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ABSTRACT
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Doctor of Philosophy

by Mohamed Qasem

In this thesis, we introduce a novel approach to solving MAX-SAT problems. This
algorithm clusters good solutions, and restarts the search from the closest feasible con-
figuration to the centroid of each cluster. We call this method Clustered-Landscape
Guided Hopping (CLGH). In addition, where clustering does not provide an advantage
due to the non-clustered landscape configuration, we use Averaged-Landscape Guided
Hopping (ALGH). CLGH is shown to be highly efficient for finding good solutions of
large MAX-SAT problems. Systematic studies of the landscape are presented to show
that the success of clustering is due to the learning of large-scale structure of the fitness
landscape. Previous studies conducted by other researchers analysed the relationship
between local and global minima and provided an insight into the configuration of the
landscape. It was found that local minima formed clusters around global ones. We
expanded these analyses to cover the relationship between clusters, and found that local
minima form many correlated yet distant clusters. In addition, we show the existence of

a relationship between the size of the problem and the distance between local minima.

To rule out other possibilities of this success we test several other population based
algorithms, and compare their performances to clustering. In addition, we compare with
solo-search algorithms. We show that this method is superior to all algorithms tested.
CLGH produces results that might be produced by a solo-local search algorithm within
95% less time. However, this is not a standalone technique, and can be incorporated

within other algorithms to further enhance their performance.

A further application of clustering is carried out on the Traveling Salesman Problem
(TSP) in the discrete domain, and Artificial Neural Networks (ANN) using backpropa-
gation for the purpose of data classification in the continuous domain. Since TSP does
not show a clustered landscape configuration we find that ALGH is an effective method
for improving search results. Preliminary results are shown indicating that extensions
of the proposed algorithm can give similar improvements on these hard optimisation

problems.
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Chapter 1

Introduction

Propositional satisfiability is a well known and studied problem. The main body of liter-
ature consists of phase transition analyses (Mitchell et al., 1992; Zhang, 2001; Crawford
and Auton, 1996), landscape analyses (Parkes, 1997; Zhang et al., 2003; Parkes, 2001b),
and methods for solving them (Davis and Putnam, 1960; Crawford and Auton, 1993;
Stephan et al., 1996; Marques-Silva and Sakallah, 1999; Zhang et al., 2001). The analysis
started with the focus on a single characteristic of the satisfiability problem, i.e., phase
transitions, and gradually progressed into more comprehensive landscape analysis. In
this thesis, we shed some light on previous studies and attempt to broaden these anal-
yses further. We also propose a novel approach for exploring the landscape of solutions

of large scale satisfiability problems more efficiently.

Although our main contribution is a new search method, the landscape analyses are
invaluable on their own. They provide a substantially more expansive picture than pre-
viously reported. A great effort went into discovering the configurations of solutions
through hundreds of hours of empirical tests, and via the statistical analysis of hun-
dreds of thousands of data points. Moreover, we made these analyses more concrete by
modeling the data points. As a proof of concept we took advantage of our analysis by

introducing a new method of search.

This new method, which we call Landscape Guided Hopping (LGH) capitalises on the
structure of the solution space. We observed that local solutions of satisfiability problems
group together forming clusters. Within these clusters, better and better solutions tend
to gravitate towards the centre of these clusters. The most recent attempts at exploiting
these structures looked at the solution space as a single cluster (Zhang et al., 2003). It
seems that the analysis carried by previous researchers did not identify these multiple
clusters. However, even with one cluster they were able to obtain better results. We
show that with the Clustered-Landscape Guided Hopping (CLGH) method we are able
to outperform standard local search algorithms and the state of the art by a clear

margin most notably on random MAX-3-SAT problems. To show this we performed a

1



Chapter 1 Introduction 2

comparison with over 30 different local search algorithms. We have outperformed them
all in the quality of the solution and the time it takes to find a better solution. This
work has been developed into a Windows based software that was placed on the Internet.
It has been downloaded and used many researchers around the world. Not only do we
provide the algorithm within this software, but we also developed the fastest GSAT and
WALKSAT search algorithms, see sections B.1 B.2 in the Appendix.

To see if LGH applies to other problems it was applied to another NP-Hard Problem.
The main problem we analysed was the well-known Traveling Salesman Problem (TSP)
(Applegate et al., 2006). Many methods were developed to solve this problem. One that
stands out is offered by (Helsgaun, 2006). The goal was not to outperform these methods,
but to explore the degree of effectiveness of clustering. The structural analysis performed
on maximum satisfiability cannot be directly implemented on this problem. In addition,
the implementation details are significantly different between the two. Although it
did not appear that these two problems shared the same clustered structure of the
satisfiability problem. However, the traveling salesman problem did appear to have a
single cluster that can still be utilized to improve results using Averaged-Landscape
Guided Hopping (ALGH).

The previously mentioned problems were combinatorial optimization problems. They
are discrete in nature. As a final experiment of CLGH, we applied it to a continuous
problem. The goal was to reduce the Mean Squared Error (MSE) of an Artificial Neu-
ral Network (Haykin, 1999) when classifying data sets by improving the weights of the
network. Different methods have been developed to optimise the weights of an artifi-
cial neural network. We chose backpropagation (Rumelhart et al., 1986) as a testing
ground. Here too, we showed that the weight in some problems can be optimized using
CLGH. However, examining one problem in the continuous domain is not sufficient to
demonstrate that CLGH works. More problems need to be tested, and further landscape

analysis should be performed. Despite this, it is a step in the right direction.

One of the most important aspects of LGH is the application of clustering or averaging
after performing several local searches. The stage at which clustering or averaging is
applied is crucial to the success of the method. Although the exact stage of application
has not determined theoretically, some empirical analyses have been done to show its
importance. This point is discussed more thoroughly in the conclusion and is left as an

open question for further research.

The structure of the thesis is as follows: in the next chapter we introduce propositional
satisfiability, discuss the NP-Complete concept, methods used for solving SAT and MAX-
SAT problems, and the structure of SAT and backbones. This work is mostly based on a
review of literature. In Chapter 3 we examine the number of flips required to reach local
solutions, and the probability of finding local solutions using a local search procedure and

complete-neighbourhood search. Moreover, we show the existence of a phase transition
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even for local search. We compare these results with the phase transitions obtained
by complete methods. The majority of papers were concerned with the effect of exact
algorithms on satisfiability problems. Some tested local search at and around the phase
transition (Parkes, 2001a, 1997). We shed some light on the relationship between the
phase transitions and local search with a slightly different approach. We will show
that local search behaves on maximum satisfiability problems in the same way exact

algorithms do on satisfiability problems when searching for local optimums.

