions

The time complexity and distributions of SAT and MAX-SAT problems have been thor-

oughly studied using complete or systematic procedures (Monasson et al., 1999; Mitchell

et al., 1992; Selman, 1995; Zhang, 2001; Crawford and Auton, 1996). However, the ma-

jority of phase transition experiments have been carried out using depth first or exhaus-

tive search procedures. A natural question to ask is whether this phase transition exists

for stochastic methods? Are phase transitions an inherent property of the structure of

SAT and MAX-SAT problems or are they influenced by the type of depth first search

algorithms as stated in (Monasson et al., 1999)? We investigate the effect of both the

number of variables and the phase transition on the performance of a simple stochastic

procedure.

An important study by Parkes (Parkes, 2001a) relating the complexity of WSAT, WALK-

SAT, and WSAT(PAR), Parallel WALKSAT, before the phase transition of random 3-

SAT problems. It has been shown that sequential WSAT solves problems in O(n) time

for α ≤ 3.8. It also shows that WSAT(PAR) requires O(log(n)2) on average to solve

instances at and below this region. We will attempt to look at and around the phase

transition in search for local optimums using a simple hill-climber algorithm.

15
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3.2 Local Search Procedure

To study the complexity of MAX-SAT using stochastic algorithms a simple descent

(or hill-climb) algorithm was used to find local minima, and to guarantee that a local

minima is reached an complete-neighbourhood search was implemented. The complete-

neighbourhood search is used to check if there exists a local optimum around a particular

assignment on a plateau. Although the search is exhaustive for points on the plateau,

the search is not a complete one in that it does not exhaustively search every possible

solution there is in the entire search space. It does not rise above the plateau increasing

the cost. Figures A.1 and A.2 in Appendix A show these two algorithms.

In the descent algorithm, a randomly chosen bit in the bit assignment X with cost c

is flipped yielding X
′, and if the cost c′ (i.e., the number of unsatisfied clauses) is less

than or equal to c then X
′ is kept. The descent is run until it finds the first assignment

that has a cost c′ which is less than or equal to c. After descent finds a better solution,

the complete-neighbourhood search is run on the resultant X
′ until either a better or

equal solution is found. If a better solution is found, then descent is run again until it

finds this next cost that was found by the complete-neighbourhood search. Both descent

and the complete-neighbourhood search are continuously run until the cost cannot be

improved further. This ensures that descent reaches a local minimum. In effect, the

complete-neighbourhood search acts as a explorer of solutions giving the hill-climber a

hint to resume or stop the search.

The descent algorithm used in our analysis is simple in that it capitalizes on both equal

and better costs. Other algorithms such as GSAT, WALKSAT, WSAT/G, WSAT/SKC,

UNITWALKSAT are known to perform better on SAT problems, but due their very

greedy design and their tendency to get stuck in local minima very quickly we avoided

them in our tests (Although, most methods implemented a random walk to avoid being

stuck in local minima). Furthermore, most other algorithms traverse the solution space

from the point of view of the unsatisfied clauses rather than the assignment X. They

choose to flip the bit assignment of a variable that is found in an unsatisfied clause. In

this simple descent we chose not to bias our bit flips on unsatisfied clauses. The only

bias was if the bit-flip resulted in an equal or better cost.

Also, in most other stochastic algorithms the maximum number of flips is set to a fixed

value. If an optimal solution was not reached before exhausting the maximum flips, X

was reset with a new random assignment, and the process is restarted again. Our goal

was to find the number of flips necessary to reach a local optimum, and to guarantee

that a local optimum was reached a complete-neighbourhood search was used to ensure

that. The decision to stop or continue is determined by the availability of solutions in

the locality.

The complete-neighbourhood search behaves the same way as descent except that it
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systematically searches through the entire neighbourhood of X
′ that was obtained from

the hill-climber for better solutions. Neighbours are considered at a Hamming distance

of 1 from each other. The complete-neighbourhood search starts with X
′, flips each bit

in X
′, and computes the cost c′. If the cost c′ is equal to c, then the new X

′ is stored

into a stack so that the costs of all of its nearest neighbours are searched later. Every

time X
′ is popped from the stack it is stored in to a hash table. This is done so that this

permutation of X
′ is not revisited. If at any point c′ was less than c, then the cost c′ is

returned so that the descent procedure can look for that particular solution or any other

solution that is equal or better. If, on the other hand, a better solution cannot be found

by the complete-neighbourhood search then X
′ is a local minimum. An illustration of

the complete-neighbourhood search is found in Figure 3.1.

The reason for having the complete-neighbourhood search is because hill-climbing as

described does not “know” if a local optimum is reached. Local search performs a blind

random flip of a bit which either decreases cost or retains it. The hill-climber does not

look a head to determine if there is a local optimum in the neighbourhood of solutions.

This investigation is done by the complete-neighbourhood search. It determines whether

there exists a better cost in the neighbourhood, and allows the hill-climber to look for it.

Once all possible neighbours of good solutions are exhausted, the hill-climber is notified

to stop.

3.3 Experimental Results

A great deal of the effort in analysing stochastic algorithms has been focused on SAT

problems (Selman et al., 1994; Parkes and Walser, 1996; Gent and Walsh, 1993; Zhang

et al., 2003; Selman and Kautz, 1993), and most of this work, although empirical in

nature, has been either geared towards rapidly finding optimal solutions, or they have

been limited in their scope to analysis around the phase transition of α = 4.3. This

was natural since the goal was to solve SAT problems efficiently, and the most trou-

blesome region for complete algorithms is located around α = 4.3. As a remedy for

the phase transition problem, faster stochastic algorithms have been applied to discover

solutions. We performed several experiments on random 3-SAT problems to study the

phase transition in relation to hill-climbing.

The best study available devoted to understanding the effects of the phase transition on

local search was done by (Parkes, 2002). The easy-hard-easy transitions of 3-SAT prob-

lems were determined using WalkSAT. In the easy-hard region a sequential WalkSAT

was applied. The number of flips were determined for fully satisfiable instances. In the

second easy region a parallel WalkSAT was applied with a target number of satisfied

clauses. Parkes found that below the threshold α ≈ 3.1 the number of flips grow linearly,

beyond this α ≈ 3.1 the flips grow super-polynomially. We aim to perform a similar
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Figure 3.1: Complete-neighbourhood search example. All neighbours with a Ham-
ming distance of 1 and cost of c are searched entirely. Starting from 100101, the two
neighbours 100111 and 000101 would be put on the stack. The stack would be popped
and the neighbour 000101 would be examined. Since one of the nearest neighbours was
a lower cost then the search would be halted. Although two lower costs are shown in

this illustration, the search is halted as soon as one of them is found.

tests with a slight difference. The number of flips will be determined for a range of

clause to variable ratios without a target value. The stopping criteria for the search is

if the local optimum was reached. This will be explained further next.

Using the FCL method, random formulas were generated for our analysis. We gener-

ated 20 random problem sets for each of the number of variables, starting from 20 to

150 variables in increments of 10. We also varied the number of clauses for each of the

variable increments such that the ratio α = m/n was between 2.0 and 10.0 in incre-

ments of 1. Each problem set was searched for local minima with 1 000 different initial

starting points, and the local minima were confirmed using the complete-neighbourhood

search. In total, the experiment was performed on 2520 random formulas where the hill-

climb and complete-neighbourhood searches were applied to each formula 1 000 times.

Although this number of random instances appears to be small, yet performing the

complete-neighbourhood search proved to be daunting both in CPU time and memory

requirements (this will be explained later). Another test was run for 20, 30, and 40

variables. These tests ranged from α = 2 to α = 10 in increments of 0.1. The number

of problem instances used in this experiment was 24 000.
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Figure 3.2: The average number of flips required to reach a local optimum. Note that
the order of the lines is not regular.

3.4 Polynomial Number of Flips

Our first tests focused on the number of flips required to reach a locally optimum solu-

tion. As mentioned, the local solution that is found in every descent is guaranteed to

be the best cost available in that region of search. Figure 3.2 shows the average and

Figure 3.3 median number of flips necessary to reach a local minimum. For each of the

results the number of variables was varied from 20 to 150, and the test was executed

for different values of α. The values of α that are not shown in Figure 3.3 and 3.2 are

α = 3, 4 and 5. For these values, we were able to generate data for up to 90 variables.

Beyond this point the memory requirements grew enormously despite the small amount

of flips that reached the final solution. Since complete-neighbourhood search was not

able to verify the best cost local minimum we omitted these results from these plots.

However, we will visit these partial results later.

There is a very clear distinction in the way time complexity of complete and incom-

plete stochastic heuristics behave with regards to the problem, i.e., the former is non-

polynomial, and the latter is polynomial in complexity in certain regions. Figures 3.2

and 3.3 show the growth of the number of flips with respect to the number of variables.

It is clear that to reach a local minimum only a polynomial number of flips was required.

In plotting a log-log graph of the averages and the medians, Figure 3.4 and 3.5, we de-
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Figure 3.3: The median number of flips required to reach a local optimum. Due to
the effect of the few very large flips on the averages, the median was plotted as well.

termined the degree of the polynomial to be approximately 2.64 for the average and

approximately 2.18 for the median. This is an important result since the complexity

of all depth-first search methods are equivalent in that they require 2n/h where h is a

constant.

It might not be reasonable to compare two results that are different in that one, the

complete procedure finds an optimal solution, while the other finds a local solution1.

This is true, and to give more meaning to these results, another measure is required.

This measure is the probability of reaching the best local optimum given a polynomial

search.

3.5 The Probability of Reaching Best Local Optimum

As a measure of confidence to determine how well a polynomial number of flips does with

regards to the best local cost obtained, we have determined the probability of reaching

such a solution with respect to the number of the variables. For 1 000 runs per problem

1We have performed tests on problems with up to 50 variable for different values of α using both

hill-climbing, and the branch-and-bound algorithm. In every instance we have tested we found that the

hill-climbing converged to global optima. Not only did we perform tests on random formulas generated

by FCL, but we also tested a great deal of the SATLIB benchmarking problem instances.
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Figure 3.4: A log-log graph of the average number of flips required to reach a local
solution.
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Figure 3.5: A log-log graph of median number of flips required to reach a local
solution.
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Figure 3.6: Probability of reaching the local optimum with respect to the number of
variables.

instance, we acquired the best local solution, and calculated the probability of finding

such minimum. The results of our experiments are shown graphically in Figure 3.6.

The graph shows a downward trend from a probability of 0.5 on average to a small

probability of around 0.1. It is clear that the probability of getting to the best local

solution decreases as the number variables increase; in problems with a small number

of variable solutions can be found with a high degree of certainty. As the number of

variables increases the best solution becomes harder to find. Notice that for different

values of α these probabilities do not differ much. The graph shows a narrow band of

probabilities for the different clause to variable ratio. The effect the number variables

has on the probability is discouraging since it suggests that hill-climbing becomes less

effective as the size of the problem grows via the number of variables. Yet in terms of

the ratio α hill-climb does appear to perform very well regardless of how large α gets.

This is true for large α’s beyond the phase transition, but, as we will see, around the

phase transition, descent will be affected in the same way as complete algorithms. Is

this result describing the difficulty descent faces in locating better solutions, or does the

structure of formulas change with the size of the problem such that the best solutions

become scarce?



Chapter 3 Phase Transition Analysis 23

3.6 The Phase Transition and Local Search

In analyzing different clause to variable ratios, α = m/n, it has been empirically estab-

lished that at approximately α = 4.3, the random formula becomes hard specially for

complete procedures (Mitchell et al., 1992; Selman, 1995; Zhang, 2001). What effect

does the phase transition have on stochastic procedures? Are stochastic methods less

susceptible to these regions, and therefore reliable in finding better solutions?

By looking back at Figures 3.2 and 3.3 we see that going back from α = 10 to α = 6

the complexity of the local search increases, and then returns to a low complexity when

α = 2. Also, the complexity around the phase transition becomes more pronounced

as the number of the variables increase. The plots of the average number of flips and

the median against the clause/variable ratio are illustrated in Figures 3.7 and 3.8. It is

evident that around the phase transition the average and median number of flip increase,

and even more so when the number of variables becomes larger. This illustrates the

difficulty hill-climbing faces as the number of variables increase around the transition

phase.

Unfortunately, we were not able to obtain data points for assignments of size 100 to 150

variables at α = 5; for the value of α = 5 the maximum we were able to reach was 90

variables. This is shown as a discontinuity in the curves at the α values of 4 and in

some cases 5. Even though the average number of necessary flips were not very high

(50 000 flips on average for 150 variables), yet the intense memory consumption by the

complete-neighbourhood search limited the acquisition of more data points. The memory

was depleted because the program saved each assignment that was tested. Saving the

assignments was done for two reasons. The first is to make sure that the assignment

is not visited again in cyclical fashion (through another assignment). The second is to

allow the program to go through all the neighbours of each assignment. Imagine the

same procedure being carried out using recursion. Except in this case we were using

hash tables to do the tracking.

The reason for the severe memory constraint is because of the large landscape of nearest

neighbours of equal costs. Mitchell (Mitchell et al., 1992) and Zhang (Zhang, 2001) define

the phase transition at the point where 50% of problems are satisfiable. Below this point,

the probability of having a problem satisfiable is highly likely, and in the instances where

a problem is fully satisfiable our local search stops on 0 unsatisfied clauses without further

investigating the region with complete-neighbourhood search. However, in those problem

instances that are not satisfiable, the number of local solutions of equal costs (usually one

unsatisfiable clause) is prodigious. Since the complete-neighbourhood search attempts

to find better solutions it stacks enormous number of solutions that eventually exhaust

the memory.

Since we were able to perform tests for problems with 20, 30 or 40 literals we conducted
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Figure 3.7: The average number of flips required to reach a local solution with respect
to the α ratio.
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Figure 3.8: The median number of flips required to reach a local solution.
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Figure 3.9: For 20, 30 and 40 variables the average number of flips were plotted
against different values of α.

a more detailed test around the phase transition. These tests were conducted on varying

values of α ranging from 2 to 10 in increments of 0.1 with 100 problem instances per

increment. We obtained the graph in Figures 3.9 and 3.10. This important result

demonstrates the behavior of local search around the transition point. It shows that

even local search finds the transition point difficult. In fact, local search follows easy-

hard-easy transition just as complete algorithms do.

Why is it that descent finds it difficult around the transition point? Descent starts

by finding global minima very easily below the phase transition, because below this

point there are large plateaus of global minima. As α is increased toward the phase

transition, the plateaus begin to rise above the global minima while slightly breaking

up. These broken up plateaus of local minima which are still relatively large compared

with global minima present descent with more room for sideway moves before descending

further. This greatly reduces the probability of finding better solutions, thus increasing

the number of flips. As α moves away from the phase transition, the plateau breakup

into even smaller regions creating more local minima. In this state, descent finds it easy

to reach a local optimum again.



Chapter 3 Phase Transition Analysis 26

2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

1000

α

M
ed

ia
n 

nu
m

be
r 

of
 fl

ip
s

N=40

N=30

N=20

Figure 3.10: For 20, 30, and 40 variables the median number of flips where plotted
against different values of α.



Chapter 4

Landscape Analysis

Can a population-based algorithm take advantage of global information about the fitness

landscape provided by its members to help it solve an optimization problem in a way

that cannot be achieved by a solo local search algorithm? This is a common assumption

of many users of evolutionary algorithms, however, there is rarely strong evidence that

this is the case. Of course, there may be other important ways in which a population

might be beneficial. For example, using a population may be advantageous because, by

searching different parts of search space, it may quickly find promising regions were it can

concentrate its search effort. Also crossover may be beneficial as a macro-mutation which

naturally anneals itself as the population converges. These other benefits may be very

significant, but they are different to and arguably less exciting than the possibility that

a population can learn about the large-scale structure of a problem and then exploit

this information to find superior solutions. Although there are a few artificially con-

structed problems that demonstrate that populations can in principle gain a significant

advantage by learning properties of the landscape (e.g. (Shapiro and Prügel-Bennett,

1997; Jansen and Wegener, 1999; Rogers and Prügel-Bennett, 2000, 2001; Watson, 2001;

Watson and Jansen, 2007; Prugel-Bennett, 2007)), there has been little unambiguous ev-

idence that this is the case for any naturally occurring optimization problem. We present

an algorithm which we will argue does precisely this for one of the classic combinatorial

optimization problems, MAX-SAT.

The algorithm we present here is a hybrid algorithm. We find many good solutions using

a local neighbourhood search algorithm. The solutions are clustered using a K-means

clustering algorithm. The configuration closest to the centroid of each cluster is then

used as a starting position for applying a second round of the local neighbourhood search

algorithm. The general framework by which multiple local searches are applied followed

by clustering or averaging, and then followed by another round of local search is called

Landscape Guided Hopping (LGH). The idea behind this method is that several local

searches provide guidance to some clustering, Clustered-LGH (CLGH), or averaging,

Averaged-LGH (CLGH), techniques, which then is used to hop into a point in the

27



Chapter 4 Landscape Analysis 28

solution space. This new point allows a local searcher to produce better results more

efficiently avoiding intermediate steps. This very simple algorithm finds remarkably

good solutions—we describe our tests of the algorithm in chapter 5.

Our interpretation of why LGH performs so well is that the fitness landscape (which

we take to be the landscape using the Hamming distance as a metric) consists of a

few global maxima (assignments of the variables that maximize the number of satisfied

clauses) positioned at different locations in the search space. The global maxima are

correlated, but not strongly. Around each global maximum there is a ‘galaxy’ of local

maxima. The closer the local maxima are to a global maximum the more likely they

are to have high fitness values. Although, these local maxima tend to be clustered

around global maxima they can still be quite far from each other in Hamming distance.

For example, they may well differ in 30–40% of their variables, which would mean in a

1 000 variable problems they may be at a Hamming distance of 300–400 from a global

maximum. We postulate that our local search algorithm finds good solutions (close

to, if not at, a local maximum). By clustering the solutions we pick out good solutions

centred around a global maximum (or, at least, around some very good local maximum).

By taking the configuration closest to the centroid we move close to the centre of the

galaxy which has many high quality solutions in its vicinity. These centroid solutions

usually are not very good, because the search space is extremely rugged. However, by

performing a local neighbourhood search we end up finding a solution which is almost

always superior to the previous solutions we found. The major contribution of this work

is to present evidence to support this picture.

As part of our algorithm, we needed a fast method for finding good local solutions for

relatively small problems. The classic local search algorithm for SAT and MAX-SAT

problems is GSAT which performs hill-climbing by exhaustively searching the entire

neighbourhood before choosing the neighbour that gives the best improvement in fitness.

As this will get stuck in a local maximum, a number of variants have been suggested,

most notably WALKSAT which alternates between GSAT moves and walk moves which

alleviates the algorithm from getting trapped in a local maximum. We compared this

algorithm with a basic hill-climber (BHC) where a neighbour is chosen at random, and

a move is made if the fitness is greater than or equal to the current fitness, otherwise the

current position is kept. This is shown to perform much faster than GSAT or WALKSAT

on small problems. Intuitively this is not surprising as tracking the neighbourhood at

each step is slightly more costly than flipping an assignment at random. We will show

later that for larger problems we have developed the fastest GSAT and WALKSAT

implementations.

In the next section, we briefly discuss MAX-SAT and describe how we generate the

instances used in our tests. We then present our study of local neighbourhood search

methods. This is followed in section 4.2 by a presentation of some studies on the land-

scape properties of small problems. Chapter 5 presents the results of a number of
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different algorithms on much larger problem instances.

4.1 MAX-SAT

MAX-SAT is one of the best studied optimization problems—in part because of its

association with SAT, which, besides from its theoretical importance, has a huge number

of practical applications. Although the number of applications of MAX-SAT are small

in comparison with SAT, nonetheless, it has been applied to design debugging of VLSI

and SoC cyles(Safarpour et al., 2007) and in Protein Interaction Inference (Ya et al.,

2005). A large amount of research has gone into characterizing the typical behavior of

random instances. Here, we also concentrate on random Fixed Clause Length (FCL)

instances (Mitchell et al., 1992). These consist of a set of m clauses where the clauses

consist of k = 3 literals (we take this to be a strict set rather than a multiset, so that

no clause is repeated). The literals in any clause all involve different variables. Every

allowable clause is chosen with equal probability. In practice we use the FCL method,

section 2.5.1, to generate these problems.

The phase transition has been investigated using statistical mechanics approaches (Monas-

son et al., 1999; Mezard and Zecchina, 2002). Although these are not rigorous, there is

a region around the phase transition where the calculation is believed to be exact in the

limit n→∞ (at least, it passes several stringent self-consistency tests and it gives predic-

tion in agreement with carefully conducted simulations). For small values of α = m/n,

the problem has a simple landscape corresponding to one very large cluster of satisfied

solutions which is easily reached by hill-climbing. Around the phase transition, the sta-

tistical mechanics calculation undergoes, so called, one-step replica-symmetry breaking

that is a signal for the existence of many local maxima weakly correlated with each

other. It is has statistically determined that solutions become clustered in the region

3.87 ≤ α ≤ 8.29 the solution space decomposes into clusters which are disconnected.

Away from the phase transition, one-step replica symmetry breaking no longer holds

and it is postulated that the system enters a state of full replica-symmetry breaking

(Montanari et al., 2004; Battaglia et al., 2004). Although there is no analytic solution of

the behavior in this region, full replica-symmetry breaking is taken to be an indication

of complex clustering of the local optima (Mézard et al., 2005). We focus on random

instances with α = m/n = 8, which is deep in the hard phase for MAX-3-SAT where

full replica-symmetry breaking is believed to hold. To investigate the structure of the

fitness landscape we have carried out extensive empirical studies.
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4.2 Landscape of Random MAX-3-SAT

In this section, we present some empirical observations on the fitness landscape of ran-

dom MAX-3-SAT for α = m/n = 8. These were carried out as part of a broader

investigation of the landscape of MAX-3-SAT, but here we only present results relevant

to our thesis. We studied instances up to size 100 by finding many local maxima. To

achieve this we used BHC starting from different, randomly-chosen, starting points. To

ensure that we had found a local maxima, after running the hill-climber with no im-

provements in many attempts we switched to an complete-neighbourhood search method

that checked all neighbours at the same cost as the current point, and then checked their

neighbours repeatedly, until either a fitter solution was found or else all neighbours at

the current cost had been searched, in which case we could be sure that we were at

a local maximum. By performing multiple searches on the same instances, we were

able to measure statistical properties of the local maxima. A common feature of all

the instances that we investigated was that the higher the fitness of the local maximum

the more likely we would find it. As a rule-of-thumb, we observed that the likelihood

of finding a local maximum roughly doubled each time we satisfied one more clause.

This result is not so surprising as it is easy to imagine why better local maxima could

typically have larger basins of attraction than less fit local maxima.

What makes MAX-3-SAT instances hard is that there are many more local maxima

than global maxima. Thus, even though the basin of attraction appears to be largest

for the global maxima, nevertheless, we are more likely to get trapped in a lower-fitness

local maximum because there are many more of them. The number of local maxima

appears to increase exponentially with the size of the instances, which makes finding a

global maxima increasingly less likely as the instance size becomes large. The exponent

describing the exponential growth is, however, rather small so even for systems of size

100 finding a global maxima is not difficult. At least, for problems up to this size we

were able to find the fittest local maxima multiple times. We postulate that these are

the global maxima, since if there were even a single maxima fitter than those we found

then we would expect to find it with high probability given the number of hill-climbs

we made (unless it had a very atypically small basin of attraction). We call our best

maxima found in this way, quasi-global maxima as we believe them to be the true global

maxima, although we have no proof of this. (For small problems, n ≤ 50, we could find

the true global maxima using a branch-and-bound algorithm. In every case, the best

solution found by performing multiple BHC were true global maxima. We also tested

problems with n = 100 from SATLIB and in every case we were able to find the best

solution for the problem using BHC). Note that if we were to look at much larger-sized

problems, then we would find each best solution only once or a very few times, in which

case we would have no grounds to argue that these are likely to be the global maxima.

The fact that we believe we can find all global optima for relatively large instances makes

this problem class very rich to study empirically.
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Figure 4.1: Shows a histogram of the Hamming distance between quasi-global maxima
for 50 instances of size n = 50, 75 and 100 variables and with a clause to variable ratio
of α = 8. There is a cluster of very close global minima below a Hamming distance
of 10. Also, a significant number of global minima are found at Hamming distances

equivalent to 30–40% of the variables.

We investigated the distribution of quasi-global maxima by examining the frequencies

of Hamming distances between all quasi-global maxima in an instance. In figure 4.1, we

show these frequencies averaged over 300 problem instances. To find the set of quasi-

global maxima we ran BHC followed by complete-neighbourhood search 5 000 times.

The histogram has a large peak at a Hamming distance approximately equal to 5%

of the total number of variables. This indicates a clustering of quasi-global maxima

around each other. However, the histogram has a large tail with a second peak at a

large Hamming distance away from the first. This is indicative of multiple clusters that

are weakly correlated with each other (if there was no correlation then the clusters would

be at a Hamming distance of n/2).

To demonstrate that the histogram is consistent with this picture. We generated clusters

using the following procedure. We chose a centre C = (C1, C2, . . . , Cn) where Ci ∈

{0, 1}, and a second centre C
′ = (C ′

1, C ′
2, . . . , C ′

n) was generated from the first by

randomly changing k variables where k is a uniformly distributed integer between 0 and

3 n/4. Thus on average, C and C
′, are separated by a Hamming distance 3n/8. We then

generated between 20 and 220 random strings centred around each of the two centres

at an average Hamming distance of n/10. We then computed the correlation between

all pairs of randomly chosen strings. This was then averaged over 100 samples. The

histogram of correlations is shown in figure 4.2. We observe a very strong similarity in
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Figure 4.2: Shows a histogram the Hamming distance between randomly chosen
points forming two clusters. The distance between each cluster is taken to be a uni-
formly chosen random variable between 0 and 3n/2. The graph is generated by averag-
ing over 100 samples. We note the strong similarity between this and Figure 4.1. This
similarity is shown in having a large main peak on the left side of the frequency plot,

and several other smaller peaks following the first.

the structure of this figure and figure 4.1 which lends support to the hypothesis that the

quasi-global solutions are themselves clustered around a few centres.

To illustrate how the lower-cost local maxima are clustered relative to the quasi-global

solutions, we measured the Hamming distance between the local maxima and the nearest

quasi-global solution. Histograms of this Hamming distance are shown in figure 4.3. In

these figures, we consider only those local optima at a cost of 4 and 8 away from the

global-maximum cost. We note that the higher cost solutions are closer on average to a

quasi-global maxima than lower cost solutions.

Figure 4.4 shows how the average Hamming distance between the local maxima and the

nearest quasi-global maxima varies as a function of the difference in the cost between

the local maxima and the quasi-global maxima. By scaling both axes by 1/n these

curves appear to collapse onto a universal curve. It is easy to understand why higher

cost solutions should be closely correlated on average with the quasi-global maxima

as local-optimum solutions represent good ways of maximizing the number of satisfied

clauses. Therefore, nearby solutions are also likely to satisfy many clauses. However,

what is perhaps more surprising is that even the solutions whose cost differs by one from

the quasi-global optima have a high average Hamming distance from any quasi-global

optima. Even for relatively small problems with 100 variables this average Hamming
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Figure 4.3: Shows a histogram of the Hamming distance between the quasi-global
maxima and local maxima with fitnesses 4 and 8 below the quasi-global maxima. As
the number of variables increase, the Hamming distance to the quasi-global maxima

also increase.
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Figure 4.4: The average Hamming distance between the quasi-global maxima and
the local maxima. As the gap in fitness between the quasi-global maxima and local

maxima decreases so does the average distance to the quasi-global minimum.

distance is around 18 which is sufficiently large that the probability of a stochastic hill-

climber reaching a global maximum from a local maximum is negligibly small. To be

more explicit if the Hamming distance between a local maxima and a better solution is

k, then a local search algorithm would typically have to explore every solution up to a

Hamming distance k before finding a better solution. The number of solutions in a ball

whose Hamming radius is strictly less than k is

k−1∑

i=0

(
n

i

)

which for n≫ k is O(nk−1/(k − 1)!) (even for small instances with n = 100 and k = 18

this is approximately 8 × 1018). Within this “Hamming ball of radius k” there will be

no solution better than the current solution (since by assumption the closest solution is

a Hamming distance k away). Thus there is no local gradient information to exploit.

There may be solutions of the same cost in this Hamming ball which are closer to the

global solution, but there is no way of knowing whether it is closer to or further from a

better solution than the current solution.

Although it is always dangerous to rely on low-dimensional pictures to understand what

happens in a high-dimensional space, nevertheless, we offer the following caricature of

our fitness landscape. We imagine the search space as being points on a ‘world’ where

the height of the points representing the fitness values. This is schematically illustrated

in figure 4.5. The good solutions lie in mountain ranges. The mountain ranges have
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hugely more foothills than high mountains. There are only a few mountain ranges in

this world and they are slightly correlated (e.g. all the mountain ranges might lie in one

hemisphere). The mountain ranges occupy only a very small proportion of the world.

As with real mountain ranges, higher solutions tend to lie in the middle of the mountain

ranges. Starting from a random position and hill-climbing we are likely to land up at a

foothill, just because there are so many of them. Finding a good solution through hill-

climbing alone will be very difficult. An alternative strategy is to perform a large number

of hill-climbs starting from different randomly-chosen positions. We could then take the

average of the solutions we find. This will put us in the centre of the hilly hemisphere.

Although, we are unlikely to be at a peak, if we perform a hill-climb we are likely to find

a superior solution than if we started from a random position. However, we can do even

better by clustering the solutions we find after performing hill-climbing. If we are lucky,

a cluster will correspond to a mountain range. The centres of the clusters corresponds

to the regions with many high mountains so if we restart hill-climbing from the centre

of a cluster we have a very good chance of finding a high quality solutions, Figure 4.6.

Of course, this picture fails in many ways. The search space is not continuous, but

is discrete. Furthermore, using a Hamming neighbourhood the topology of the search

space is an n-dimensional hypercube. The high-dimensionality makes it harder for low-

cost solutions to be local maxima since they have a large number of neighbours. Also

the set of costs is discrete so that there is no gradient information. Nevertheless, as we

will see an algorithm based on clustering seems to perform very well which suggests that

this simple picture might not be too misleading.
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Figure 4.5: Caricature of the Fitness Landscape showing the clustering of good solu-
tions.

Figure 4.6: The concept of using K-means to finding high-quality solutions.



Chapter 5

CLGH: A Novel Approach to

Solving Satisfiability

To exploit the structure of solutions presented in the previous chapter we use Clustered

Landscape Guided Hopping (CLGH), and the mechanism used for clustering of solutions

is the K-means algorithm (Hartigan and Wong, 1979). In K-means, a number of points

s are divided into K clusters. In the typical case, when the n-dimensional points are in

R
n space, the sum of the squares are minimised. In this case, the points are n-cubed in

{0, 1} space. The sum of the Hamming distances are minimised. The K centroids that

are found for these clusters are used as starting points for Hill-Climbing.

We will see that these points provide good starting points in the search for solutions.

This method is compared with a number of different solo-search and population based

algorithms, and it is found that CLGH produces better solutions on large scale MAX-

3-SAT problems. This approach is shown to be effective at different points around the

phase transition. In addition, different ways of applying CLGH will be discussed to show

that only a single application of clustering is required to find good starting points.

5.1 Experimental Setup

We have tested our proposed algorithm on large instances (6 000 to 18 000 variables) of

MAX-3-SAT for α = m/n = 8. We are unable to compare our algorithm with most

other algorithms that appear in the literature since the other studies were performed

on much smaller instances (typically around 100 variables). For such small instances

we found that running the basic hill-climber a few times would almost always find a

solution we were unable to improve on and which we believe to be the global optimum.

This made CLGH approach redundant. The only work we are aware of which studied

similar sized instances to those used here is by Zhang (Zhang, 2004). Our algorithm

37
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substantially out-performs the results given in that paper.

To provide some comparators to the CLGH approach we ran a number of different

algorithms. The main purpose of these comparators was to rule out other possible

explanations of why the approach we are taking is successful. The CLGH algorithm we

propose has not been highly optimized. By careful tuning we would expect that we can

achieve better solutions. However, the purpose of our experiments is to demonstrate

that a significant improvement in performance is obtained by clustering.

We generated random MAX-3-SAT instances using the method described in section

2.5.1. We considered problem instances ranging in size from 6 000 to 18 000 variables in

increments of 2 000 variables, and with α = m/n = 8. These are difficult problems since

they are in the over-constrained region. For each increment we generated 100 problems

instances.

In all tests we carried out we started by performing 1 000 hill-climbs starting from

different random starting configurations. We used the basic hill-climbing strategy. The

number of iterations used on a problems with n variables is T (n) = 5n/2 + 5000. That

gives 20 000 iterations for 6 000 variables and 50 000 for 18 000 variables. The number

of iterations were increased with the number of variables so that BHC would be given

more opportunities to find better quality solutions. With the growth of the number of

variables it becomes more difficult for a local search algorithm to reach local maxima,

although the goal was not necessarily to reach a local maximum, but only to find a

good solution. The best result for the 1 000 hill-climbs averaged over all 100 problem

instances is shown in the second column of table 5.1.

We then tested a number of different strategies to boost the performance obtained from

these initial 1 000 points. The testing procedure we carried out is shown schematically

in figure 5.1. As a baseline we repeated the basic hill-climber for another T (n) steps on

all 1 000 search points. These results are shown in the third column of table 5.1. This

second round of hill-climbing shows that the solutions found in the first round were still

some way away from being locally optimal.

5.2 CLGH and ALGH

We next performed CLGH using the K-means clustering algorithm on the 1 000 search

points found by the initial hill-climbing. These points were not tested for uniqueness.