In Chapter 4 we take the analysis a step further. We perform a comprehensive study of
the landscape looking for structures that we can exploit in the search. This is done on
relatively small problem sizes. We analyse the relationship between quasi-global solu-
tions, and local and quasi-global solutions. We model the solution landscape, and draw
conclusions on its nature. We follow this with the application of the CLGH approach
on large problem instances, chapter 5. The method we propose combines hill-climbing
and K-means clustering to efficiently explore solutions. We also compare this new ap-
proach to several algorithms such as Genetic Algorithms and Univariate Estimation of
Distribution Algorithms to show that averaging of solution clusters is very different from
these methods. We also compare our approach to state of the art algorithms, and show
that our algorithm is superior to them all. In comparison with Backbone guided search,
CLGH achieves 14.5% improvements in the results. When CLGH is compared with the
top local searchers, CLGH achieves same quality results in less than 95% of the time
alloted for the local searcher. Not only does our algorithm outperforms other algorithms,
but we will show that clustering of solutions can be used in conjunction with other local

searchers to improve their results too.

In Chapter 6 and 7 we go a step further to test how well LGH applies to other problems.
We start with the Traveling Salesman Problem as a discrete combinatorial optimization
problem, and then move to Artificial Neural Networks in the continuous domain. These
experiments will show that although CLGH is not as effective as in the case of Maximum
Satisfiability, ALGH does provide a new way of solving these problems. We also discuss

possible reasons for clustering in CLGH being not as effective in these cases.

Finally, we conclude and briefly discuss future work that needs to be done to understand
how to maximise gains in other problems. This approach is new, and much is left to be
studied. It needs further investigation of when and how to apply it with local search.
More will also be discussed on the landscape of solutions in an effort to understand if

clustering would be a preferred tool over other algorithms.

1.1 Contributions

This work has culminated into three publications:
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e Qasem, M. and Priigel-Bennett, A. (2009). Learning the Large-Scale Structure of
the MAXSAT Landscape Using Populations. Evolutionary Computation, IEEE

Transactions on (In print).

e Qasem, M. and Priigel-Bennett, A. (2009). Improving Performance in Combina-
torial Optimisation Using Averaging and Clustering. In EvoCOP, pages 180-191.

e Qasem, M. and Priigel-Bennett, A. Complexity of MAX-SAT Using Stochastic
Algorithms, in Proc. Annu. Conf. Genetic Evol. Comput. (GECCO), 2008, pp.
615-616.



Chapter 2
Propositional Satisfiability

Propositional Satisfiability or Boolean Satisfiability is fundamental in solving many
problems in the fields of Artificial Intelligence, mathematical logic, and combinatorial
optimizations. Some of these areas are directly related to practical problems such as
Electronic Design Automation (EDA) (Marques-Silva and A. Sakallah, 2000), which in-
clude Automatic Test Pattern Generation (Larrabee, 1992), path delay faults (Chen and
Gupta, 1996), Field Programmable Gate Array routing (Gi-Joon et al., 1999), crosstalk
noise analysis (Chen and Keutzer, 1999), and functional vector generation (Fallah et al.,
1998). These types of problems, such as combinational logic circuits, are first reduced
to SAT expressions using algebraic methods, and then a solution is found using different
search methods (Marques-Silva and A. Sakallah, 2000).

2.1 The Satisfiability (SAT) Problem

A SAT expression f is composed from a set of m clauses in conjunction, C1 ACoA...ACy,,
where each clause C; is formed by the disjunction of Boolean variables, X1, Xo, ..., X,, or
their negation, where X; € {0,1}. Here, we use 0 to represent false, and 1 to represent
true. This form of the conjunction of clauses and the disjunction of literals (variables
and their negation) is called Conjunctive Normal Form (CNF). The SAT problem asks if
there exists a truth assignment X such that the expression is true. The vector notation
X represents a string of 0 and 1 configurations. If the number of literals in each clause
is k then the problem is called k-SAT. When k > 3, then k-SAT becomes NP-Complete.

Maximum Satisfiability, on the other hand, is a generalization of SAT. Where SAT is a
decision problem, MAX-SAT is an optimization one. The goal in MAX-SAT is to find
an assignment X such that the number of satisfied clauses is a maximum. MAX-k-SAT
is NP-Hard for £ > 2. The MAX-SAT problem is described in Equation 2.1.
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0= max Si(X) (2.1)

Where o is the cost, and 5; is a 1 if the clause is satisfied, and 0 if the clause is unsatisfied.
Another way of looking at this is by expressing the cost of MAX-SAT as the minimum

number of unsatisfied clause as in equation 2.2.

c= min Zi(X) (2.2)

Where ¢ is the cost, Z; is a 1 if the clause is unsatisfied, and a 0 otherwise. Current
literature uses the costs interchangeably in their interpretations of the results. We will

allow ourselves the same level of flexibility when necessary.

Weighted MAX-SAT is yet another generalization of MAX-SAT. A weight w; is associ-
ated with each clause in the satisfiability expression. While the goal of MAX-SAT is to
find the maximum number of satisfying assignments, the goal in weighted MAX-SAT is
to find the maximum sum of the weights for the satisfied clauses (Wah and Yi, 1997),
Equation 2.3.

2.1.1 Non-Deterministic Polynomial Time Problems

Non-Deterministic Polynomial time (NP) refers to the set of decision problems that can
be solved in polynomial time with a non-deterministic algorithm, e.g. see (Garey and
Johnson, 1979). The polynomial time that is mentioned in this definition refers to the
idea that if a solution was somehow offered, the verification of the solution can be done
in polynomial time. Finding an optimal solution to this set of problems requires at the
worst case an exhaustive search through the entire solution space using a deterministic
algorithm. Unfortunately, as far as we know, to implement a non-deterministic algo-
rithm using a deterministic one requires an exponential time in the worst case. An
NP-Complete problem denotes a problem that is of the NP class, and all other problems
in its class can be transformed to it in polytime. Also, finding a polynomial solution to

one problem means polynomial solutions can be found for all NP-Complete problems.