However, because the problems were large, i.e., 6 000 to 18 000 variables, the number

of local solutions are also large, and hence the probability of landing in the same local

optima is very small. This algorithm starts by assigning a random string on the n-

cube to each of K initial “centres” (note that, in this section, K is used to denote the

numbers of centres in K-means clustering and should not be confused with the number
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Table 5.1: Comparison of different algorithms. Column 1 shows the problem size, while columns 2–6 give the lowest number of unsatisfied variables
found by different algorithms. These are BHC, BHC+BHC (baseline), BHC+K-Means+BHC (CLGH), BHC+Averaging+BHC (ALGH), hybrid-GA
and BHC+Perturb+BHC. Columns 7 and 8 show the increase in performance over the baseline achieved by using CLGH and ALGH respectively.
The tests were carried out on random MAX-3-SAT problems with α = 8.0. Each test was performed on 100 problem instances for each number of

variables.
#Vars First BHC Second BHC (1) K-Means/ BHC (2) Average/ BHC (3) hybrid-GA Perturb/ BHC (2) - (1) (3) - (1)

6000 1971.77 1448.35 1370.61 1385.82 2429.5 1447.92 77.74 62.53

8000 2944.03 2037.26 1913.26 1943.38 3691.22 2038.78 124 93.88

10000 3464.7 2614.65 2456.67 2507.56 4908.87 2617.19 157.98 107.09

12000 4235.8 3247.74 3051.09 3125.79 6218.57 3247.4 196.65 121.95

14000 4999.14 3892.06 3652.23 3761.51 7533.33 3895.38 239.77 130.55

16000 5711.81 4496.69 4226.15 4368.23 N/A N/A 270.54 128.46

18000 6551.83 5256.28 4932.41 5129.12 N/A N/A 323.87 127.16
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Figure 5.1: Schematic diagram of the set of tests carried out and reported in table
5.1.

of variables in each clause). Each of the 1 000 points is then assigned to the cluster with

the nearest centre. The centres are then updated to be the configuration which best

represents the points in the cluster, in the sense that it minimises the mean Hamming

distances to the set of points in the cluster, C, i.e.

X = argmin
X

1

|C|

∑

Y ∈C

H(X, Y ) (5.1)

where H(X, Y ) is the Hamming distance between configurations. This is equivalent to

rounding the average bit value of each site up to 1 or down to 0. The points are reas-

signed to the nearest centroid and the process is repeated until there are no changes.

This usually happens after five to ten iterations. The computational cost of K-means

clustering is small compared with the time required to do hill-climbing. Once the cen-

troids have been computed, a new starting point is found by rounding each component

of the centroid to obtain a feasible solution.

In the results we summarise in table 5.1, we used K = 100 clusters. This was decided

after a small amount of experimentation. This is probably not optimal, but fits with

our decision not to fine tune CLGH. A second round of hill-climbing is carried out from

the solutions obtained from the 100 centroids. The results obtained after this procedure

are shown in the forth column of table 5.1. In every case there is a considerable gain in

performance compared to the baseline, even though the baseline involved considerably

more work (because the second round of hill-climbing reported in column 3 of table

5.1 was carried out on all 1 000 points rather than 100 used in the K-means clustering

algorithm). The gain in performance compared to the baseline is shown in column 8 of
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table 5.1.

We have compared CLGH with ALGH, where we randomly selected 10 points and find

the centroid of the group (for this problem the centroid can be found by taking the

average assignment of each variable and rounding). This was repeated 100 times to

give 100 centroids so as to give a fair comparison with the CLGH method. A second

cycle of hill-climbing is then carried out. The results are shown in the fifth column of

table 5.1. This again produced a substantial gain in performance compared with the

baseline (the gain is shown in the last column of table 5.1), however, these gains are

smaller than those obtained by CLGH, particularly for large number of variables. This

provides further empirical support for the claim that the global maxima are clustered

(although we have shown clustering for instances of size 100, these results are for much

larger instances). It also shows that even the mean of all the good solutions provides a

much better starting point than a random starting point.

We want to show that these results are not due to clustering in CLGH or averaging in

ALGH acting as a macro-mutation which allows the search to escape out of local maxima.

To do so we applied random perturbations of 0.1%, 1%, 2%, 5% and 10% of the variables,

and then repeating hill-climbing. We found that doing this gave us worse performance

than the baseline algorithm. Even with 0.1% the random perturbation appears slightly

detrimental (see column 7 of table 5.1). These results are not so surprising, since it is

clear from comparing the results of the baseline algorithm with the results after the first

hill-climb (columns 2 and 1 respectively) that we are far from being stuck in a local

maximum.

As a final test, we compared our algorithm against a hybrid genetic algorithm. The

hybrid genetic algorithm combined hill-climbing with selection and two-parent crossover.

A population of 100 individuals was used. We used Boltzmann selection where we chose

each member of the population with a probability proportional to exp(−β Fi/σ) where

Fi is the fitness of individual, i; σ is the standard deviation of the fitness values in the

population; and β controls the selection strength. Various values of β were tried, but

this did not strongly affect the results. Uniform, single-point and multi-point crossovers

were tried. The best results were obtained with single-point crossover. Column 6 of

table 5.1 shows the best results we were able to obtain using a GA. Although we do

not claim that all the parameters were optimally chosen, the results obtained by the

hybrid-GA are disappointing compared to the other algorithms. The reason for this is,

in part, due to the fact that the GA was not given sufficient time to converge. In the

next subsection, we analyse the performance of CLGH when it is run for longer times.

Even then, we will see that the CLGH approach has a considerable advantage over a

GA.

This may seem surprising as two-parent crossover might superficially appear to be doing

something similar to averaging, however it is important to appreciate the difference. This
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is easily seen by considering a simple example. Consider a unitation problem consisting

of a binary string X = (X1, X2, . . . , Xn) with Xi ∈ {0, 1}, where the fitness is a function

of the number of 1’s in the string. Defining the proportion of ones as m =
∑n

i=1 Xi/n,

the fitness is given by

F (x) =





m m < m1

m1 m1 ≤ m < m2

m−m2 + m1 m2 ≤ m

This is shown in figure 5.2 for the case when m1 = 0.75 and m2 = 0.95.
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Figure 5.2: Fitness function of the Iceberg problem. This problem is easily solved by
averaging good solutions, but very hard for a hill-climber or genetic algorithm.

We call this the Iceberg problem because the configurations with m > m2 can be viewed

as a small iceberg in a large ocean of solutions with cost m1. For large n a hill-climber

starting from a random string with fitness close to 0.5 will climb the slope until it reaches

a state where 75% of the variables are 1’s. When it reaches the plateau it has no heuristic

information. As the density of states falls off very fast as a function of the number of

1’s the hill-climber will, with high probability, lie close to the edge of the plateau with

approximately 75% of the variables equal to 1. A population of hill-climbers will also

lie very close to the edge of the plateau. If we were now to perform crossover on two
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individuals then again with high probability the child would have approximately 75%

of its variables equal to 1. This would be a slightly more efficient way to explore the

plateau than hill-climbing alone as most random mutation moves will, on average, move

away from the all 1’s string (since there are more 1’s than 0’s a random mutation is more

likely to attempt to change a 1 to a 0 rather than a 0 to a 1). Crossover, by contrast

does not change the number of 1’s on average. This concentration effect of crossover has

been discussed in closely related models previously (Shapiro and Prügel-Bennett, 1997;

Jansen and Wegener, 1999; Rogers and Prügel-Bennett, 2000, 2001). Nevertheless, it

still takes an exponential amount of time to find the global maximum using crossover.

In contrast if we average a population of say 100 individuals that have undergone hill-

climbing and round up to 0 or 1, then, for any reasonable size problem, the resulting

solution will, with overwhelming probability, consist of the all 1’s string.

Clearly, this is a contrived problem, its purpose is to demonstrate that averaging is very

different to crossover. This is true even if we used multi-parent crossover (Syswerda,

1993) or a uni-variate estimation of distribution algorithm (EDA), as we will see in

section 5.4, where, despite averaging, the expected time to solve the problem shown in

figure 5.2 would still grow exponentially. Clearly, the landscape of MAX-SAT is much

more rugged on short length scales than the Iceberg problem. On very large length

scales, the landscape of MAX-SAT differs because it possesses multiple global maxima

some distance apart. However, on some intermediate scale this model appears to capture

some important properties of the landscape of MAX-SAT–that is, the globally optimal

solutions lie at the centre of more easily found local optima.

5.3 Temporal Behavior

In the section above the behavior of the hybrid genetic algorithm was particularly poor.

This was due to the limited number of BHCs allowed for each algorithm. When given a

longer time the hybrid-GA performs considerably better. In figures 5.3 and 5.4 we show

the average performance of parallel-BHC, CLGH and the hybrid-GA. Each algorithm

was run for 3 minutes and the results were averaged over 100 instances of randomly

generated MAX-3-SAT instances with 6 000 and 10 000 variables at α = 8. In parallel-

BHC, we run 10 BHCs in parallel and show the best of these (ten runs were chosen

as it appeared to give good performance in preliminary tests). CLGH was run starting

with an initial population of 100 where we performed 27 000 BHCs before performing

K-means clustering with K = 10 clusters and then running BHC starting from the

10 centroids after they had been rounded to the nearest feasible solution. No tuning

was performed on the K-means clustering algorithm. Finally we tested a hybrid-GA

with a population of size 10 where we performed uniform crossover, Boltzmann selection

with a selection strength of β = 0.1 and BHC. The parameters for the hybrid-GA were

chosen after performing a large number of preliminary tests. As can be seen the GA
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outperforms BHC given enough time, but does not beat CLGH on average, (although

in some instances it does).
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Figure 5.3: Comparison of BHC, genetic algorithms and CLGH as a function of CPU
time run on 100 randomly generated MAX-3-SAT instances with 6 000 variables at
α = 8. The large jop in fitness in the CLGH method after around 10 seconds marks

the point where K-means clustering is carried out.

For larger problem instances the speed of CLGH becomes more pronounced so that for

problems with 18 000 variables run for 5 minutes CLGH gave better performance than

a hybrid-GA on every one of 50 instances that was tested. The average performance of

the three methods are plotted in Figure 5.5. These results demonstrate that the benefit

of performing CLGH persists even after some time. We attribute this to the fact that

K-means has moved the searcher to a part of the search space where there are more high

quality solutions.

5.4 Comparison with the Estimation of Distribution Algo-

rithm (EDA)

One concern that could be raised with regards to way we used ALGH with MAX-SAT

is that it closely resembles the way Univariate Estimation of Distribution Algorithms

(UEDA) operate. In UEDA a population of λ individuals are randomly generated. The

fitness of these individuals is calculated. Then, via a particular selection criteria, a set



Chapter 5 CLGH: A Novel Approach to Solving Satisfiability 45

10 20 30 40 50 60 70 80 90 100 110 120

2000

2500

3000

3500

4000

Time (s)

U
ns

at
is

fie
d 

C
la

us
es

 

 
BHC
GA
K−Means

Figure 5.4: Comparison of BHC, genetic algorithms and CLGH as a function of CPU
time run on 100 randomly generated MAX-3-SAT instances with 10 000 variables at
α = 8. The large hop in fitness in the CLGH method after around 10 seconds marks

the point where K-means clustering is carried out.

of µ individuals are chosen from the population. The probability distribution for these

µ individuals is found, and either some or all of population is replaced by generating

new individuals from the µ individuals. Applying this algorithm to MAX-SAT would

give the impression that UEDA and ALGH are the same. However, we will show by

empirical evidence that they work differently.

Estimation of Distribution algorithms come in different forms. In general they are like

GAs in that they are population based. However, EDAs do not employ the crossover or

mutation operators in general. The only resemblance they have with GA is that they

incorporate a selection criteria based on the fitness of the individuals in the population.

Conversely, EDA is different from GA because it utilizes a statistical paradigm that

allows for the production of the next generation of individuals (Qingfu, 2004).

We use the Univariate Marginal Distribution Algorithm with hill-climbing also known

as the Population Based Incremental Learning (PBIL) (Baluja and Caruana, 1995) in

our experiments. The mechanism of how these algorithms work is simple. Using µ

individuals, a probability vector is created based on the number of 1s and 0s across

the individuals. This generalizes the information obtained from the population. This
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Figure 5.5: Comparison of BHC, genetic algorithms and CLGH as a function of CPU
time run on 50 randomly generated MAX-3-SAT instances with 18 000 variables at
α = 8. The large hop in fitness in the CLGH method after around 10 seconds marks

the point where K-means clustering is carried out.

probability vector can then be used to set variables of the new individuals based on the

proportions of 1s to 0s or their probabilities. Each of the variables in the individuals is

considered independent from the other and hence univariate. This makes the compu-

tations much simpler especially since we are avoiding the cumbersome computations of

the joint distributions of variables (Conzalez et al., 2000).

In principle, Multivariate Marginal Distributions Algorithms (MMDA) could solve MAX-

SAT Problems more efficiently than UMDA. However, tests on small problems were

performed using hierarchical Bayesian Optimisation Algorithm (hBOA) hybridised with

GSAT (hBOA+GSAT) (Pelikan and Goldberg, 2003). Hybrid-hBOA was compared

with GSAT and WALKSAT on random MAX-3-SAT problems obtained from SATLIB.

The authors report that WALKSAT performed slightly better than hBOA+GSAT on

random problems, and solved all instances of Graph colouring MAX-SAT problems of

which none was solved by WALKSAT.

One of the main problems of GAs and UMDA is premature convergence. This happens

because the population gradually seeks a particular optimum. However, solutions have

been proposed to diversify the search. Some of which are based on multiple populations
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interacting with each other occasionally (Baluja and Caruana, 1995). This, however,

imposes a computational burden on the search algorithm having to work on different

populations. Our K-means clustering algorithm in CLGH does precisely this with min-

imum computational overhead, especially since it is a one time operation that directs

the search into the most promising regions of the solutions space.

We performed experiments that compare the performance of Hill-Climbing, GA, EDA

and CLGH. In this test, we used the BPIL algorithm. We start with a population of 20

individuals, then we apply a round of hill-climbing to each member of the population.

After which, we evaluate the fitness of the individuals, and select the top µ = 5 indi-

viduals. We average the variables across the individuals to obtain the probability of a

1 for each variable. consequently, an entirely new population is created by setting the

variables of the new individuals based on the probability vector. Finally, another round

of hill-climbing is performed, and the process is repeated.

After experimenting with several trials we have adjusted the taking-of-turns between

PBIL and hill-climbing to obtain the best performance possible. We show from these

results that in the case of MAX-SAT, there are varying performance levels of PBIL

impacted by varying values of α. Figures 5.6, 5.7, 5.8, and 5.9 show this comparison

for 6 000 variables with values of α = 4, 6, 8, and 10. We see that as α increases from 4

to 10 the performance of PBIL becomes better than GA (around the phase the phase

transition). As α increases, the performance of PBIL lags behind to GA (The more noisy

line represents the performance of GA). In all cases, CLGH offers the best performance

level in comparison.

Although the graphs show that there is a clear advantage to using CLGH, it could be

argued that the single application of K-means followed by hill-climbing could have give

it this advantage. We could, for example, generate a new population in EDA after the

first round of hill-climbing, and follow that with another local search. We argue that the

decisive jump that we obtain from K-means cannot be replicated via the application of

a single selection of individuals and the creation of new individuals via the probability

distribution. We have tested for this, and found that the performance becomes even

worse. We attribute this to the way the next population is created. In CLGH, when the

individuals (using the same terminology used in EDA) are clustered and averaged they

are then rounded to the nearest 0 or 1. Here, we are precisely hopping very near the

centre of each cluster. In contrast to EDA, by creating several individuals for the next

generation from the probability vector, the probability of generating the centre point

becomes smaller as n grows larger. The probability of generating the centre point of the

cluster follows equation 5.2.

P (X) =

n∏

i=1

P (Xi) (5.2)
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Comparison between BHC, GA, K−Means and EDA as a function of CPU time
 run on 10 randomly generated instances with 6000 variables at α = 4
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Figure 5.6: Supplementary results all for N = 6000 and 10 problem instances at
different α = 4 values.

Given that X1, X2, ..., Xn are independent. Where X is a variable, and n is the number

of variables. The probability of getting the best starting point for the next round of

hill-climbing becomes exceedingly small as the number of variables becomes large.

Another problem with EDA is the selection criteria. Two main ways are implemented in

the selection process. Either the top fittest µ individuals are selected, or the individuals

are selected with a probability proportional to the fitness based on Boltzman selection.

In both cases, the fittest individuals have more chances of being selected. This, as

we have seen in the case of GA, is not always an efficient procedure for combining

individuals. The main problem with this picture is that the individuals chosen might

belong to several regions of the solution space with very different variable-configurations.

This would raise the prospect of having the new population land far away from where

the best solutions tend to be.

In CLGH it is quite a different story. Instead of mixing the population to create the

next starting points regardless of the arrangement of the solutions as in the case of GA

and EDA, CLGH groups similar solutions with each other to create individuals from

each group within the group, hence lead to better solutions. In the beginning of the
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Figure 5.7: Supplementary results all for N = 6000 and 10 problem instances at
different α = 6 values.
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Figure 5.8: Supplementary results all for N = 6000 and 10 problem instances at
different α = 8 values.
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 run on 10 randomly generated instances with 6000 variables at α = 10
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Figure 5.9: Supplementary results all for N = 6000 and 10 problem instances at
different α = 10 values.

search, EDA and GA could mix individuals from different regions of the solution space.

As the search draws to an end, both algorithms usually converge to a particular region

of space.

5.5 Peculiarities in the Results

It can be easily seen that there are inconsistencies between the performance of the

Hybrid-GA as reported in Table 5.1 and in Figure 5.3. While the tables report results

that show poor performance for Hybrid-GA, the graph shows its results to be competitive

with CLGH. The difference lies in the starting point of each. Despite having the hybrid-

GA use the best 100 assignments obtained from an initial hill-climb, it did not perform

better than when it started from a random genepool of assignments. One would think

that the former would outperform the latter due to the hill-climb advantage.

Upon observing the behavior of the Hybrid-GA in both cases, we found that although it

seems advantageous to have the GA start with good assignments it is quite indifferent

to either. When several high cost assignments are obtained via hill-climbing they might
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differ in as much as 40% of their variable makeup. With the crossover of the first

generation, these differences are amplified, and hence worse costs. In fact, the results

of the first generation crossover are so weak that they return the assignments to costs

that are on average as bad as a random assignment. After the initial disruption caused

by the first crossover, the Hybrid-GA slowly improves on the results by focusing the

assignments to a particular region of space. It is as if the Hybrid-GA started from

random assignments (though they were subjected to hill-climbing) while the CLGH

started right after the first round of hill-climbing.

The rate at which the results are improved is dependent upon the number of hill-climbs

between each crossover. In the first case, only several thousand hill-climbs were per-

formed which gave the Hybrid-GA less of a chance to improve on the results. Contrast

this with K-means in CLGH which focuses the assignments such that the next hill-climb

improves the results drastically; after clustering only a few thousand hill-climbs were re-

quired to enhance the solutions. In the second, however, millions of hill-climbs took

place giving the GA much more room to adjust the assignments.

5.6 Comparison with Local Search Results

Our algorithm performs well on large problem instances. This makes it difficult to

compare with previous results reported in the literature, which tend to concentrate on

small instances. The only work we are aware of which studied similar sized instances

statistically (i.e. gave results of multiple runs on multiple problem instances) where those

given by Zhang (Zhang, 2004). Our algorithm substantially out-performs the results

obtained by Zhang. As an example, using BG-Dyna-WALKSAT, Zhang reports that for

6000 variables and α = 8 he reduced the number of unsatisfied clauses to 1 597.36. In

comparison, we have obtained 1 370.61 unsatisfied clauses using CLGH. This is a 14.2%

improvement over his results. Also, to provide a comparison with state-of-the-art local

search algorithms we have compared our algorithms to those implemented in UBCSAT1,

which provides a fast implementation of a range of modern algorithms for MAX-SAT.

We tested all algorithms provided by UBCSAT using their default settings. Results are

given on 5 randomly drawn MAX-SAT instances with 18 000 variable and α = 8. Each

algorithm is run five times. We report results for the five best algorithms from UBCSAT

on these instances. These algorithms were steepest ascent-mildest descend (SAMD),

iterated robust TABU search (IROTS), history with random walk GSAT (HWSAT),

greedy SAT with random walk (GWSAT), and GSAT. In each case, we run for 5 min-

utes. The performance is compared with BHC run for 3.5 minutes and two CLGH runs.

In both cases we run 100 BHCs for 200 000 iterations and then used K-means to find

5 centroids (again the choice of 5 centroids was chosen after some preliminary experi-

1http://www.satlib.org/ubcsat/
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mentation). This stage took no more that 15 seconds. We then run a hill-climber on

each centroid for 30 seconds (thus the total amount of time spent by these algorithms

was 2.75 minutes). The difference between the two tests was that in the first one we

used our BHC algorithm after K-means while in the second test we used the GSAT

from UBCSAT. The results are shown in table 5.2. As can be seen, CLGH substantially

out-performs all other algorithms in UBCSAT despite giving them more time. Note that

in table 5.2 we report the specific methods used in the CLGH framework. Here we used

BHC/K-Means/BHC, and BHC/K-Means/GSAT.

Algorithm Overall average Time (minutes)

SAMD 3696.4 5
IROTS 3583.2 5
HWSAT 3678.2 5
GWSAT 3636.1 5
GSAT 3667.4 5
BHC 3667.1 3.5

BHC/K-Means/BHC (CLGH) 3572.6 2.75
BHC/K-Means/GSAT (CLGH) 3527.8 2.75

Table 5.2: Average performance of different search strategies on 5 random instances
of 18 000 variable MAX-SAT problem with α = 8.

Most of the algorithms seem to plateau after 5 minutes. However, GWSAT (a fast

implementation of WALKSAT) continues to find good solutions. We found that it gave

similar solutions as CLGH using BHC/K-means/GSAT which were obtained in 2.75

minutes if it was run for around 1 hour. We can see from table 5.2, that the best CLGH

improves the cost by 1.55% over the best local searcher IROTS even in 55% of the time

given. However, if we take into account the actual time it would take GWSAT to reach

the same quality of solution reached by CLGH (which is 1 hour), then CLGH reaches

the solutions in 95.4% less time. No doubt some of the algorithms we have tried may

have run faster had we optimised their parameters. We have tried to compensate for

this by allowing the other algorithms more time. Furthermore, we have not attempted

to fine tune the parameters of our own algorithm. The fact that we have obtained such

good performance, provides support for our contention that the CLGH method explores

the landscape in a fundamentally different way to existing algorithms.

As a final set of tests we have performed longer runs on larger problem instances,

n = 20 000 and 50 000, at α = 6, 8 and 10. In these experiments, we used GSAT fol-

lowed by K-means followed by WALKSAT. We run 1 000 000 GSAT 200 times. We then

performed K-means clustering with K = 5. This was followed by 40 000 000 WALKSAT

moves on each of the 5 centroids. We report the best result of the centroid. Although

we take the same number of GSAT and WALKSAT moves, the majority of time is

spent performing WALKSAT, which takes considerably more time to complete a move

than GSAT. We used our own implementation of GSAT and WALKSAT. We compare
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this with UBCSAT’s GWSAT run for 100 000 000 moves and our own implementation

of WALKSAT for 1 000 000 000 steps. our WALKSAT appears to have the same per-

formance as UBCSAT’s GWSAT, but is considerably faster. We give timings for the

algorithms run on an Intel Core 2 Quad Q6600 with 4 GB RAM running Windows

Vista. We also compare with UBCSAT’s IROTS run for 30 000 000 steps. These results

are shown in table 5.3. We observe that CLGH, despite being given considerably less

time, out-performs 109 iterations of WALKSAT, which in turn outperforms the two top

UBCSAT algorithms.

For the two top performing algorithms CLGH with (GSAT/K-Means/WALKSAT) and

Our WALKSAT, the number of unsatisfied clauses is reduced by 3.4% in 60% less flips

for 20 000 variables with α = 6, 0.7% unsatisfied clause at α = 8 and 1.07% unsatisified

clauses at α = 8. For 50 000 variables and α = 6, the number of unsatisfied clauses was

reduced down by 1.2%, 0.2% unsatisfied clauses at α = 8, and 1.5% unsatisfied clauses

at α = 10. This was not an average over many problems, but they were example tests.

We reiterate that these small differences in unsatisfied clauses are not to be taken lightly.

To satisfy these very few clauses takes many more flips by a solo-local search algorithm.

Code running our algorithm is publicly available in a package WinSATS2. We have also

made available the random instances we used in the experiments reported above. These

can be found from the link given.

It is important to emphasise that even though there seems to be a small difference in

the number of unsatisfied clauses between CLGH and WALKSAT in some experiments,

even satisfying this many clauses requires an enormous amounts of flips by WALKSAT

or GSAT alone. We reported that it took an hour for GWSAT to reach the results

reached by CLGH using BHC/K-means/GSAT in 2.75 minutes. The reason for this is

that as the search plateaus it becomes all the more difficult to find the proper variables

to flip to improve the result further. We can see this more clearly from Table 5.3 when

we applied our WALKSAT with almost an order or magnitude more flips, yet in all the

cases shown, the results are still far from those achieved by K-means. True, GWSAT

will ultimately find these solutions, but at the expense of many more flips.

5.7 Room for Improvement

In no way have we attempted to improve the performance of the search by improving K-

means. We have used K-means in its simplest form to test if it does anything to improve

search results. In its simplest form, K-means does not always find the best grouping of

assignments. This depends on the choice of the number of centroids that represent the

clusters, the initial starting point for each of the centroids and the algorithm that maps

the centroids to the clusters. Figure 5.10 shows an example of a centroid in between two

2http://users.ecs.soton.ac.uk/mqq06r/winsat/
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n α Algorithm Total Number of
Flips

Time UNSAT

20 000 6 GSAT/K-
Means/WALKSAT

2×108(GSAT) + 2×
108 (WALKSAT)

17.8 min 1 539

20 000 6 UBCSAT
GWSAT

108 51.0 min 1 602

20 000 6 Our WALKSAT 109 1.08 hours 1 593

20 000 6 UBCSAT IROTS 3× 107 52.3 min 1 631

20 000 8 GSAT/K-
Means/WALKSAT

2×108(GSAT) + 2×
108 (WALKSAT)

24.1 min 3 916

20 000 8 UBCSAT
GWSAT

108 51.9 min 3 953

20 000 8 Our WALKSAT 109 1.56 hours 3 944

20 000 8 UBCSAT IROTS 3× 107 50.8 min 4 049

20 000 10 GSAT/K-
Means/WALKSAT

2×108(GSAT) + 2×
108(WALKSAT)

31.2 min 6 621

20 000 10 UBCSAT
GWSAT

108 53.1 min 6 722

20 000 10 Our WALKSAT 109 1.94 hours 6 693

20 000 10 UBCSAT IROTS 3× 107 50.3 min 6 699

50 000 6 GSAT/K-
Means/WALKSAT

2×108(GSAT) + 2×
108 (WALKSAT)

30.0 min 8 684

50 000 6 UBCSAT
GWSAT

108 1.98 hours 8 853

50 000 6 Our WALKSAT 109 1.82 hours 8 789

50 000 6 UBCSAT IROTS 3× 107 2.15 hours 8 821

50 000 8 GSAT/K-
Means/WALKSAT

2×108(GSAT) + 2×
108 (WALKSAT)

36.0 min 15 955

50 000 8 UBCSAT
GWSAT

108 2.04 hours 19 194

50 000 8 Our WALKSAT 109 2.20 hours 159̇92

50 000 8 UBCSAT IROTS 3× 107 1.96 hours 16 321

50 000 10 GSAT/K-
Means/WALKSAT

2×108(GSAT) + 2×
108 (WALKSAT)

47.0 min 23 838

50 000 10 UBCSAT
GWSAT

108 2.11 hours 24 206

50 000 10 Our WALKSAT 109 2.83 hours 24 075

50 000 10 UBCSAT IROTS 3× 107 2.23 hours 24 384

Table 5.3: Performance of Algorithms for n = 20 000, 50 000 and α = 6, 8 and 10.
UNSAT is the number of unsatisfied clauses in the assignment found by the algorithms.
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clusters. Starting the search from this centroid is unlikely to produce good solutions.

We believe that the results of the search can be significantly improved if each cluster

is made more homogeneous. A plethora of literature is devoted to optimizing clusters

(Arthur and Vassilvitskii, 2006; Pelleg and Moore, 2000; Wagsta et al., 2001; Pea et al.,

1999; Ding and He, 2004).

Figure 5.10: An illustration improper clustering of solutions. The solid circles rep-
resent the solutions, and the stars are the centroids. One possible way of clustering
where the centroid would not land within a cluster, and hence would not provide for
a good starting point for the search. Note: K-means divides the space into Voronoi
regions (Du et al., 1999). The clusters are encased with dashed ellipses for simplicity.

Having stated that, care must be taken in choosing the point at which the K-means

is applied. K-means yields the best results if the assignments have been sufficiently

improved by hill-climbing. Having them less or more mature will render K-means dras-

tically less effective. If the initial random assignments were subjected to a few hill-climbs

they would have very little beneficial information to use in clustering. In the analogy

of the fitness landscape in Figure 4.6 a few hill-climbs would amount to moving on

the ground, and never reaching the foothills. Clustering these points would likely have

the centroids on the ground also. On the other hand, performing a large number of

hill-climbs on each assignment simply saturates the assignments such that averaging a

cluster, with these highly correlated points, creates centroids within the vicinity of the

local optima. There would not be a whole lot of differences to exploit. It would be like

having the assignments very close to each other on one side of a mountain. In our tests

we have found that the best point to apply K-means is when the Hill-Climb begins to

slows down, and before reaching a plateau, Figure 5.11.

We call this point of application the “Sweet Spot”. Although there is a range of points
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where the K-means can be applied to produce good results, the application of K-means

at the sweet spot produces the best results. Outside this range, we obtain poor results.

This is akin to the audible experience obtained in the cinema. Outside the cinema room

no sound is heard. Inside, the sound is heard at varying levels. However, the best

location for a more intense listening experience is the sweet spot where all sound waves

produced by the speakers meet in perfect synchronisation.
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Figure 5.11: The best locations for the application of K-means is before after the
maturity of the search, and before saturation.

Tables 5.4 and 5.5 show the result of applying K-means before and after the sweet

spot (before and after the range more specifically). These are individual tests run on

problems with 4 000 variables at α = 8. Initially, BHC is applied for 10 000 iterations

starting from 100 different random assignments, then K-means or averaging is used, and

finally, another round of BHC with 20 000 iterations is applied to 10 centroids. Table 5.4

shows the results when K-means is applied slightly before sweet spot. The best results

are shown in bold. We observe that for the 20 problems examined, CLGH performs

better than ALGH in 65% of the problems. In Table 5.5, we report results of applying

K-means after the sweet spot. Here, CLGH outperfomed ALGH on only 55% of the

problems. By comparing these results with ones we obtained before the sweet spot, we

find that in all tested problems, CLGH outperfomed ALGH.

Another test was performed was on a relatively small problem. We worked on these

problems to allow BHC to easily reach a plateau. We applied K-means long after

reaching the lowest cost obtained by BHC. We find that the GLCH sometimes produces
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First BHC CLGH ALGH

1479 830 840

1474 820 846

1452 814 798

1456 828 832

1474 808 836

1459 815 818

1461 834 833

1451 807 811

1454 819 830

1450 831 830

1495 857 860

1454 827 826

1444 811 808

1457 810 814

1453 801 814

1469 826 826

1449 821 824

1452 817 821

1499 873 852

1470 822 839

Table 5.4: The performance of CLGH in comparison with ALGH applied slightly
before the sweet spot in the cost vs time plot. The results show that there is very little

difference between CLGH and ALGH of randomly selected solution points.

worse results than the initial search. This is shown in table 5.6

5.8 Other Experiments

Two other investigations centred on different ways of applying CLGH to the solution

space to determine if we can produce finer results. From these experiments we gained fur-

ther insight into how CLGH works. We will see that these experiments set CLGH apart

from conventional evolutionary algorithms. One experiment, and somewhat related to

EDA, iteratively focuses and defocuses centroids, and the other relied on clustering of

only the fittest solutions.

5.8.1 Focusing/Defocusing

One of the ways we can think of K-means is as a focusing operator. When averaging

a cluster, we are finding the focal point of that cluster. Before rounding each of the

variables to 0 or 1 we have a probability vector. Just as in UMDA, we use this centroid

to generate new starting points for the search. Using the probability of the variables
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First BHC CLGH ALGH

1129 1038 992

1128 1011 1010

1152 1057 1079

1131 996 1005

1127 1020 1023

1119 988 988

1143 1009 1052

1114 1001 991

1141 1023 1000

1163 1038 1026

1106 1002 993

1121 985 999

1127 989 1020

1127 1005 1015

1143 1077 1048

1132 993 1003

1131 1015 1016

1154 973 1040

1123 1006 1032

1158 1060 1056

Table 5.5: The performance of CLGH in comparison with ALGH applied slightly
after the curvature in the cost vs time plot.

First BHC GLCH ALCH

204 201 205

193 195 195

216 215 214

204 197 207

201 200 206

192 201 201

202 207 209

216 218 211

206 207 204

203 206 212

Table 5.6: When applying K-means after the BHC had plateaued the results worsen
again. The worst results are denoted in bold font.
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we create several new solutions by setting the variables to either 1 or 0. This in effect,

defocuses the centroid to many different solutions around it. An illustration of this is

shown in Figure 5.12. Once we generate different solutions, we restart a local search on

these solutions. Unlike EDA, however, we apply another round of hill-climbing, then

K-means is applied again to these guided solutions, then we repeat this process over.

This is like focusing and defocussing of the results.

Figure 5.12: Illustrates the K-means as a focusing operator. Using the solution points
we can focus in centroid. From the centroids we can defocus the into new points in

space.

We ran this test over many problems. The results of the search did not improve at

all over a single application of K-means. It seems that the centroid or the focal point

of the first search provides the best starting point for the search. This shows how

powerful K-means in CLGH is as a one time operation, and it demonstrates that the

focal points of each cluster provides a solution that does not require any restarts or

iterations. Compare this with other evolutionary algorithms. Evolutionary algorithms

rely on an iterative process to gradually improve the results. In previous cases, when

GA or EDA were applied, they were hybridised with hill-climbing. After every few steps

of hill-climbing, GA and EDA operators were applied. With CLGH it is only necessary

to find the centroids once. These points turn out to be best known points for starting a

new search.