Non-deterministic polynomial time hard (NP-Hard) problems are the class of problems
that are at least as hard as the hardest problem in the NP-Complete class. Since MAX-
SAT is not a decision problem it automatically falls outside the NP class. No longer

is the problem asking if there exists a solution that satisfies the formula. Instead the
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question is, what is the maximum number of satisfiable clauses? Compare a systematic
search that traverses the 0 and 1 tree in an effort to solve a SAT problem with one that
tries to solve a MAX-SAT problem. In SAT, we can prune the search tree as soon as
single clause is not satisfied. Having a single clause unsatisfied in the MAX-SAT search
does not necessarily amount to directly pruning the tree. Instead the condition would
have to be that the number of unsatisfied clauses found so far is less than the one that

was found previously. In practice, this makes MAX-SAT much harder than SAT.

SAT is known to be NP-Complete for k& > 3 (Cook, 1971). When k < 2, the SAT
problem is in P. However, MAX-k-SAT for k£ > 2 is NP-Hard. Having SAT in the
NP-complete set of problem does not necessarily make all instances of it hard to solve.
Assuming P # NP, it is just that some problems require a superpolynomial number of
truth assignment tests to guarantee finding a solution. In other words, the complexity of
exhaustive search algorithms that attempt to solve NP-Complete SAT problems require

an order 2" tests, where h is a constant.

The importance of the SAT problem not only stems from its relationship to real world
problems, but due to its representational simplicity of NP-Complete problems it has
received the attention of many researchers. Historically, it was the first problem proven
to be NP-Complete (Cook, 1971).

2.2 Methods for Solving SAT and MAX-SAT

There are two types of approaches that are applied to solving SAT or MAX-SAT prob-
lems, and they fall into two categories: complete methods that find optimum solutions
mainly via depth first search, and incomplete methods that find optimal or near optimal
solutions mainly through local search methods. Both complete and incomplete methods
use exact search methods (these that do not incorporate probabilistic heuristics, and
which include some form of a systematic search algorithm), probabilistic heuristics or
a combination of both. A list of solvers have been included in the a survey in (Gomes

et al., 2008). We will discuss some of these in here.

A fundamental complete procedure that guarantees finding solutions to SAT or MAX-
SAT problems is the Davis-Putnam-Logemann-Loveland (DPLL) algorithm (Martin
et al., 1962). The method is also known as a modified form of Backtracking algorithm.
In backtracking a search tree comprising of all combinations of the assignments of X is
traversed. The individual values X; of X are either assigned values of X € {0,1}, or
they are unassigned. The initial cost of the expression f is considered only with the full
assignment of X. Once the first cost ¢; has been determined using a full depth search,
a chronological backtrack is performed, the subsequent cost is computed at every node,
and the search tree is pruned if the new cost c¢;y1 is greater than the lowest cost found
so far, ¢;. This is how branch and bound is applied to MAX-SAT. With SAT, the tree
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is pruned as soon as a clause is unsatisfied since the goal is to find X that satisfies f.
DPLL, on the other hand, systematically searches every possible Boolean combination of
X through backtracking while reducing the CNF expression by a process of elimination
of unit clauses. Unit clauses are clauses that have all their variables assigned values
except one. In MAX-SAT, unit clause elimination is no longer applicable making the
problem considerably more difficult. The DPL procedure was introduced in 1960, and
it was later modified, DPLL, in 1962 (Martin et al., 1962; Davis and Putnam, 1960). To

date, it is used as the foundation for the most effective complete algorithms.

Although DPLL is a clever method for finding solutions to satisfiability problems, its
systematic traversal of the NP problem renders it ineffective with large problems. Many
methods have been designed to incorporate a modified version of DPLL as part of their
search engines, and, in fact, have been turned into applications that are used in the Elec-
tronic Design Automation (EDA) industry. Some such methods include Tableau (Craw-
ford and Auton, 1993), TEGUS (Stephan et al., 1996), BCP (Zabih and McAllester,
1988), GRASP (Marques-Silva and Sakallah, 1999), and zChaff (Zhang et al., 2001).

Hybrid methods that use both exact and probabilistic methods to achieve complete
solutions are abundant. A simple form takes a probabilistic procedure as a precursor
to DPLL, e.g., the Two-Phased Exact algorithm (Borchers and Furman, 1999). In this
method a lower bound to the number of satisfied clauses is found using GSAT (Selman
et al., 1992), a probabilistic procedure, in the first phase. In the second phase, DPLL
is applied to find costs larger than the lower bound. Another more complicated method
relies on three different procedures: unit propagation (as in DPLL) based on nonlinear
integer programming, look ahead based on linear programming (LP) to estimate the
largest number of satisfiable clauses and dynamic weight ordering (Zhao and Zhang,
2004).

Incomplete methods do not guarantee optimality. They rely on heuristic procedures to
search for solutions in satisfiability problems. Although they are categorized as local
searches, analysis of their effectiveness on small problems, i.e., problems with a rela-
tively small number of variables, have shown that they almost always converge to global
maxima rapidly (Selman et al., 1994; Parkes and Walser, 1996; Gent and Walsh, 1993;
Zhang et al., 2003; Selman and Kautz, 1993).

The first inception of a local search for random 3-SAT came in the form of a greedy hill-
climb?® search called GSAT (Selman et al., 1992). GSAT starts with a random assignment
of X, and changes the Boolean assignment of a variable X; that yields the most number
of satisfied clauses. This process is repeated a set number of times. In SAT, if a
satisfying assignment is found, the procedure is stopped, otherwise it is restarted with

another initial random assignment. However, in MAX-SAT the procedure is restarted an

'Most literature looks at SAT or MAX-SAT problems in terms of the minimum number of unsatisfied
clauses as apposed to the maximum number of satisfied clauses. A hill-climber algorithm should more
appropriately be called descent in this case.
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unspecified number of times while keeping track of the best local optimum?. This greedy
approach has been the building block for lots of other incomplete methods. Methods
such as WALKSAT (Papadimitriou, 1991), WSat/G, WSat/SKC (Parkes and Walser,
1996), UnitWalk (Hirsch and Kojevnikov, 2005), BGWALKSAT (Zhang et al., 2003),
and Novelty (McAllester et al., 1997) are examples of methods based on it. Variations
of this greedy approach include random walks, unit clause elimination, and variable

greediness.