5.8.2 Clustering Fittest Solutions

An interesting result we obtained was when we clustered only the fittest solutions in-

stead of relying solely on hamming distance. Prior to this experiment, we clustered all

solutions. K-means did not distinguish between fitter an less fit assignments. It grouped

the solutions based entirely on Hamming distance. We added another requirement to

the clustering in this test. We pick the top µ solutions, and then cluster these.
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We have found that mu-CLGH was less effective in this case than averaging of random

solutions, and at times less effective than solo-BHC. This goes against the conventional

view that fitter solutions provide more advantage than less fit ones as in GA and EDA.

We know from Figure 4.4 that on average, the Hamming distance of the higher cost

solutions are closer to the quasi-global solutions. This, however, is the average behaviour

of the Hamming distance versus cost. This means that some less-fit solutions are close in

Hamming distance, and some more-fit solutions are further away from the quasi-global

solutions. In effect, those solutions whose average Hamming distance is closer to the

quasi-global solutions, which do not necessarily have a higher cost, could contribute to

the cluster, and ultimately to the formation of better centroids.

This is yet another distinguishing aspect of CLGH in comparison with other evolutionary

algorithms. Where it seems advantageous to use the fittest solutions for the creation of

the next individuals in the population in both GA and EDA, CLGH looks for structure

in the arrangement of solutions space without strict emphasis on choosing the fittest

solutions. Clearly, we cannot apply CLGH to randomly generated solutions before driv-

ing them into better costs. In spite of that, the cost do not have to be optimal. In

some experiments we achieved the opposite effect. Optimum solutions did not provide

a clustered structure that achieve good centroids. More on this in Chapter 8.2.

5.9 WinSATS Application

In a parallel track to our work we have developed a Windows based SAT Solver applica-

tion. Although the majority of the tests for this work were performed using the Borland

C++ compiler in the command line environment. We have developed this application

using the GUI based Borland turbo C++. The GUI provides a simple interface for user

interaction. In addition, the program was developed in a way that would allow for easy

reporting of results (in a spreadsheet view). Also, since one of our goals was to include

graphs that would report the performance of local search algorithms, Windows seemed

as good a candidate as any other operating system for this task.

The application is capable of loading CNF files or generating random CNF problem

instances, it provides several search methods including our own approach, and generates

a results report sheet, see Appendix B.1. This application has been tested against UBC-

SAT which contains some of the most advanced and up-to-date local search algorithms.

We have shown that our GSAT and WALKSAT perform an order magnitude or more

flips in the same time than the implementations found in UBCSAT for large instances.

In addition, we have shown that using CLGH we are able to outperform every algorithm

there is in UBCSAT even with the use of the basic hill-climbing algorithms such as BHC,

GSAT and WALKSAT.

The main difference between WinSATS and UBCSAT is in the way they were designed
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to handle future algorithms. While UBCSAT was designed to include only solo-search

algorithms such as GSAT, WSAT, IROTS, HWSAT, and so on, the WinSATS applica-

tion was developed to include both solo-search algorithms and algorithms that are based

on populations. This makes it all the more comprehensive. Although we currently have

K-means as the only populations based method incorporated into WinSATS, we will

add other algorithms such as GA, EDA and particle swarm and Quantum Evolutionary

Algorithm (QEA) in the future.

The current version of WinSATS is 2.04. The application has been downloaded by 664

users from all around the world at the point of writing this thesis. We have not had a

single bug reported by any of the users. We hope that the WinSATS application be-

comes a benchmark tool that researchers use. In addition to the WinSATS application

we have developed a web page describing the satisfiability problem for other researchers,

Appendix B.3. Along with this page, we have also included the user manual for Win-

SATS, benchmarks, and comparisons. It is our goal to eventually include the source

code of the application to have it developed by the SAT community.



Chapter 6

The Applications of LGH to the

TSP Problem

It would be interesting to see if the application of LGH extends to other NP-Complete

problems. Is LGH generic enough that it can refine the search in other problems as

well? We could ask whether the landscape of other NP-Complete problems is similar

to that of MAX-SAT, and hence LGH could be applied to them equally well. Do other

NP-Complete problem share the same clustered structure of solutions? It is natural

to assume that real problems (opposed to artificially constructed problems such as toy

problems) would tend to group good solutions in close proximity. A multiple clusters of

solutions is a possible configuration of the solution landscape where CLGH could work

naturally. However, another possible configuration is that although solutions group,

they could very well form a single cluster. In which case ALGH would also work.

We have a plethora of NP-Complete problems with which we can test LGH. The most

famous of these is the Traveling Salesman Problem (TSP). Just as in MAX-SAT prob-

lems, exact and non-exact methods have been developed to solve it. The best of these

methods rely on local optimisation techniques. Our goal here is to see the effect of the

application of LGH on TSP, and although we intentionally did not perform rigorous

analyses on the structure of solutions for this problem, we will supplement this work

with a few experiments. We shall see in the next section that it is not clear whether the

solution space of the traveling salesman problem follows a many-clustered view.

6.1 The Traveling Salesman Problem

The traveling salesman (TSP) problem is defined as the shortest round trip traversing

a number of cities such that each city is visited once. This combinatorial optimization

problem is well known to be NP-Hard. It has been studied extensively, and a prodigious

62
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amount of algorithms were designed to solve it, some, with fantastic efficiency (Helsgaun,

2006; Applegate et al., 2006). However, it remains computationally difficult, and as

with satisfiability, the size of the problem greatly affects the efficiency of finding optimal

solutions. Nowadays, TSP problems are large enough that they require either more

computing power or more efficient algorithms.

Despite TSP being computationally hard to solve, from 1950 up to 2006 the TSP chal-

lenge problems that have been solved grew significantly in size (Applegate et al., 2006).

With the increase of computer power and, more importantly, improved search techniques

these large problems have been solved to optimality. The largest problem that was solved

in 2006 contained 85,900 cities. The next challenging problem has as many as 1,904,711

cities, and although no exact solutions have been found for this problem to date, the

closest approximation is 0.058% away from the Held-Karp lower bound (Valenzuela and

Jones, 1997). It is remarkable that such large and rapidly growing problems have been

solved considering that they belong to the NP-Hard category.

TSP has a wide range of real world applications which makes it more desirable to solve.

It directly maps to drilling circuits on microprocessors boards, and Vehicle Routing

Problem (VRP) (Toth and Vigo, 2002) (While I was working for FedEx in the US

during my summer breaks as an undergrad I was working with large databases of truck

routes. We were trying to find shorter distances for the drivers. It never occurred to

me then that I was working on the Traveling Salesman Problem). With modifications,

it can be applied to a plethora of other problems such as planning, guiding lasers for

crystal art, Aiming telescopes and X-Rays, logistics, and Gene sequencing (Applegate

et al., 2006).

TSP is formally defined as a set of cities c1, c2, ..., cN or nodes with the distance d(ci, cj)

between each two distinct cities or edge. The permutation of the cities generates a set

of edges that establish a Hamiltonian cycle through the cities. It is required to find the

permutation with the minimum tour length (David, 1990),

min
N−1∑

i=1

d(cπ(i), cπ(i+1)) + d(cπ(N), cπ(1)) (6.1)

The distance measure d(ci, cj) can be Euclidean in 2 or 3 dimensions, geographical,

Manhattan, or it can be determined using a special function. In addition, the problem

can be either symmetric or non-symmetric. That is, in a symmetric problem the distance

d(ci, cj) = d(cj , ci), while in the non-symmetric case d(ci, cj) 6= d(cj , ci) is allowed. For

our purposes we used symmetric problems with 2-D euclidean distance measure, which

is the easiest form of distance measure to start with. We provide an example of a TSP

problem in Figure 6.1. This is the rat783 problem solved to optimality. This problem is

a symmetric 2-D problem.
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Figure 6.1: The rat783 problem with 783 nodes. The tour that is shown is optimal.

The goal of our tests that follow is not to compete with algorithms that have been

gradually and systematically developed over the past two decades. This would be a

futile exercise as this problem has been tackled by a prodigious number of researchers

over the years, and the algorithms that have been developed to solve it have been made

extraordinarily efficient. Here, we aim to investigate the effects of applying LGH to

TSP, and to broaden our understanding of the performance of LGH on it.

We have seen that applying CLGH to the satisfiability problem produces exceptional

results compared with many stochastic algorithms. We have shown it to gives a clear

edge even over the state of the art methods. In spite of these results the application

of clustering or averaging in LGH are not stand-alone techniques. They can be used to

enhance the performance of other search algorithms. This justifies our goal for not going

after maximum efficiency since we can in principle, if the K-means or averaging exploit

the the solution structure, if it exists at all, utilize them within well known stochastic
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algorithms.

This view is not without merits. By taking a set of tours, and considering each edge

that appears most frequently in them as the set of edges that form a backbone one can

use these edges to form a good starting point for a local search algorithm (Zhang and

Looks, 2005). However, the edges are not suspended from the search by locking them in.

Rather, the frequency of the appearance of the edge is given a probability that makes

it malleable. The backbone or rather pseudo-backbone information that is extracted

from a multiple number of solutions cannot by itself be used to solve TSP problems. It

must be incorporated into a local search algorithm that would benefit from it to bias

the search. Zhang’s backbone method (Zhang and Looks, 2005) has been successfully

incorporated into one of the most well known search TSP heuristics, the Lin-Kernighan-

Helsgaun (LKH) method (Helsgaun, 2006). It has been shown to give state-of-the-art

results in VLSI problems. As a stand alone algorithm the backbone guided method

would not work; it would have to be included with other local search algorithms.

6.2 Local and Constructive Search Algorithms

Several local and constructive search algorithms have been proposed to solve the TSP

problem with varying degrees of effectiveness. Nearest Neighbour is a simple greedy

constructive heuristic, whereby a city ci is chosen arbitrary as the starting city, then the

closest city cj is chosen as the next city in the tour, and then the next closest, ck, and

so on. This is repeated for all the cities until a full cycle is completed. Although this

greedy method might yield good solutions, it usually produces suboptimal solutions, and

in fact might even produce unique worst tours (Bang-Jensen et al., 2004).

Another method is the Nearest Insertion. In this method we start with two cities that

are closest to each other. We form the initial tour ci – cj – ci. The next step is to find

the city ck that is closest to any node in the sub tour ci or cj . Insert that city into the

subtour to create the shortest distance possible. The same steps are repeated until the

tour is completed. Another variation of this algorithm is the Farthest Insertion. Start

with cities ci and cj that are furthest from each other. Create a sub tour ci – cj –

ci. Then find the furthest city ck from both of ci or cj , and insert it into the subtour.

Repeat for all the cities until a full tour is create (Golden et al., 1980).

There are other variations such as Cheapest Insertion, Arbitrary Insertion, Convex Hull

(Golden et al., 1980) and simulated annealing (David, 1990). Most of these early algo-

rithms have become obsolete, or they have been infused with other algorithms, but on

their own they have been used for their illustrative value rather than their practicality.

They are used less today on their own in favor of more robust algorithms. One of which

is the Lin-Kernighan Algorithm. This method has become the basis for some of the

most sophisticated modern TSP solvers.
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More recent solvers are population based. Some use genetic algorithms (Kaur and Mu-

rugappan, 2008; Baraglia et al., 2001; Huai-Kuang et al., 2004), other methods use Ant

Colony optimization (Dorigo and Gambardella, 1997). Population based algorithms

usually require high execution times by design. Nevertheless, the biggest obstacle pop-

ulation based methods face is the representation problem. We too had our share of

troubles in determining the best way to represent tours in such way that would fit into

our clustering mechanism.

6.3 k-Opt and Lin-Kernighan

One local search method that is applied to TSP is the k-Opt method. We start with a

random tour, then a systematic exchange of k edges with another k edges is performed

such that the result of each exchange yields a shorter tour. Suppose that we have 9

cities with the edges denoted with x1, x2, ..., x9 as in figure 6.2. With 2-Opt we replace

the edges x1 and x2 with the edges y1 and y2 given that y1 + y2 < x1 + x2. This process

is performed until all possible 2-Opt exchanges are exhausted. This yields either a

globally or locally optimal solution (Lin and Kernighan, 1973). As k becomes larger, the

complexity of the search also becomes large, since the permutations of finding the proper

k exchanges increase in number. Therefore, the number of k exchanges are restricted to

2-Opt or 3-Opt in most implementation of the k-Opt algorithms (Helsgaun, 2006).

Figure 6.2: Applying 2-Opt to a tour by exchanging two edges for another two edges
such that the resulting tour length is smaller.

The total number of exchanges performed in k-Opt is E = 2k−1(k − 1)! where E is the

number of exchanges (Helsgaun, 2006). Figure 6.3 shows some of the possible 4-Opt

exchanges for 4 edges. Just for a particular set of four edges in the tour, the number

of possible exchanges is E = 48. Here, the solid lines signify a partial tour starting
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with a particular city and ending with another. There could be other cities that are in

between, but they are not included for clarity. The dashed lines represent edges going

from one city to the next with no other cities in between. Each partial tour is labeled

with a number from 1 through 4. The sequence of labels below each exchange in the

figure shows the order of the partial tours going clockwise. We can think of swapping

two edges in terms of flipping an entire partial tour. If the tour is to remain unflipped,

then it is assigned a positive sign, (e.g. +1). On the other hand, if the partial tour is

flipped it is assigned a negative sign. This makes the process of 4-Opt clearer than if we

had to think of swapping the edges themselves.

It should be made clear that despite the number of exchanges for a 4-Opt is small,

E = 48, the number of 4-exchanges that must be done is very large when we have to

consider taking all possible combinations of 4 edges in a tour. That is, not only do we

have to perform exchanges between 4 edges, we also have to do this for every possible

4 edges in the tour against all other 4 edges. Therefore, instead of performing these

exchanges on all possible edges, only a subset of the edges are considered. One way to

limit the number of edges is to only apply 4-Opt to neighbouring cities, since it is clear

that adjacent edges are more likely to be swapped with each other than ones on the

opposite side of a tour. We will talk more about that in section 6.6.

Lin-Kernighan (Lin and Kernighan, 1973) proposed a heuristic that would allow for

variable k exchanges where 2 ≤ k ≤ N . The LK algorithm starts with a random non-

optimal tour. Then, an edge by edge exchange is performed as long as the total length of

all the edges exchanged produce a shorter tour. The process starts with an edges xi, and

it is exchanged with another edge yi such that this would maximize the improvement. If

initial exchange was successful, then the process is repeated with next two edges. This is

repeated for i = 1, 2, ...k until there is no more room for improvement. This removes the

restriction that k be set a priori, since it is not known beforehand how many edges are

to be exchanged. In addition, it alleviates the remarkably large number of permutations

required by testing each and every k exchanges. Although the number of k-exchanges

can in principle extend to any number, however, because of the other computational

costs, a top limit has been set for k. In the case of LKH, empirical tests have been

carried on the effect of increasing k up to 8, and it has been shown that the CPU time

increases exponentially with k (Helsgaun, 2006).

The LK algorithm has become an integral part of the most successful algorithms. The LK

method as it stands has been known to find solutions of the traveling salesman problem

within 1-2% of the optimum (Helsgaun, 2006). Moreover, current implementations such

as LKH are ever more effective in solving large TSP problems within reasonable times.

LKH removed some of the restrictions imposed by Lin-Kerninghan, freed the algorithm

from costly computations, and improved solutions. We will not delve into the details

of the numerous improvements and additional implementations made to the original

LK algorithm as this has no bearing on the work we have done. What we have done
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Figure 6.3: Shows some of the possible combinations of a 4-Opt exchanges. This
operation shows enormous number of permutations when exchanging 4 edges. This
number becomes amplified with we consider that this is done for all

(
N

4

)
subset of

edges.
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was to apply only 2-Opt moves within the framework of an Iterated Local Search (ILS)

algorithm, and performed comparisons within this framework. We will discuss this in

the section 6.6.

The LKH algorithm is an algorithm that uses a number of different concepts to solve

the traveling salesman problem efficiently. It contains several state of the art methods.

A method that has been added recently to the LKH is Zhang’s Backbone Guided Local

Search method (Zhang and Looks, 2005). It has been shown to be particularly effective

with VLSI TSP problems. Just as in the SAT problem, backbone information is gathered

from multiple LK searches to build backbone information. Since the LK method reaches

local solutions that are within a small percentage of the optimum tour, the frequency of

the edges over several locally optimum tours is accumulated.

These frequencies are turned into the probability p of an edge being the globally optimal

solution. The more an edges appears in the different tours the higher the probability

that the edge is part of the optimal tour and vice versa. However, once the backbone

information is gathered, Zhang does not fix these edges based on their probabilities.

Rather, the distance between two nodes is made elastic based on the probability of the

edge being an element of the optimal tour. If the length of the edge was li, then by

computing the length of the tour, the adjusted length becomes l′i = li · (1 − pi). This

morphs the lengths of edges such that the edges with higher frequencies are reduced in

size so as to preserve them in an exchange, and the less frequent ones are elongated to

allow them to be exchanged more readily.

6.4 LGH and TSP

The application of LGH in TSP is a little more involved than the way it is applied to

MAX-SAT. This process requires that we look the at the sequence of edges in a tour

instead of the sequence of cities. This was proposed by (Peter and Bernd, 1999). They

found that the correlation between tours represented by their city-sequence is lower

than those represented by edge-sequence. In city-sequence representation, each tour is

represented by a sequence of cities as they are presented in the tour. They are labeled

from 1 through n. Figure 6.4(a) illustrates a tour sequence of 20 cities. As a consequence

of having this representation, the sequence can be rotated cyclically while maintaining

the same tour length, Figure 6.4(b).

Because the same tour can be represented in many different ways, using the city-sequence

representation for clustering would be impractical. This is because even if two solution-

tours are close to each other in terms of the order of the cities (having very close fitnesses),

but are rotated differently, their points in the solution space will be in two far apart

locations. In this case, clustering would not be able to group these two similar solutions.



Chapter 6 The Applications of LGH to the TSP Problem 70

(a) Tour sequence

(b) Same tour sequence rotated

Figure 6.4: The same tour sequence can be represented differently by cyclically ro-
tating the sequence of cities.

Two studies, the Maximal Preservative Crossover (MPX) (Mathias and Whitley, 1992)

and Distance Preserving Crossover (DPX) (Freisleben and Merz, 1996), used crossover

of parent individuals in a population in GA. Both of these methods used the city-

sequence string to represent the individuals in the population. In another study, edge

recombination was used (Whitley et al., 1991). We adopt a string of the edges between

each city and the next. In this case each tour of length n cities would be represented

by a string of edges that is n(n + 1)/2 edges long. An example is shown in Figure 6.5.

When an edge exists between two cities the edges string is set to 1 otherwise 0 for these

two cities. This fits very well with K-means as we shall see next.

Figure 6.5: Representing a tour by its edges. Instead of using the sequence of cities
vector, edges between cities can be stored in a vector. With this, we avoid the cyclical

problem.

The next step is to apply CLGH to these strings of edges. Again, we use K-means in

our CLGH. K-means groups similar edge configurations with each other into K different

clusters. With this simple representation we can directly use the Hamming distance as

a measure of similarity between a tour and the centroid. To average each cluster, we

count the frequency of the appearance of the each edge in all of the suboptimal tours

in each group. The frequency count of the edges is used to generate the centroid tour.

These centroids do not necessarily create a valid tour. Hence, we reconstruct a valid

tour from this centroid.

6.5 Tour Reconstruction

We use the centroid in two ways. First, we reconstruct a valid tour from it by keeping the

edges with the highest frequencies while maintaining a proper tour. At times, more than

two edges are connected to a single city appear with a high frequency. We make sure that

no invalid tour is created even though we obtained unusual centroids from averaging.
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Second, we preserve the frequency information of the edges. This information is crucial

for the second round of the search. We use this information to apply Zhang’s method.

Constructing the centroid is a laborious work. It requires several steps, but because it

is a one time operation, the overhead of processing the proper tour is minimal. The

first step in reconstructing the tour, is to sort the edges in the order of their frequency

counts. There are two important points that need to be checked when building a proper

tour. First, centroids might have several edges connected to one city. The number of

edges connected to a particular city is dictated by the frequency of the appearance these

edges. This invalidates the tour, and in the process of reconstruction, the extra edges

are discarded. The second, and also important step, is to make sure that as we add

edges we do not create a partial closed tour, Figure 6.6. As the edges are accumulated

based on their frequencies, their might be two cities that close the loop before all the

edges are added.

Figure 6.6: Reconstructing a tour from a centroid might create a partially closed tour.
This is because a centroid is not always a proper tour.

Using disjoint sets, which is an efficient data structure to solve the equivalence problem,

we ensure that a tour is not closed prematurely (Weiss, 2007). When a pair of elements

(a, b) are related by some relation, a ∼ b such that a, b ∈ S where S is set, and ∼ is

relation on the set S, then we can call this relationship an equivalence relationship if it

satisfies the following three properties:

• Reflexivity: a ∼ a

• Symmetry: a ∼ b

• Transitivity: a ∼ b and b ∼ c then a ∼ c
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All these properties apply to the cities in a TSP problem where the edge is the relation,

and the cities are the elements.

After sorting the edges by their frequencies, we take each edge in the order of its ap-

pearance in the ordered list, and insert it in the set of edges. Initially, all the edges will

be in different sets, and no two sets have a relation, i.e., Si ∩ Sj = ∅. When an edges

is inserted via the union of the two cities, ci and cj that are connected to it, two cities

are assigned to the same set, Si. As we add more edges, more relations are added to the

sets. Sets are merged into Sk = Si ∪ Sj if two cities ci ∈ Si and cj ∈ Sj are connected

by an edge. Before adding new edges, it can be determined if the two cities are in the

same set. If they are, then we have a closed tour. This situation is avoided before the

inclusion of the new edges.

There is another very important verification that is carried before inserting an edge into

the sets. It must be checked that the edge is not connected to a city that has two edges

already connected to it. The disjoint set algorithm does not check for this.

The final step in the reconstruction of the tour is to check if there any orphaned cities.

This happens when some sets are disjoint. This means that the tour is incomplete, and

there would be orphaned cities. The reason this happens is because the centroids do not

usually produce proper tours. They are a mixture of edges from different tours with their

respective frequencies of appearance. Building a tour from the highest cost edges will

likely produce partial tours. We fix this by inserting edges between the tour fragments.

These tours might not be best selection of edges, however, they will be corrected for in

the next round of the local search.

6.6 Experimental Results

Developing a TSP search engine that would make use of CLGH requires 3 stages. First,

an initial population of random tours is searched for locally optimal solutions. Second,

these tours are clustered and each cluster is averaged to create centroids. Finally, the

centroids are put into a second round local-search with the use of the probabilities of

the edges. For the local search algorithm we have used Iterated Local Search (ILS)

(Ramalhinho et al., 2000) with 2-Opt. The local search algorithm works as in Appendix

A Figure A.5.

The local search that is incorporated into this algorithm is a basic 2-Opt. We perform

a systematic 2-Opt on all the cities to ensure that no two edges are overlapping. When

there are no more edges that can be swapped, the tour is a locally optimal solution.

Initially, we take two edges, then we swap their ends. If the resulting tour is shorter, we

keep the exchange. We perform this task on all the edges in the tour until there are no

edges that can be swapped. More improvements can be obtained for the tour via the
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ILS algorithm, where perturbations and 2-Opts are performed iteratively.

If this process is carried out on the entire set of edges against all other edges in the tour

it would be costly. The number of possible edges that can be exchanged is enormous in

large problems. We, therefore, restricted the 2-Opt operations to neighbouring cities.

In the initial phase of the algorithm, we find the neighbours by looking at every city in

the problem, and choose the closest R cities. In this case, we have chosen R = 30 cities

as we have found this to be a reasonable number of neighbours. We performed a variety

of tests on multiple problems to come to this judgement.

Figure 6.7 shows the a280 TSP problem with a few examples cities and their neighbours.

Each city encompasses its neighbours within a circle (the circle is just for illustration).

Each city has a variable size circle. We are not concerned with the size of the circle.

Instead we concentrate on the number of neighbours. Once we have these neighbours

we can apply 2-Opt within the locality of city, and this reduces the search space greatly.

 

 

Figure 6.7: Limiting the search space by apply k-Opt only to neightbouring cities.
To limit the search space we have only applied the search to the nearest 30 neigbours.
This figure illustrates this concept with 5 cities each having 15 neighbours. The size
of radius for each point is variable, and it ensures that each point has 15 neighbours

associated with it.

Choosing neighbours by selecting the closest R neighbours has a serious shortcoming.

If the cities are uniformly distributed in space, then this problem would not be obvious.

However, if the cities are clustered (this should not be confused with the solution space.

We are discussing the position of cities in 2-D Euclidean space), then choosing R neigh-

bours in this direct fashion limits the search for an optimal tour. Take for example figure

6.8 which was generated using DIMACS TSP Challenge code. The cities in the tour
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are randomly generate in clusters. If R is less than the number of cities in each cluster,

then all the neighbours would naturally be chosen from within the cluster. This limits

the exchange of edges to within the cluster itself, neglecting the neighbouring clusters,

and thus leading the search to suboptimal results. In our experiments we avoided using

clustered cities even though this does not mitigate the problem entirely.

Figure 6.8: Randomly generated clustered tour. If R is chosen to be smaller the
number of cities in a cluster, then every city in the cluster would have its neighbours

form within the cluster. This might produce suboptimal solutions.

Initially we start by creating several random initial starting tours. For our experiments,

we created 100 random initial tours, then we applied 2-Opt to each tour until no more

improvements were possible. After that, we applied ILS to further enhance the tours.

We next applied K-means with 5 clusters. Once the centroid-tours are assembled, they

are put through another round of 2-Opt/ILS. We tried different ways of performing the

random perturbations. Additionally, we tried varying the number of cities that are be

affected by the perturbations. We have found that some perturbations work better than

others. Once the tours are perturbed, we adjust the edges using 2-Opt again. If the

resulting tour is shorter, it is kept. Otherwise, we revert back to the tour before the

perturbation, and we repeat the ILS and 2-Opt.

In the second phase of the search, we used the frequency information collected from the

clusters. By obtaining the mean of the frequency values, we assign probabilities to the

edges that give them a degree of importance. The closer the probability of an edge is

to 1 the more important it is to keep it, and the closer to 0 the less important it is.

However, we use the probabilities of the edges in a different way. If the length of the
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edges is l, and the probability of the edges is p, then we modify the length of the edges

to be l′ = l · (1− p). What this effectively does is to give the edge a weight based on the

proportion of its frequency. In the extreme case when p = 0, the edge is longest, and

thus making it less likely to be kept in a exchange, and when p = 1, the length becomes l′

becomes 0 and thus would be more likely to be kept after the exchange. We will call this

method, Edge-Smoothing, since it is related to a similar method developed by (Gu and

Huang, 1994). The edge-smoothing method was used in the backbone guided method

(Zhang and Looks, 2005), and it was found to be extremely effective for improving the

solutions to many TSP problems.

Another very important detail that should be mentioned about the way we chose to

keep an exchange of edges. After the edges are perturbed, and the exchange of the

edges is performed based on edge-smoothing, the acceptance for exchange is based on

the actual tour length rather than l′. To be more precise, when a tour is perturbed, then

it is perturbed on a number of neighbouring cities. Correcting for the perturbation is

carried using smoothing, and while smoothing allows for the acceptance of the exchange

locally, the exchange might not necessarily produce shorter tours. This is the reason for

checking the actual full tour length via the actual edge-length, l. This was done after all

the exchanges were applied. Once it is found that the full tour is shorter, all the edge

exchanges are kept.

The first comparison we made was CLGH against solo-ILS. Figure 6.9 shows results of

averaging of 100 simulations on the fnl4461 problem. It can be seen that CLGH produces

better results than solo-ILS. With 100 initial starting points, 5 centroids, we show the

results of best centroid out of 5. For the solo-ILS, after the initial 100 search we chose

the top 5 performing tours, and carry another search on each. The graph shows the

result of the best of the top 5 tours.

To see if CLGH took advantage of some form of clustering we compared it to ALGH

on randomly selected tours. We ran the same tests on three different problems: rat783,

fnl4461 and pr1003. CLGH was applied exactly the same manner it was in MAX-SAT.

In ALGH, we selected 5 tours at random from the 100 tours. We obtained similar

performance levels between CLGH and ALGH. These tests can be seen in Figure 6.10,

6.11, and 6.12.

6.7 Understanding the Results

What we have seen in these experiments is that CLGH and ALGH provide an advantage

over solo-ILS. However, there was no clear difference between CLGH and ALGH. There

could be several factors that are affecting the results. First, if we assume that there is

a clustered structure to the solutions in TSP, then the reason would probably be that

we did not apply K-means in CLGH at the sweet spot. This was our experience in
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Figure 6.9: Comparison between solo-ILS and CLGH. CLGH produces better results
than solo-ILS
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Figure 6.10: Comparison between the performance of CLGH and ALGH on the rat783
TSP problem. The number of initial random tours that were created were 100, clustered
into 5 clusters. The result shown for CLGH is based on the best of the 5 centroid. With
ALGH, 20 tours were selected at random from the 100 tours, and averaged. This plot

shows the best result out of 5 different centroids.
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Figure 6.11: Comparison between the performance of CLGH and ALGH on the
fnl4461 TSP problem. The number of initial random tours that were created were
100, clustered into 5 clusters. The result shown for CLGH is based on the best of the
5 centroid. With ALGH, 20 tours were selected at random from the 100 tours, and

averaged. This plot shows the best result out of 5 different centroids.

MAX-SAT. Before finding the sweet spot where K-means is applied, the results showed

that CLGH and ALGH to be the same.

In MAX-SAT we found that the best location to cluster was right around the maximum

curvature in cost versus time graph 5.11, the sweet spot. We have verified this with a

large number of experiments, and for all the experiments we carried, this location seems

to apply to all the problems we tested. In TSP, we applied K-means at around the

same point, and it was effective against solo-ILS. Notwithstanding, to over come ALGH

it could be that the sweet spot is somewhere else. We will see in Chapter 7 that this is

the case for some problems in Artificial Neural Networks. We get better solutions after

the search plateaus much farther away from the sweet spot found for MAX-SAT.

Here, we could not find a sweet spot which provides CLGH with an edge over ALGH in

our experiments. We tested for it before and after the maximum curvature, but there

was no success in finding it. We tested for it in different locations along the search in

steps with gaps in between. We could have missed it, since it could have been confined

to a more a narrower region of the search. The smallest problem that we considered

to be somewhat difficult, and a good starting point for our experiments was the rat783

problem. With each test consisting of at least 50 runs, each experiment required around

4 days to be completed. We could have performed more tests, but it required many
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Figure 6.12: Comparison between the performance of CLGH and ALGH on the
randomly generated pr1003. The number of initial random tours that were created
were 100, clustered into 5 clusters. The result shown for CLGH is based on the best of
the 5 centroid. With ALGH, 20 tours were selected at random from the 100 tours, and

averaged. This plot shows the best result out of 5 different centroids.

more months of testing. The point of application is an open question. We leave the

discussion of this point for the chapter on Future Work.

A second reason that could account for similarity in performance is that there really is

not a clear structure of clusters in TSP problems. In our investigation of MAX-SAT, we

generated thousands of random problems, and composed a picture of the landscape. The

tests we ran on these hard random problems were indicative of the how our algorithm

would behave with DIMACS structured benchmark problems (Selman, 1995). In TSP,

even though researchers such as (Mühlenbein, 1992; Bianchi et al., 2002) tested their al-

gorithms on randomly generated problem, there is no clear evidence that these problems

provide a similar structure to real world problems. Hence we avoided the generation of

random problems for this specific task.

We could not have studied the structure of TSP in the same way as MAX-SAT. TSP is

quite different from MAX-SAT. In MAX-SAT finding local solutions was dependent on

single flips of a variable assignment. Measuring the relationship between two solutions

was direct. We used the Hamming distance, and it gave a clear indication of the resem-

blance between two solutions. In TSP, we found solutions using 2-Opt, or by changing

two edges at a time. Purely applying 2-Opt led to local solutions that were quite far

from the optimum. We could, on the other hand, find better solutions with 3-Opt, or
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even better ones with 4-Opt, and so on. However, the computational complexity in-

creases enormously, prohibiting us from performing structural analysis with our current

computational power.

We used ILS which perturbed the tour, and corrected the perturbation with 2-Opt.

With this method we were able to find better solutions. This though still does not solve

the problem of finding a structure. In MAX-SAT we used BHC for hill-climbing. When

applying BHC, we moved to local optima with ease. After which the search would get

stuck. BHC did not include any random walks. This meant that the search would

constantly move towards a local or global optimum. When the solutions reached by

2-Opt are perturbed in TSP, it moved the search away from local solutions, and in to or

out of local solutions. It was not clear what these solutions signified. Were these local

optima? In MAX-SAT we used local optima to compare with global optima. With this,

and the relationship between global optima the structure was exposed. This was not

possible with TSP.

We therefore tried different measures to understand the landscape. One method was to

apply Principle Component Analysis (PCA) to reduce the dimensionality of the solution

points. Using the first 5 components we plotted the different 3-dimensional figures using

different combinations of solutions for the Berlin52 problem, Figures 6.13 and 6.14. We

hoped to get a general outlook of the landscape. We did not find a clear indication

that there was clustering. With the first three components in Figure 6.13, we find that

there seems to be clustering. However, as the other components are viewed, clustering

information is reduced as can be seen for the components 2, 4, and 5 in figure 6.14.

In addition, the plot of the first three components show that there is a relationship

between the cost and the Hamming distance to the optimal solution. As the length of

the tour gets smaller, the distance between better solutions and the global optimum

gets smaller. The spectrum of colors expresses the cost. The red colors show the worse

solutions, and the blue colors show the better solutions. However for the components 3,

4 and 5 in Figure 6.14, the relationship is almost non-existent.

In fact, PCA could not have produced good results since most of the other components,

beyond 5, that were removed were just as important in showing the rest of the picture.

It should be noted that each solution point was n(n − 1)/2 long. They represent the

tour edges. With Berlin52, which had 52 cities, the number of possible edges where

1 326. Although the representation was sparse, reducing it to 5-dimensions becomes less

meaningful. However, even this much of a glimpse showed us that there was no clear

evidence of a clustered structure, or a clear cost versus Hamming distance relationship.
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Figure 6.13: PCA plot in 3-dimensions
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Figure 6.14: PCA plot in 3-dimensions



Chapter 6 The Applications of LGH to the TSP Problem 82

We also found the frequency distribution of the edges in 20 different tours. In this

experiment we generated 20 different random tours, and applied ILS on each tour until

we obtained no improvements. We ran this experiment 100 times for each of the different

problems, C1K1, fnl4461, pr102, and rat783 tsp problems. We compared the edges of the

tours to each other in each problem, and determined how many times an edge appeared

once, twice, and so on until 20. An example of this is shown in Figure 6.15. If we have

5 cities, and 3 different tours, then the edges are stored in an array of edges. We count

the occurrence of an edge in all the 3 tours. After that we find the frequency of having

an edge appear once, twice and so on.