Another stochastic local search approach that is quasi-greedy, yet not related to previ-
ously mentioned methods, is Simulated Annealing (SA) (Kirkpatrick et al., 1983). SA
is a modification of a hill-climber that allows the searcher to occasionally make a move
which decreases the number of satisfied clauses. This allows the searcher to escape from
local minima in which a hill-climber would normally get stuck. The probability of mak-
ing such a move is controlled by the “annealing temperature” which is typically reduced
over time. Consequently, SA initially behaves similarly to a random walk, allowing most
moves, but over time reduces the probability of making moves that maximizes the cost

until it resembles a hill-climber.

Another powerful method for finding solutions to satisfiability problems is Tabu search
(TS). This method is based on two main concepts: adaptive memory and responsive
exploration (Glover and Laguna, 2002). In contrast to memoryless systems such as
hill-climbing algorithms or simulated annealing, T'S uses memory to prevent the search
from moving to a region that has already been explored. This, again, prevents the
search algorithm from getting trapped in local minima. It differs from Backtracking
also by adaptively storing information as opposed to inflexibly branching through all
possibilities. Reactive Search (RS) method (Battiti and Protasi, 1997), and Iterated
Robust TABU Search (IRoTS) (Smyth et al., 2003), are two examples of TS, both are
used for solving MAX-SAT problem.

2.3 Population Based Algorithms

The methods mentioned earlier are solo-search algorithms. Another category of search
algorithms is based on populations. These include Genetic Algorithms (De Jong and
Spears, 1989; Boughaci et al., 2004), Particle Swarm Optimisation, Ant Colony Opti-
misation (Villagra and Bardn, 2007), and Quantum Evolutionary Algorithms (Layeb
and Saidouni, 2008; Xiaoyue et al., 2008). All of these methods were applied to the
satisfiability problem with limited success. Usually, they are applied to small problems,

and even then they have not been shown to outperform solo-search algorithms on the

2The term “local optimum” refers to an assignment that is obtained by the search in a particular
locality, and that this assignment cannot be improved upon by the search method any further. However,
the “best local optimum” is the best cost local optimum that was obtained through several searches
starting from different initial points and ending at different localities.
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whole. In fact, the program that has consistently outperformed (or at least has been
on equal footing with) all population search algorithms is WALKSAT. We believe that
many researchers have abandoned this genre of research prematurely, because they have
not achieved substantial success against even the most basic of the solo-search algo-
rithms. This explains the dearth of published papers on population based algorithms
with regards to satisfiability.

Genetic algorithms (GA) have been applied to find optimal solutions in satisfiability
problems. Due to the simple binary representation that satisfiability problems possess,
it makes it easy for researchers to apply GA for solving them. A GA algorithm can
be applied to the problem via direct binary string representation of the assignment X
with the normal crossover and mutation operators (De Jong and Spears, 1989). Others
combine hill-climbing with GA to avoid having GAs prematurely converge to a local
minima (Boughaci et al., 2004). The procedure alternates between crossover in the

population and hill-climbing over the members of the population.

Ant Colony Optimisation (ACO) was applied to MAX-SAT problems by (Villagra and
Barén, 2007). This heuristic is inspired by the foraging behaviour of ant colonies.
The ant or agents iteratively construct candidate solutions through the guidance of
pheromone trails. With satisfiability problems, ACO cannot be directly implemented
in its native form. Here, ants look for a minimum cost path in which they lay their
pheromones. Appropriately, the problem is coded as fully connected construction graph
where the variables and their assignments, (X;, V;), are the nodes, and the edges con-
nect the variables that are in the clause. The desired optimum path is of length
m = {(X1,V1), (X2, V2), ..., (Xpn, Vpr)} such that (X;,V;) € m and (X;,V;) ¢ m where
Vi # V;. Each ant constructs a path or model, and sets a pheromone. The pheromone
evaporation procedure is simulated according to ACO rules. The results reported show
that ACO is outperformed by WALKSAT in some problems, and is competitive in other
problems. The authors of this paper claim that there has not been a successful ACO
algorithm for MAX-SAT problem prior to their work.

A more recent method is based on the Quantum Mechanics is called, Quantum-Inspired
Evolutionary Algorithm (QEA). It is based on quantum bits (qubits) and the super-
position of states. This method is also an evolutionary based algorithm, and requires
the processing of a number of quantum states in parallel. This algorithm was originally
developed by Kuk-Hyun Han and jong-Hwan Kim (Kuk-Hyun and Jong-Hwan, 2002),
and because it directly maps to satisfiability assignment it has been used for solving
MAX-3-SAT using QSAT (Layeb and Saidouni, 2008). In QSAT, QEA was directly
applied to the problem with the addition of a basic local search algorithm. The results
reported provided very little improvement if any over GSAT even on problems with a
maximum of 200 variables and 400 clauses. Another more enhanced version of QEA
is the Improved QSAT (IQSAT) (Xiaoyue et al., 2008). It was applied to 3-SAT. The
authors cited the Benchmark satisfiability problems obtained from SATLIB (Hoos and
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Stiitzle, 2007) for their tests, but there was no mention of the size of the problems used.
Regardless, the largest benchmark problem they could have used would not have exceed
250 variables with 1065 clauses. Their results show that WALKSAT performed either

equally as well or better.

One dominant feature of the majority of these population based algorithms is that they
incorporated a form of solo-search algorithm to enhance the search. On their own they
produce weak results. The main reason for employing evolutionary algorithms is because
they provide a way to explore the search space, while the solo-search algorithm exploit
outcomes. Doing away with solo-search algorithms makes the search impractical. We
have done some experiments on GA and Estimation of distribution in sections 5.4 and
5.2. We will show that unless these algorithms are hybridised with a local-search method
they become inefficient. Without local-search, the search becomes slow. This is mainly

due to the population size, and hence would easily lose the race.

2.4 Problem Sizes

In the majority of the previous search techniques, the problems examined were small.
Early research in this area was limited by less powerful computers with limited capacity.
Performing analyses on large scale problems was not feasible then. However, with more
powerful computers nowadays these obstacles should not exist. Despite the increase
of computing power, the problems examined remain small. This is due to the newer
methods relying on population based algorithms that still require a great of deal of
computational power. Having a multiple number of large assignments, and applying the
search operators on each assignment still requires more capacity and more computational
power. In comparison, solo-search algorithms do not require as much power and capacity.
As a consequence, comparisons can only be drawn between these types of algorithms on

smaller problems.