Figure 6.15: An example of a tour with 5 cities. The edges of the different configura-
tions accumulated. Then the sum is used to determine the frequency of the appearance

of each edge in the tours.

Figure 6.16 shows the normalized frequency for the results for 20 tours in each of the

problem mentioned earlier. A great number of the edges appear only once. As the

number of occurrences of the edges increases, the frequency of these decrease. The

tail end of the edges increase in frequency again. This shows that the tours have very

dissimilar arrangements, and this could account for suboptimal solutions that are quite

far apart in space.

At the tail end of the plot we see that some edges appeared to have been fixed for all

tours. That is the reason for the increase in their frequency even though the tendency for

frequencies of the edges to go down. We can use the example in Figure 6.15 to explain

this. The smallest edge is between cities 4 and 5. This edge would likely stay fixed

amongst different tour configurations because it cannot be replaced by a better one. Of
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course this does not mean that optimal solutions would necessarily have to contain these

shorter edges.
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Figure 6.16: The frequency distribution of common edges between 20 local tour-
solutions over 100 runs each. Most tours contain dissimilar edge configurations. Very
few edges appear in most tours. The tail end of the graph shows some edges persist

over many tours.

We also obtained the mean and the standard deviation for the number of shared edges

between any 2, 3, 4 and 5 tours amongst 30 suboptimal tours in the Rat783 problem.

Table 6.1 shows that the more tours are included in the comparison, the fewer edges

these tours share. With 783 edges for each tour, the average number of shared edges

between two tours is 489.821 edges. This is only 62.6% edges in common. This average

is reduced even more as the number of compared tours are increased. For 5 tours, the

average number of shared edges becomes 274.182, which is 35.02% shared edges amongst

the 5 tours. This suggests that locally optimal tours are a long distance apart with little

evidence of clustering.

# of compared tours Average Std

2 489.821 13.8363
3 377.104 13.052
4 314.679 11.8763
5 274.182 10.7783

Table 6.1: The average number of shared edges between 2, 3, 4 and 5 tours using 30
suboptimal tours in the Rat783 problem.

The only study that claimed that there was a structure to the solutions, and considered
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landscape of TSP problems to have a globally convex or a big valley characteristic is

found by (Boese, 1995). This study found that lower cost solutions tend to be in the

vicinity of other better solutions and the optimal solution. It also showed that the

optimal tour is located centrally within good solutions. While we had hoped to find

this picture, their study only took into account a single problem with 532 cities, and it

cannot be generalised over all problems.

Another study on the cost versus distance correlation (Peter and Bernd, 1999) showed

that by using the LK algorithm the solutions showed less correlation than when using

differential greedy algorithms. In fact for some problems, such as Cat5252 (Peter and

Bernd, 1999), it seems that the is no correlation between the local and global optima

when using LK algorithm. Although, LK heuristic performed better than the differential

search heuristic. Both these tests show that the cost versus distance relationship is

different for different search methods. More tests are needed to render a comprehensive

description of the TSP landscape.

Finally, we have shown success in producing results using CLGH or ALGH. Averaging

of solutions in this way is akin to Zhang’s backbone guided search method with a small

difference. With the backbone guided method, the improvements obtained by gathering

backbone information were not only used for building the backbone, they were also used

to generate more feasible starting solutions. On the other hand, K-means or averaging

is sandwiched between two search heuristics. After its application the results are used

to go further into the search without reintialisation.



Chapter 7

LGH and Continuous Problem

Spaces

We have so far, in this thesis, applied LGH to discrete problems. We have shown

that CLGH works very well with MAX-SAT problems, and we have also shown that it

works effectively with the TSP problem, even though there was no difference between

CLGH and ALGH in the TSP case. All the problems we have tested LGH with were

combinatorial optimization problems. So far, we have not applied LGH to problems in

the continuous domain. The next step in the analysis is to see what performance gains

we could obtain in the continuous domain.

A good test bed for LGH is the Artificial Neural Networks. Here, we will only apply

LGH to test its feasibility (no landscape analysis will be offered for this problem). To

examine LGH, backpropagation is used. Here, we will attempt to cluster the weights in

a fully connected feedforward Artificial Neural Network with one hidden layer. Then we

will apply the K-means clustering, which will be somewhat different than in the case of

MAX-SAT and TSP, and that is due to representation issues. We will see the difference

in representation later in section 7.4.

From these tests we will show that CLGH works very well for difficult classification

problems, and produces equal results on less challenging ones. When CLGH is successful,

the search rapidly finds very good results. This will show that LGH establishes itself as

a more generic form of local search that can be applied in the continuous problem space

too.

7.1 Artificial Neural Networks

An Artificial Neural Networks (ANN) (Haykin, 1999) is a very simple representation of

the brain’s neural networks. It captures the nonlinearity of the way the brain works

85
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and the parallel processing of neural networks (although most implementations in pro-

gramming have been sequential). Despite ANN’s simple representation they have been

shown to be very effective in numerous applications, too numerous to list. We only

include some categories in which it was applied. It has been applied across many dis-

ciplines. Some examples are Artificial Intelligence, Vision recognition and simulation,

voice recognition, data classification, stock market prediction, and so on.

There are several ANN learning paradigms. They are classified as supervised learning,

unsupervised learning, and reinforcement learning. Supervised learning is the process

of adapting a network to produce specific output patterns given specific input patterns

(Reed and II, 1999). In learning it is meant that the networks finds a subtle relationship

between the input and output by incrementally and gradually optimising for it. The

supervision means that both the input and the output are provided for the networks so

that it can learn the relationship. An example of the supervised learning algorithms is

Back-propagation (Rumelhart et al., 1986).

In unsupervised or self organised learning there is no sense in the learning of input and

output relationship. In this case, the training data is not labeled, and the targets are not

defined. The goal of an unsupervised ANN network is to find patterns and regularities in

the data guided by the implicit rules in the design. Reinforcement learning is a mixture

of supervised and unsupervised learning. The input output relationship is defined with

less rigor or in a more abstract fashion (Reed and II, 1999).

7.2 Back-Propagation

We have chosen backpropagation (Hecht-Nielsen, 1989) in the supervised learning class

as a test case. It is one of the most widely used neural network architectures, and

it is highly studied. The feedfoward multi-layered neural network is a fully connected

network with an input layer, an output layer and h number of hidden layers. Figure

7.1 shows an example of a fully connected neural net with one hidden layer. Each layer

contains nodes that are interconnected with every other node in the other layers via

weights w. Given a set of training examples (t1,o1), (t2,o2), ..., (tu,ou) where ti is a

vector of the training input pattern, and oi is a vector of the desired output pattern, it

is required that if the input ti is shown to the network, the output oi is produced.

The inputs t = (t1, t2, ..., tu) are shown to the network, and they are propagated by

multiplying each input by the corresponding weights and then summed, µj =
∑

tiwij .

This sum is then passed through a bounded monotonic function such as the sigmoid

function f(µ) shown in equation 7.1. The output of the function f(µ) is carried through

the network performing the same operations throughout, the result õ = (õ1, õ2, ..., õk)

is produced at the end of the network.



Chapter 7 LGH and Continuous Problem Spaces 87

Figure 7.1: An example of a fully connected neural network with the input layer, one
hidden layer and the output layer.

f(µ) =
1

1 + e−µ
(7.1)

The process by which the network is trained to produce oi from ti is by feeding the

inputs ti and propagating them through the network in a forward fashion. The outputs

õi of the network are compared with the desired values oi. Then the error difference

between the desired and actual outputs are propagated backwards in the network, and

the weights of the network are adjusted to minimize the error. This process is repeated

until the error get small enough. This is called, Backpropagation.

The set of weights that connect each of the nodes i in the previous layer to the node j

in the next layer, wij , are adjusted by equation 7.2. This equation basically performs a

simple gradient descent (Riedmiller and Braun, 1993) by adjusting the weights with the

partial derivative of the Error, E, with respect to the weight wij .

w(t + 1) = w(t)− η
∂E

∂wij
(7.2)

Where η is the learning rate that takes on values 0 ≤ η ≤ 1.

Backpropagation has limitations. It has been shown to get stuck in local minima both

empirically and theoretically before learning the entire training set (Gori and Tesi, 1992).

Backpropagation is also known to be slow in optimising the set of weights in the network

with current computational power (Hamm et al., 2007). Several local search algorithm

are proposed for reducing the effects of these problems.
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7.3 Local Optimization of the Weights

Many different methods have been proposed to enhance the performance of neural net-

works. Aside from improving the performance of reaching an optimum for the weights

by improving the backpropagation method (Trejo and Sandoval, 1995; Magoulas et al.,

1999), there are many other local search methods that do not fall into this classical

scheme. The reason for using local search methods is because methods that rely on

gradient descent are slower. In the time that it takes a gradient descent algorithm to

reach a local minimum, a local search algorithm can be restarted many times, and hence

could provide better solutions (Hamm et al., 2007).

Some of these methods use genetic algorithms (Montana and Davis, 1989), Particle

Swarm optimization (Eberhart, 1995), and simulated annealing (Sexton et al., 1999).

Not only do some algorithms develop values for the weights for a fixed network topology,

some also develop the topology of the network entirely relieving the designer from trying

different node and connection configurations. These techniques have been called evolving

neural network algorithms (Maniezzo, 1994).

7.4 Experimental Results

One of the main stumbling blocks of applying CLGH to the weights of a multilayered

neural network is representation. We have tested several ways of creating the weight

vectors for the purpose of clustering. One way is to take the entire set of weights in

an ANN and represent them as a vector, or we could separate the layers and take the

set of weights of each layer independently. However, both of these ways are susceptible

to the hidden layer permutation problem (Radcliffe, 1990; Hancock, 1992), also known

as the competing conventions problem. Because of the interchangeability of the hidden

nodes, if the weights are set as a vector without taking this into account, we introduce

symmetric regions into space that would be detrimental to clustering. This is because

the same vector of weights can be reordered in many different ways. Although the

permutation problem does not affect the networks input to output relationship, the

entire set of weights, if represented as a vector, can be ordered differently.

The permutation problem is shown in Figures 7.2 and 7.3. All the set of weights in

Figure 7.2 can be represented as a vector as shown in Figure 7.2 (a). If the hidden

nodes 1 and 3 are interchanged, then the vector representation would change as shown

in Figure 7.2 (b). The change in the network does not affect the results, but the string

would place two identical solutions in two different regions of the space. This sort of

problem will arise with multiple runs of backpropagation starting from random initial

weights. As gradient descent corrects for the weights, the group of weights connected to

a hidden node could be exchanged in the next run.
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Figure 7.2: Shows the permutation problem. This example shows that nodes 1 and
3, in the hidden layer, can be swapped without affecting the input/output relationship.

Figure 7.3: Shows the effect of the permutation problem on weight representation.
The nodes in the neural network can be swapped where this would not have any impact
on the network. However, the string representation of the weights are entirely different.

To mitigate the problem of the hidden layer permutations we worked with one hidden

layer, we took all the weights that are connected to each node in the hidden layer, and

considered each set of weights as a vector. An example of the weights selected for one

node is shown as the thick dotted lines in Figure 7.2. In this example, we would have

5 vectors each being 7 elements long. Figure 7.4 shows one of these nodes. This is

because the number of weights connected to each node in the hidden layer is 7 (4 on the

left side, and 3 on the right). With this method we avoid having to worry about the

interchangeability of the hidden layer nodes. We can reconstruct the network by simply

reassigning the weight vectors to any of the hidden nodes without regard to order.

Figure 7.4: To avoid the permutation problem, the weights connected to each hidden
node are stored in separate vectors.

If we run backpropagation multiple times, and have similar weight values that are as-

signed to different hidden nodes, then weight vectors will form clusters with close prox-

imity in the weight-space. With this representation, we cluster the solutions in a very
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different way. In previous problems such as MAX-SAT we would run the local search al-

gorithm several times, and then decided how many clusters were needed, then K-means

is applied. Here, we cannot apply the same concept. The number of clusters is dictated

by the number of hidden nodes. Once the weight vectors are created, we set the number

of clusters to the number of nodes in the hidden layer. Then K-means is applied, and

the centroid of each cluster is found. The centroids can be assigned to the hidden layer

arbitrarily. We then proceed with another round of backpropagation.

Figure 7.5 shows the comparison between CLGH and backpropagation alone for the Iris

(Fisher, 1988a) problem. This problem is multivariate classification problems with 3

classes. Each class refers to a type of an Iris plant. The three classes are not linearly

separable which makes classification difficult. It contains 150 instances with 4 attributes.

The Iris dataset is one of the most used in pattern recognition literature.

We create a network with 5 inputs, 1 output, and 20 nodes in the hidden layer. Then

the network is trained for 80 seconds with 50 different initial random weights. For

the solo-backpropagation, the best of 50 runs is chosen. The best set of weights is

used for the second round of backpropagation. As for CLGH, the weights are clustered

with 20 clusters. We used all of the centroids for the weights in the second round of

backpropagation. The results are averaged over 50 simulations. Figure 7.5 shows that

the CLGH method yields better results than those obtained by solo-backpropagation

even after the training is run for a total of 200 seconds. The plot also shows the common

sharp spike found previously in MAX-SAT problems, followed by a steep drop in the

error.

Another experiment is performed on the multivariate Forest Fires dataset. This problem

is also claimed to be a difficult regression task (Fisher, 1988b). It contains 517 instances

with 13 attributes. The networks is trained with 10 initial random weights. After which,

K-means was applied at the first second of the search. Figure 7.6 shows the performance

boost obtained by CLGH averaged over 20 simulations.

Despite achieving better results for the Iris and Forest problems, not all problems tested

gave similar performance levels. In some cases CLGH was only equally as good as solo-

backpropagation. As an example, the test is performed on the Wine problem. This

problem has 178 instances with 13 attributes. This problem, according to the donors is

not a very challenging one (Fisher, 1988c). In this instance, the results of CLGH are as

good as solo-backpropagation. The same performance is obtained for the Breast Cancer

classification data, Figure 7.8. This problem has 569 instances and 32 attributes. The

reason for this equal performance level is because both problems are easy. Both methods

reach optimum solutions very easily. This occurred with MAX-SAT problems also. The

enhancements CLGH provides can be easily seen in more difficult problems.

Even in the instances where CLGH worked well, the sweet spot was hard to find. This

was especially the case with the Forest Fire dataset. Clustering was applied at the first
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Figure 7.5: Shows the performance of solo-backpropagation against CLGH for the
Iris problem. We can see that there is a significant difference in applying CLGH in

reducing the MSE.
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Figure 7.6: Shows the performance of solo-backpropagation against CLGH for the
Forest Fires classification problem problem. K-means was applied after the first second

of backpropagation. Here, we also get a performance boost via CLGH
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Figure 7.7: Shows CLGH performing slightly worse than solo-backpropagation on the
Wine data.
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Figure 7.8: Shows CLGH performing slightly worse than solo-backpropagation on the
breast-cancer data.
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second in the search. If it was applied slightly less or more than one second; even by as

much as 0.25 seconds earlier or later, the results would not have been as good. With

ANNs the number of local minima is enormous (Hamm et al., 2007). We could have

the centroids close to a global minimum, but if they were surrounded by many local

minima, applying backpropagation would drive the solution into a local minimum. This

is also true of other local search techniques being applied to neural networks (Hamm

et al., 2007).

We tried different hidden nodes to see what effect this would have on CLGH, but the

results did not differ much. Although the overall performance of solo-backpropagation

was affected by varying the number of hidden nodes, but overall the performance CLGH

was better. Also, we did not apply the weight decay term, 7.3, which speeds-up the

learning process.

w(t + 1) = ρw(t)− η
∂E

∂wij
(7.3)

This improvement would have enhanced backpropagation, but it is not crucial to our

experiments.

Our approach to clustering in ANN was not same as that of MAX-SAT or TSP. Although

we used K-means to cluster solutions, the clustering was in effect performing a single

average for each of the nodes in the hidden layer. We can see from these experiments

that CLGH works well with ANN problems. In these cases when CLGH performed

at the same level of solo-backpropagation, the problem were known to be easy. When

backpropagation finds it hard to solve a problem, this is when CLGH seems to offer

better results.



Chapter 8

Conclusions & Future work

8.1 Conclusions

We have discussed the satisfiability problem in brief, described some complete and in-

complete solutions, and looked at the structure of the space in which these problems

reside. The majority of phase transition analyses provided by researches were performed

on SAT and MAX-SAT problems using depth first search algorithms. However, a few

researchers performed the same analysis on MAX-SAT problems using a local search

algorithm. We also performed phase transition analyses using a local search algorithm

with a slight difference. The difference is that the previous results were done on fully sat-

isfiable problems below the phase transition, and a targeted number of satisfied clauses

were set beyond the phase transition. We performed our tests on random 3-SAT prob-

lems through the easy-hard-easy regions with focus on local optima. This was important.