Another problem we believe why researchers still perform tests on small problems is
because most researchers still use the SATLIB benchmark library. It contains small
random problem instances. It has not been updated since 11/8/2000. This library
should be updated with larger problems to drive researchers into developing more so-
phisticated algorithms. The only experiments done on large scale problems was done on
the Backbone-Guided algorithm (discussed later). In our research, we worked on large
MAX-SAT problems, and we developed our own WinSATS application (talked about in
section 5.9). It can generate very large problems. We have used those problems to test
our novel approach. The problems tested here are much larger than what is reported in

current literature. We will discuss these results and Zhang’s results in Chapter 5.
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2.5 The Structure of Satisfiability Problems

The focus of both complete and incomplete algorithms has been on two main issues.
First, since satisfiability is an NP-Complete problem—hence time complexity for com-
plete algorithms grows super-polynomially with the problem size—most methods con-
centrated on finding solutions rapidly. This is especially necessary in real world applica-
tions with thousands of variables and hundreds of thousands of clauses. Second, most of
the literature investigated the structure of satisfiability problems to determine the most
difficult regions. This provided scientists with an understanding of the relationship be-
tween the ratio of the number of variables to the number of clauses, and their effect on

the complexity of the problem.

2.5.1 Generating Hard Satisfiability Problems

Studying the structure of satisfiability problems required the generation of random in-
stances of CNF formulas for benchmarking purposes. The best known method for gen-
erating hard satisfiability problems is known as the Fized Clause Length (FCL) model
(Mitchell et al., 1992). Prior to the introduction of the FCL model, the random CNF
formulas that were generated were shown to be typically easy to solve (Mitchell et al.,
1992; Selman et al., 1992). In contrast, the FCL model was capable of generating prob-
lems that are hard to solve using complete and incomplete methods if a certain criterion
was met. In addition, FCL generated problems that are claimed to be representative of

real world problems (Selman, 1995).

The generation of hard random k-SAT or MAX-k-SAT formulas using FCL is straight-

forward:

e Generate m clauses by randomly selecting k different variables from n variables

for each clause.

e During the selection of the k variables, negate each variable with a probability of
0.5.

e Discard any duplicate clauses.

2.5.2 The Phase Transition

The phase transition is defined as the transition of the complexity of the satisfiability
problem from easy to hard and then to easy again for SAT problems or from easy to
hard for MAX-SAT problems. One caveat should be kept in mind with regards to this

definition: all literature reviewed for this report has analyzed the phase transition using
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depth first search algorithms. Applications of local search methods have been directed
to solving problems at and around the transition point. In addition, some have tested
for the existence of the phase transition (Parkes, 2001a, 1997). We will later extend this

definition to include local search heuristics on local optimums.

The phase transition in most SAT papers has been associated with the point where
50% of the randomly generated formulas are satisfiable. At this point the ratio of
the number of variables to number of clauses is & = m/n is 4.3. This was empirically
shown by Mitchell and Selman (Mitchell et al., 1992). Using emprical analysis they have
demonstrated that SAT problems follow an easy-hard-easy transition about that point.
Zhang, on the other hand, showed that with respect to MAX-SAT the problem follows an
easy-hard transition (Zhang, 2001). A more comprehensive study of the phase transition
was carried by Crawford and Auton (Crawford and Auton, 1996). Using millions of
instances of CNF formulas they have found that the transition point asymptotically
reaches 4.258.

There are two important points that have to be observed with respect to the transition
phase. One, the term phase-transition denotes an abrupt change in the properties of a
system. The transition phase in most SAT literature, however, has been associated with
the 50% point where the randomly generated problems gradually progress from mostly
satisfiable to mostly unsatisfiable, i.e., there is no immediate change. Yet the phase
transition analogy has been applied to the satisfiability problem because it does appear
to have a phase transition (in the abrupt sense) when the problem size becomes large
enough. Second, the phase-transition of the hardness of the problem is associated with
the 50% point, and that might not always be true. This association has been shown by

empirical results, and might just be coincidental.

It should be noted that the easy-hard-easy or easy-hard transitions refer to the complex-
ity of the problem. Researchers either considered the time by which an algorithm takes
to solve problems or the number of bit flips required to reach a solution. It is at the tran-
sition point, the critically constrained region, that the problem becomes computationally
prohibitive (Zhang et al., 2003).

2.5.3 Backbone Structures

There are three separate definitions of backbones for SAT and MAX-SAT (Zhang et al.,
2003; Zhang, 2001; Kilby et al., 2005; Parkes, 1997), but a more comprehensive definition
is found in (Prugel-Bennett, 2007): A backbone is defined as the set of variables that
remain fixed in all globally optimal solutions. Changing the value of one backbone
variable will not allow for finding an optimal solution (Zhang, 2001). Parkes (Parkes,
1997) refers to the set of frozen/backbone variables as the Unary Prime Implicates

(UPIs). These UPIs are the set of literals which are logically entailed by a satisfiability
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expression such that every solution of the expression makes these literals true.

Parkes has shown that, slightly below the phase transition, as the number of variables
increase, the percentage of the problems having UPIs decrease . The number of UPIs also
increase abruptly at a certain point when « is increased. Furthermore, the empirical tests
showed that the performance of WSAT is affected by the size of the backbone. Zhang
(Zhang, 2001) showed that the size of the backbones increases abruptly around «a = 3.6,
and he also showed that the transition from a structure with almost no backbone to one
with a backbone correlates closely with the phase transition. The reason no backbone
structure is found below the critically constrained region is because of the diverse number
of optimal solutions found in such problems that diversify the configurations of the
solution assignments. As « gets larger, and becomes over-constrained the number of

solutions decrease, and the backbone becomes larger.

Zhang found that the number of optimal solutions decreased as « increased (Zhang,
2001). Then he related this to backbones, and he made the assumption that these few
optimal solution are clustered in a small region. In our experiments (Chapter 4) we
have shown that Zhang’s assumption is not entirely true. Although a great majority of
optimal solutions are clustered, there still exist optimal solutions that are further apart

in Hamming distance, and hence have different backbone arrangements.