It gave us an initial intuitive insight into the solution landscape with regards to the local

and global optima.

Most researchers use stochastic methods to find solutions of SAT and MAX-SAT prob-

lems, and in fact most of them apply these methods to the most difficult regions. Our

analyses show that these solutions might still behave poorly around the phase transition

even for local optima, and the difficulties start to be evident when problems grow in

size. From the phase transition analysis, we were able to form a picture of the landscape

of solutions, and we were able to relate this picture to the easy-hard-easy transition.

The phase transition analyses were followed by a thorough analyses of the structure of the

solution landscape in order to provide a more comprehensive and expansive view. The

empirical evidence described in this report provides strong support for the hypothesis

that we are able to learn about the large-scale structure of the landscape for large MAX-

3-SAT problems. By doing so we have produced a general framework, LGH, by which

clustering (CLGH) or averaging (ALGH) can applied. With LGH we substantially out-

performs more conventional algorithms. It was not the intention of the paper to tune
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our algorithm and so we believe these results to be due to the substantive difference in

approach not superficial reasons.

Interestingly a genetic algorithm using conventional crossover does not learn this large-

scale structure nearly as well as clustering or averaging. Averaging, or using the centroid

of a cluster, breaks the metaphor of natural selection. Averaging acts like blending

inheritance in that it reduces the diversity in the population. Since the modern synthesis,

it has been understood that an essential component of natural selection is the particulate

nature of genes such that crossover exchanges genes rather than average them. As a

consequence, the kind of averaging we have undertaken has been little explored, yet, as

we have argued, this averaging allows the landscape to be explored in a very different

way to conventional crossover. Perhaps some of the algorithms which come closest to

exploring landscapes in an analogous way to the CLGH and ALGH proposed here are

the univariate estimation of distribution algorithms. Yet as we have shown even these

do not perform moves similar to averaging.

We chose to study the random MAX-3-SAT problem as this is one of the best understood

NP-Hard problems. An important question is whether we can obtain similar performance

on other NP-Hard problems? Clearly, this can only be determined empirically. For this

we explored TSP problem. In TSP, we showed that averaging of solutions provides a

centroid that can be used as a better starting point for the search. However, there was

little evidence that the solution space was clustered. The limited number of analyses we

were able to perform (due to many complications intrinsic to TSP) confirmed this view.

Instead, as researchers have pointed out, there might be a single cluster. Hence, CLGH

and ALGH produced similar results.

We are however optimistic that the LGH approach taken here should be applicable to

many other problems. The essential features of the landscape which made our approach

work was that good solutions are, at least weakly, correlated with global optimal solu-

tions. This seems to be a property of many NP-Hard problems, which suggests they

may be amenable to a similar approach.

With ANNs, the results were problem dependent. In some problems, there was a clear

advantage to using CLGH. The results showed a significant gain in performance. In

others, CLGH performed just as well as solo-backpropagation. We have not studied

the landscape of this problem, nor have we compared it with state-of-the-art solvers.

Nevertheless, there is an indication that CLGH can be used to improve the results in

some cases.

The studies carried out in this paper have lead to a number of significant observations

about MAX-3-SAT, TSP and ANN. The three most striking observations were the fol-

lowing

• Very significant improvements can be achieved by clustering good solutions and
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restarting a hill-climber from the feasible configuration closest to the centroids of

the cluster.

• Taking the average of a set of solutions is radically different and, for this problem,

substantially better than crossover.

• Finally, to maximise the benefits of clustering it should be applied at very specific

points in the search.

In retrospect, the application of CLGH looks like a straightforward way of solving dif-

ficult problems. Indeed, we started with the proposition that clustering of solutions is

a natural way for solving satisfiability problems. There were two reasons why we came

to this conclusion. First, we have already seen the limited study of the structure of

solutions by Zhang. It was limited to showing the solution space as a single cluster.

His research showed that better-cost solutions shared common traits with the global

optima. Second, we have shown from our cluster-analysis that the correlation between

local and global optima increases as the cost of the optima get better, there might be

multiple global solutions, and that the better-cost solutions are clustered around the

global ones. This automatically led us to believe that clustering would natively work

with this picture. The implementation of a clustering technique to solve satisfiability

problems did not work directly.

What we initially found was that directly executing K-means on solutions obtained from

hill-climbing was not beneficial. In fact, the results from the search were either as good

as averaging of random solution points or worse. These unexpected results went against

the way the solutions described the space in which they reside. After many experiments

we found the reason for this lack of performance. It was the point of application of K-

means on the solutions obtained from the initial search. We can neither apply K-means

before or after a certain point in the search. We believe that this simple and direct

approach was not used previously by researchers due to this fact. Here is the central

question that needs to be answered, at which points should we try to find the centroids?

K-means has been used on an incredible number of problems. It is used in vector

quantisation in image compression (P. C. Cosman et al., 1993), Classification (Li et al.,

2002; Wagsta et al., 2001; Wang et al., 2002), intrusion detection (Laskov et al., 2005)

and more. In all these cases, the data that is clustered is available beforehand. It is clear

what needs to be clustered. The goal is to find centroids that best represent each cluster.

For example, if an image is to be compressed using vector quantization (which uses K-

means or what is commonly referred to as the LBG algorithm (Linde et al., 1980) in the

image compression world), then an image is segmented into blocks. Each block is turned

into a vector in an N -dimensional space. Then these vectors are clustered to get the

centroids that best represent the cluster. It is the same with classification. Individual

centroids represent particular classes. Image data, intrusion data, or even data to be

classified have an inherent structure. K-means exploits this existing structure.
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Here, what exactly are we trying to better represent? We argued that we are trying

to represent the solution space. However, which points in the solution space are these?

Indeed, we are generating these points based on a fitness function. This function de-

scribes the solution space, but does not render its shape. For the fitness function to

be useful, it must be applied to different points. We can think of the fitness function

as an abstract description of the solution space, and the points as the actual physical

or concrete description. Another way we could think of the function is as an implicitly

defined landscape, and the point as explicit points or samples representing part of that

implicit landscape.

We obviously cannot classify randomly generated solutions. Random solutions tell very

little about the landscape. Instead we generate random points, then search the space

starting with these points, and improve their costs. These points coat important regions.

We recognise that this too is not enough. If the points were under-searched or over-

searched they loose structure. They simply do not contribute information to create a

useful centroids. Figure 8.1 shows an illustration of 3 levels of the application of local

search. The first, A, is the randomly generated points in space. clustering these points

does not offer any advantage to the local search algorithm, because the points are simply

scattered in space. If we perform a local search moving from the A to C directly, then

we have moved the solutions closer to local optima. Suppose that the global solutions

are denoted in stars, as positioned in C, then clustering might provide a centroid that

is closer to the one of the global optima, but it is more likely that it might not. The

solutions are highly correlated. The best point in clustering is somewhere in between,

B. We referred to this point as the sweet spot.

Figure 8.1: An illustration of the solution landscape in 2-dimensions. A proposed
location for the application of K-means. There are 3 stages of the search. The first is
the random initialisations of assignments. The second stage is locating good solutions.
The third is over-fitting of the solutions. The best location to apply K-means is at the

mid stage. This is because at this stage these solutions expose structure.

Evidence of this behaviour can be seen when we compare K-means clustering with

averaging of random points. When we initially compare the two at the wrong point
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in the search we discover that averaging performed sometimes better and other times

worse. Only when we applied K-means at the right point in the local search did it

beat averaging. This was evident for MAX-SAT. However, this can be seen more clearly

in TSP. CLGH and ALGH perform equally well. It could be that either there are no

clusters we can exploit, or the sweet spot was not found.

We have been successful in using LGH in MAX-SAT, TSP and to some degree ANNs.

CLGH is even more successful than the state of the art algorithm, BGWALKSAT, and

we have shown it to outperform every other local-search algorithm in its genre.

8.2 Future Work

We believe that this success can be extended to other optimization problems especially

if the problem follows the same sort of structure found in satisfiability. More difficult

problems should be tested for the viability of LGH search. Initially, the structure of

many problems should be studied. However, this is not enough. More should be done

to understand what solutions contribute to creating representative points or centroids.

Also, more should be done to understand the structure of solution of other problems. We

have seen how highly advantageous it is to understand the clustered MAX-SAT solutions.

We have seen that global solutions were separated in space, and they resided within a

cluster of similar less optimal solutions. This study should be applied to TSP, ANNs

and other problems to see if clustering is even appropriate to begin with. We have not

done enough to understand these other problems. We attempted to implement CLGH

to these problems based on the assumption that they too have a structure. Although

this might be the case, only the analysis could prove that to be so.

Finally, many other clustering models beside K-means are available in literature. They

should be studied and applied. Our simple use of K-means to cluster solutions certainly

applied quite well to MAX-SAT. It yielded great results. We propose that these solutions

can be further enhanced if more advanced methods were applied. Currently, we initialise

the centroids randomly. Then they are iteratively improved. These centroid might

converge to cluster or each might represent more than one cluster. The choice of the

initial starting points is important. Also, choosing the number of centroids to match

the number of clusters is crucial. This too will help assign each centroid to each cluster

properly.



Appendix A

Algorithms

1: Procedure BasicHillClimb(X̄)
2: for i← 1 to MaxTries do

3: X̄ ← random Boolean assignment
4: c′ ← cost(X̄)
5: for j ← 1 to iterations do

6: indexToF lip← random(1, 2, ..., N)
7: X̄ ′ ← flip(X̄, indexToF lip)
8: c← cost(X̄ ′)
9: if (c = 0) then

10: return X̄
11: else if (c ≤ c′) then

12: c′ ← c
13: X̄ ← X̄ ′

14: end if

15: end for

16: end for

17: return X̄

Figure A.1: The Basic Hill-Climber Algorithm
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1: Procedure Exhaustive(X̄)
2: c← cost(X̄)
3: Save X̄ into Hash
4: Push X̄ into Stack
5: while (Stack is not empty) do

6: X̄ ← Pop Stack
7: for i← 1 to size of X̄ do

8: X̄ ′ ← flip(X̄, i)
9: c′ ← cost(X̄ ′)

10: if (c′ = c) then

11: if (X̄ ′ is not in Hash) then

12: Save X̄ ′ into Hash
13: Push X̄ ′ into Stack
14: end if

15: else if (c′ < c) then

16: clear Stack
17: clear Hash
18: c← c′

19: Save X̄ into Hash
20: Push X̄ into Stack
21: end if

22: end for

23: end while

24: return Hash
25: End Procedure

Figure A.2: Exhaustive search algorithms

1: Procedure K-MeansSearch(X̄)
2: X̄← GenerateRandomAssignments(N)
3: for i← 1 to N do

4: X̄ ′
i ← BasicHillClimb(X̄i)

5: end for

6: C̄← K-Means(X̄′, N, nCentroids)
7: for i← 1 to nCentroids do

8: C̄i ← HillClimb(C̄i)
9: end for

10: End Procedure

Figure A.3: K-Means algorithm
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1: Procedure K-Means(X̄, N, nCentroids)
2: C̄← GenerateRandomAssignments(nCentroids)
3: repeat

4: CreateZeroed(clusterCount)
5: CreateZeroed(C̄′)
6: for i← 1 to N do

7: d′ ← Hamming(X̄i, C̄1)
8: index← 1
9: for j ← 2 to nCentroids do

10: d← Hamming(X̄i, C̄j)
11: if (d < d′) then

12: d′ ← d
13: index← j
14: end if

15: C̄ ′
index ← C̄ ′

index + X̄i

16: clusterCountindex ← clusterCountindex + 1
17: end for

18: end for

19: for j ← 1 to nCentroids do

20: C̄i ← C̄i/clusterCounti
21: end for

22: until No Change between current C̄ and previous C̄

23: return C̄

24: End Procedure

Figure A.4: K-Means search algorithm

1: procedure Iterate Local Search

2: T0 ← GenerateRandomTour()
3: T ← LocalSearch(T0)
4: for i← 1 to MaxTries do

5: T ′ ← Perturbation(T , history)
6: T”← LocalSearch(T ′)
7: T ← AcceptanceCriteria(T, T”, history)
8: end for

9: end procedure

Figure A.5: Iterated Local Search
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Extension

B.1 WinSATS Application

In an effort to support the SAT research community we have developed the WinSATS

application. It is a robust Windows based application that is friendly and easy to use.

Its primary use is to help researchers run different algorithms on SAT problems, and

provide results that can help in their analyses. Currently, the program is in its second

version. It contains several stochastic search algorithms such as Basic Hill-Climbing,

GSAT and WalkSAT, and it accommodates search enhancers such as the CLGH method

and perturbations.

WinSATS allows users to open CNF files, and apply different search methods on them.

It can be used to cascade the different search methods one after the other, loop through

them several times and observe the results at each stage of the search. The search can

be started from a user specified number of assignments. The application is capable of

creating random instances using the FCL model for a range of k values, variables and

ratios, α. The main panel of the application is shown in Figure B.1.

There are many different settings that can be applied to each of the search methods.

Examples of these settings are, the number of iterations the method is run before the

search is stopped, the probability of the random walk in WalkSat, or the number of

centroids K-Means algorithm creates. An example of these settings Figure B.2 shows

the settings that are applicable to K-means.

Once WinSATS is run, it stores the results of the search for each of the assignments

in a sheet. This information contains the problem description along with the cost (the

number of unsatisfied clauses) of each assignment that was searched. Each new problem

that is searched will have its results recorded in the sheet separately, Figure B.3. From

the results sheet the CNF file that was loaded or randomly created for test can be
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Figure B.1: The main control panel of the application WinSATS

viewed. In addition, the resultant true/false assignments, represented by 1s and 0s, can

be viewed through the results sheet.

There is much more to WinSATS that is left out of this document. However the com-

plete documentation for this application and the application itself can be found and

downloaded at: http://users.ecs.soton.ac.uk/mqq06r/winsat/.

It is our goal to include many more of the well known complete and incomplete methods

in this application. Ultimately, we hope to release the code to the research community

to implement their own methods into it without having to worry about opening CNF

files, creating random instances or even finding the cost of assignments.
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Figure B.2: This dialogbox contains the settings that can be applied to K-Means as
an example.

B.2 A fast implementation of GSAT and WalkSAT

In WinSATS we improved the GSAT and WalkSAT methods such that we were able to

compete with UBCSAT’s state of the art implementation of these algorithms. We believe

that our implementation is similar to UBCSAT’s with one exception. We improved the

speed at point when the search plateaus. This gave WinSATS the advantage, and

provided speed-ups up to an order of magnitude more over UBCSAT on the large scale

problems we have tested.

Initially, we implemented GSAT and WalkSAT in such a way that was much slower

than BHC. The way GSAT works is by flipping the bit of a variable in an initial random

assignment that gives the maximum number of satisfied clauses. This process is repeated

until the search plateaus. By running many experiments we have realised that a boolean

assignment comes to a point where flipping any variable provides either no improvement

on the cost, or makes the cost worse. In our early implementation of the GSAT and

WalkSAT algorithms, we searched the assignment by testing every variable to determine

what cost improvement it would yield. After performing a full check on all the variables,

we would chose the best flip. That meant that if there are n variables, then for every flip

there was n checks. This was a long process which slowed the algorithm considerably. In

BHC, we picked a variable at random, checked whether it improved the cost, and flipped
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Figure B.3: The results of each problem searched is stored in the Results Grid

it if did. The BHC algorithm performed extremely well on relatively large problems in

comparison.

The improvement we introduced was to constantly track variables as the they are flipped.

When the initial assignment is generated randomly, a full sweep of the cost of each

variable, x1, x2, ..., xn flip is found. This overhead is computed only once, and we store

this information in a list. Now that we have a record of the costs of all the variables, we

flip the variable xi with the highest cost. After each flip, we find the effect of flipping

xi variable on each of the other variables it is in. We apply these new changes to the

list. In this list, we store the cost of the flip and the index of the variable to be flipped.

We perform the same for the next variable and so on. This we believe is how it was also

implemented in the UBCSAT.

For this, we developed a specialised fast set data structure which involves two arrays.

The first array is a simple list of the elements in the set. The second array indexes

the elements in the first array where an index of -1 indicates the element is not in the

array. Note that the size of the index array is the total number of elements that can be

put in the set. This set allows O(1) insertion, deletion, checking whether the element
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is contained in the set, and choosing a random element from the set. This provides a

considerable speed-up over a conventional binary tree structure which is order O(log(n))

(A hash set is impractical as it takes O(n) to generate random numbers).

Figure B.4: Two levels of storage are utilized to speed up the GSAT and WALKSAT
algorithms. The first is tree structured list, and the second is a simple array. The first
structure stores costs greater than 0, and the second stores costs equal to 0. Since the
search spends most of its time in the 0 cost flips, we gain a great deal of speed by

allowing for this second level of storage.

B.3 SAT and MAX-SAT for the Lay-Researcher

In addition to the WinSATS application, we have created a web page that introduces sat-

isfiability and maximum satisfiability for starting researchers. It was made simple using

an informal language. This page can be found at: http://users.ecs.soton.ac.uk/mqq06r/sat/.

Both this page and the WinSATS application page were posted on the Wikipedia Satisfi-

ability page by us, and the link was reinserted into the Wikipedia Maximum Satisfiability

page by others. The research community has shown interest in the page by visiting it

at more than 5000 times since its inception.
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