Although finding a backbone structure is NP-Complete as proven by (Kilby et al., 2005),
using a pseudo-backbone as an estimation of a true-backbone was valuable in solving
over-constrained problems (Zhang et al., 2003). The pseudo-backbone was determined

by statistical analysis of many runs performed by a method based on WALKSAT called
BGWALKSAT.

A recent publication (Prugel-Bennett, 2007) contrasts backbones with a new, related
concept of Critical Backbones. A critical backbone is a subset of a backbone that lies
within the basin of attraction of the global solution. Once a set of critical variables
are found, finding the optimal solution becomes easy. This definition differentiates itself
from the definition of backbones which are independent of the neighbouring structure.
Using a toy problem and a hybrid-GA algorithm it was shown that the critical backbone
served as a vessel for faster convergence towards the global optimum. The Hybrid-GA

consisted of a hill-climbing algorithm coupled with selection and crossover.



Chapter 3
Phase Transition Analysis

The majority of the algorithms mentioned previously exploit hidden structures in SAT or
MAX-SAT problems. Researchers gathered empirical information, analyzed, modeled,
and improved their search procedures to obtain better results. Our work extends this
complexity analysis to more difficult MAX-SAT problems. These problems consist of
many variables and have a high clause to variable ratio. As a consequence of having many
variables complete methods could not be used for collecting statistical data. They are
not efficient enough to study large problems in a reasonable amount of time. Therefore,

we used local search methods for our tests.

3.1 Local Search and Phase Transitions

The time complexity and distributions of SAT and MAX-SAT problems have been thor-
oughly studied using complete or systematic procedures (Monasson et al., 1999; Mitchell
et al., 1992; Selman, 1995; Zhang, 2001; Crawford and Auton, 1996). However, the ma-
jority of phase transition experiments have been carried out using depth first or exhaus-
tive search procedures. A natural question to ask is whether this phase transition exists
for stochastic methods? Are phase transitions an inherent property of the structure of
SAT and MAX-SAT problems or are they influenced by the type of depth first search
algorithms as stated in (Monasson et al., 1999)? We investigate the effect of both the
number of variables and the phase transition on the performance of a simple stochastic

procedure.

An important study by Parkes (Parkes, 2001a) relating the complexity of WSAT, WALK-
SAT, and WSAT(PAR), Parallel WALKSAT, before the phase transition of random 3-
SAT problems. It has been shown that sequential WSAT solves problems in O(n) time
for o < 3.8. It also shows that WSAT(PAR) requires O(log(n)?) on average to solve
instances at and below this region. We will attempt to look at and around the phase

transition in search for local optimums using a simple hill-climber algorithm.

15
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3.2 Local Search Procedure

To study the complexity of MAX-SAT using stochastic algorithms a simple descent
(or hill-climb) algorithm was used to find local minima, and to guarantee that a local
minima is reached an complete-neighbourhood search was implemented. The complete-
neighbourhood search is used to check if there exists a local optimum around a particular
assignment on a plateau. Although the search is exhaustive for points on the plateau,
the search is not a complete one in that it does not exhaustively search every possible
solution there is in the entire search space. It does not rise above the plateau increasing

the cost. Figures A.1 and A.2 in Appendix A show these two algorithms.

In the descent algorithm, a randomly chosen bit in the bit assignment X with cost ¢
is flipped yielding X', and if the cost ¢ (i.e., the number of unsatisfied clauses) is less
than or equal to ¢ then X' is kept. The descent is run until it finds the first assignment
that has a cost ¢ which is less than or equal to c. After descent finds a better solution,
the complete-neighbourhood search is run on the resultant X’ until either a better or
equal solution is found. If a better solution is found, then descent is run again until it
finds this next cost that was found by the complete-neighbourhood search. Both descent
and the complete-neighbourhood search are continuously run until the cost cannot be
improved further. This ensures that descent reaches a local minimum. In effect, the
complete-neighbourhood search acts as a explorer of solutions giving the hill-climber a

hint to resume or stop the search.

The descent algorithm used in our analysis is simple in that it capitalizes on both equal
and better costs. Other algorithms such as GSAT, WALKSAT, WSAT /G, WSAT /SKC,
UNITWALKSAT are known to perform better on SAT problems, but due their very
greedy design and their tendency to get stuck in local minima very quickly we avoided
them in our tests (Although, most methods implemented a random walk to avoid being
stuck in local minima). Furthermore, most other algorithms traverse the solution space
from the point of view of the unsatisfied clauses rather than the assignment X. They
choose to flip the bit assignment of a variable that is found in an unsatisfied clause. In
this simple descent we chose not to bias our bit flips on unsatisfied clauses. The only

bias was if the bit-flip resulted in an equal or better cost.

Also, in most other stochastic algorithms the maximum number of flips is set to a fixed
value. If an optimal solution was not reached before exhausting the maximum flips, X
was reset with a new random assignment, and the process is restarted again. Our goal
was to find the number of flips necessary to reach a local optimum, and to guarantee
that a local optimum was reached a complete-neighbourhood search was used to ensure
that. The decision to stop or continue is determined by the availability of solutions in

the locality.

The complete-neighbourhood search behaves the same way as descent except that it
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systematically searches through the entire neighbourhood of X’ that was obtained from
the hill-climber for better solutions. Neighbours are considered at a Hamming distance
of 1 from each other. The complete-neighbourhood search starts with X’, flips each bit
in X', and computes the cost ¢’. If the cost ¢ is equal to ¢, then the new X’ is stored
into a stack so that the costs of all of its nearest neighbours are searched later. Every
time X' is popped from the stack it is stored in to a hash table. This is done so that this
permutation of X' is not revisited. If at any point ¢’ was less than ¢, then the cost ¢’ is
returned so that the descent procedure can look for that particular solution or any other
solution that is equal or better. If, on the other hand, a better solution cannot be found
by the complete-neighbourhood search then X’ is a local minimum. An illustration of

the complete-neighbourhood search is found in Figure 3.1.

The reason for having the complete-neighbourhood search is because hill-climbing as
described does not “know” if a local optimum is reached. Local search performs a blind
random flip of a bit which either decreases cost or retains it. The hill-climber does not
look a head to determine if there is a local optimum in the neighbourhood of solutions.
This investigation is done by the complete-neighbourhood search. It determines whether
there exists a better cost in the neighbourhood, and allows the hill-climber to look for it.
Once all possible neighbours of good solutions are exhausted, the hill-climber is notified

to stop.

3.3 Experimental Results

A great deal of the effort in analysing stochastic algorithms has been focused on SAT
problems (Selman et al., 1994; Parkes and Walser, 1996; Gent and Walsh, 1993; Zhang
et al., 2003; Selman and Kautz, 1993), and most of this work, although empirical in
nature, has been either geared towards rapidly finding optimal solutions, or they have
been limited in their scope to analysis around the phase transition of o = 4.3. This
was natural since the goal was to solve SAT problems efficiently, and the most trou-
blesome region for complete algorithms is located around o = 4.3. As a remedy for
the phase transition problem, faster stochastic algorithms have been applied to discover
solutions. We performed several experiments on random 3-SAT problems to study the

phase transition in relation to hill-climbing.

The best study available devoted to understanding the effects of the phase transition on
local search was done by (Parkes, 2002). The easy-hard-easy transitions of 3-SAT prob-
lems were determined using WalkSAT. In the easy-hard region a sequential WalkSAT
was applied. The number of flips were determined for fully satisfiable instances. In the
second easy region a parallel WalkSAT was applied with a target number of satisfied
clauses. Parkes found that below the threshold o &~ 3.1 the number of flips grow linearly,

beyond this @ &~ 3.1 the flips grow super-polynomially. We aim to perform a similar
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F1cure 3.1: Complete-neighbourhood search example. All neighbours with a Ham-

ming distance of 1 and cost of ¢ are searched entirely. Starting from 100101, the two

neighbours 100111 and 000101 would be put on the stack. The stack would be popped

and the neighbour 000101 would be examined. Since one of the nearest neighbours was

a lower cost then the search would be halted. Although two lower costs are shown in
this illustration, the search is halted as soon as one of them is found.

(smaller costs are found )

tests with a slight difference. The number of flips will be determined for a range of
clause to variable ratios without a target value. The stopping criteria for the search is

if the local optimum was reached. This will be explained further next.

Using the FCL method, random formulas were generated for our analysis. We gener-
ated 20 random problem sets for each of the number of variables, starting from 20 to
150 variables in increments of 10. We also varied the number of clauses for each of the
variable increments such that the ratio @« = m/n was between 2.0 and 10.0 in incre-
ments of 1. Each problem set was searched for local minima with 1000 different initial
starting points, and the local minima were confirmed using the complete-neighbourhood
search. In total, the experiment was performed on 2520 random formulas where the hill-
climb and complete-neighbourhood searches were applied to each formula 1000 times.
Although this number of random instances appears to be small, yet performing the
complete-neighbourhood search proved to be daunting both in CPU time and memory
requirements (this will be explained later). Another test was run for 20, 30, and 40
variables. These tests ranged from a = 2 to o = 10 in increments of 0.1. The number

of problem instances used in this experiment was 24 000.
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FIGURE 3.2: The average number of flips required to reach a local optimum. Note that
the order of the lines is not regular.

3.4 Polynomial Number of Flips

Our first tests focused on the number of flips required to reach a locally optimum solu-
tion. As mentioned, the local solution that is found in every descent is guaranteed to
be the best cost available in that region of search. Figure 3.2 shows the average and
Figure 3.3 median number of flips necessary to reach a local minimum. For each of the
results the number of variables was varied from 20 to 150, and the test was executed
for different values of . The values of a that are not shown in Figure 3.3 and 3.2 are
a = 3, 4 and 5. For these values, we were able to generate data for up to 90 variables.
Beyond this point the memory requirements grew enormously despite the small amount
of flips that reached the final solution. Since complete-neighbourhood search was not
able to verify the best cost local minimum we omitted these results from these plots.

However, we will visit these partial results later.

There is a very clear distinction in the way time complexity of complete and incom-
plete stochastic heuristics behave with regards to the problem, i.e., the former is non-
polynomial, and the latter is polynomial in complexity in certain regions. Figures 3.2
and 3.3 show the growth of the number of flips with respect to the number of variables.
It is clear that to reach a local minimum only a polynomial number of flips was required.

In plotting a log-log graph of the averages and the medians, Figure 3.4 and 3.5, we de-
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FIGURE 3.3: The median number of flips required to reach a local optimum. Due to
the effect of the few very large flips on the averages, the median was plotted as well.

termined the degree of the polynomial to be approximately 2.64 for the average and
approximately 2.18 for the median. This is an important result since the complexity
of all depth-first search methods are equivalent in that they require 2"/ where h is a

constant.

It might not be reasonable to compare two results that are different in that one, the
complete procedure finds an optimal solution, while the other finds a local solution’.
This is true, and to give more meaning to these results, another measure is required.
This measure is the probability of reaching the best local optimum given a polynomial

search.

3.5 The Probability of Reaching Best Local Optimum

As a measure of confidence to determine how well a polynomial number of flips does with
regards to the best local cost obtained, we have determined the probability of reaching

such a solution with respect to the number of the variables. For 1000 runs per problem

"We have performed tests on problems with up to 50 variable for different values of o using both
hill-climbing, and the branch-and-bound algorithm. In every instance we have tested we found that the
hill-climbing converged to global optima. Not only did we perform tests on random formulas generated
by FCL, but we also tested a great deal of the SATLIB benchmarking problem instances.
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FIGURE 3.6: Probability of reaching the local optimum with respect to the number of
variables.

instance, we acquired the best local solution, and calculated the probability of finding

such minimum. The results of our experiments are shown graphically in Figure 3.6.

The graph shows a downward trend from a probability of 0.5 on average to a small
probability of around 0.1. It is clear that the probability of getting to the best local
solution decreases as the number variables increase; in problems with a small number
of variable solutions can be found with a high degree of certainty. As the number of
variables increases the best solution becomes harder to find. Notice that for different
values of « these probabilities do not differ much. The graph shows a narrow band of
probabilities for the different clause to variable ratio. The effect the number variables
has on the probability is discouraging since it suggests that hill-climbing becomes less
effective as the size of the problem grows via the number of variables. Yet in terms of
the ratio « hill-climb does appear to perform very well regardless of how large o gets.
This is true for large a’s beyond the phase transition, but, as we will see, around the
phase transition, descent will be affected in the same way as complete algorithms. Is
this result describing the difficulty descent faces in locating better solutions, or does the
structure of formulas change with the size of the problem such that the best solutions

become scarce?
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3.6 The Phase Transition and Local Search

In analyzing different clause to variable ratios, & = m/n, it has been empirically estab-
lished that at approximately o = 4.3, the random formula becomes hard specially for
complete procedures (Mitchell et al., 1992; Selman, 1995; Zhang, 2001). What effect
does the phase transition have on stochastic procedures? Are stochastic methods less

susceptible to these regions, and therefore reliable in finding better solutions?

By looking back at Figures 3.2 and 3.3 we see that going back from o = 10 to o = 6
the complexity of the local search increases, and then returns to a low complexity when
a = 2. Also, the complexity around the phase transition becomes more pronounced
as the number of the variables increase. The plots of the average number of flips and
the median against the clause/variable ratio are illustrated in Figures 3.7 and 3.8. It is
evident that around the phase transition the average and median number of flip increase,
and even more so when the number of variables becomes larger. This illustrates the
difficulty hill-climbing faces as the number of variables increase around the transition

phase.

Unfortunately, we were not able to obtain data points for assignments of size 100 to 150
variables at o = 5; for the value of @ = 5 the maximum we were able to reach was 90
variables. This is shown as a discontinuity in the curves at the « values of 4 and in
some cases 5. Even though the average number of necessary flips were not very high
(50000 flips on average for 150 variables), yet the intense memory consumption by the
complete-neighbourhood search limited the acquisition of more data points. The memory
was depleted because the program saved each assignment that was tested. Saving the
assignments was done for two reasons. The first is to make sure that the assignment
is not visited again in cyclical fashion (through another assignment). The second is to
allow the program to go through all the neighbours of each assignment. Imagine the
same procedure being carried out using recursion. Except in this case we were using
hash tables to do the tracking.

The reason for the severe memory constraint is because of the large landscape of nearest
neighbours of equal costs. Mitchell (Mitchell et al., 1992) and Zhang (Zhang, 2001) define
the phase transition at the point where 50% of problems are satisfiable. Below this point,
the probability of having a problem satisfiable is highly likely, and in the instances where
a problem is fully satisfiable our local search stops on 0 unsatisfied clauses without further
investigating the region with complete-neighbourhood search. However, in those problem
instances that are not satisfiable, the number of local solutions of equal costs (usually one
unsatisfiable clause) is prodigious. Since the complete-neighbourhood search attempts
to find better solutions it stacks enormous number of solutions that eventually exhaust

the memory.

Since we were able to perform tests for problems with 20, 30 or 40 literals we conducted
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Ficure 3.9: For 20, 30 and 40 variables the average number of flips were plotted
against different values of a.

a more detailed test around the phase transition. These tests were conducted on varying
values of o ranging from 2 to 10 in increments of 0.1 with 100 problem instances per
increment. We obtained the graph in Figures 3.9 and 3.10. This important result
demonstrates the behavior of local search around the transition point. It shows that
even local search finds the transition point difficult. In fact, local search follows easy-

hard-easy transition just as complete algorithms do.

Why is it that descent finds it difficult around the transition point? Descent starts
by finding global minima very easily below the phase transition, because below this
point there are large plateaus of global minima. As « is increased toward the phase
transition, the plateaus begin to rise above the global minima while slightly breaking
up. These broken up plateaus of local minima which are still relatively large compared
with global minima present descent with more room for sideway moves before descending
further. This greatly reduces the probability of finding better solutions, thus increasing
the number of flips. As a moves away from the phase transition, the plateau breakup
into even smaller regions creating more local minima. In this state, descent finds it easy

to reach a local optimum again.
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Chapter 4
Landscape Analysis

Can a population-based algorithm take advantage of global information about the fitness
landscape provided by its members to help it solve an optimization problem in a way
that cannot be achieved by a solo local search algorithm? This is a common assumption
of many users of evolutionary algorithms, however, there is rarely strong evidence that
this is the case. Of course, there may be other important ways in which a population
might be beneficial. For example, using a population may be advantageous because, by
searching different parts of search space, it may quickly find promising regions were it can
concentrate its search effort. Also crossover may be beneficial as a macro-mutation which
naturally anneals itself as the population converges. These other benefits may be very
significant, but they are different to and arguably less exciting than the possibility that
a population can learn about the large-scale structure of a problem and then exploit
this information to find superior solutions. Although there are a few artificially con-
structed problems that demonstrate that populations can in principle gain a significant
advantage by learning properties of the landscape (e.g. (Shapiro and Priigel-Bennett,
1997; Jansen and Wegener, 1999; Rogers and Priigel-Bennett, 2000, 2001; Watson, 2001;
Watson and Jansen, 2007; Prugel-Bennett, 2007)), there has been little unambiguous ev-
idence that this is the case for any naturally occurring optimization problem. We present
an algorithm which we will argue does precisely this for one of the classic combinatorial
optimization problems, MAX-SAT.

The algorithm we present here is a hybrid algorithm. We find many good solutions using
a local neighbourhood search algorithm. The solutions are clustered using a K-means
clustering algorithm. The configuration closest to the centroid of each cluster is then
used as a starting position for applying a second round of the local neighbourhood search
algorithm. The general framework by which multiple local searches are applied followed
by clustering or averaging, and then followed by another round of local search is called
Landscape Guided Hopping (LGH). The idea behind this method is that several local
searches provide guidance to some clustering, Clustered-LGH (CLGH), or averaging,
Averaged-LGH (CLGH), techniques, which then is used to hop into a point in the

27
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solution space. This new point allows a local searcher to produce better results more
efficiently avoiding intermediate steps. This very simple algorithm finds remarkably

good solutions—we describe our tests of the algorithm in chapter 5.

Our interpretation of why LGH performs so well is that the fitness landscape (which
we take to be the landscape using the Hamming distance as a metric) consists of a
few global maxima (assignments of the variables that maximize the number of satisfied
clauses) positioned at different locations in the search space. The global maxima are
correlated, but not strongly. Around each global maximum there is a ‘galaxy’ of local
maxima. The closer the local maxima are to a global maximum the more likely they
are to have high fitness values. Although, these local maxima tend to be clustered
around global maxima they can still be quite far from each other in Hamming distance.
For example, they may well differ in 30-40% of their variables, which would mean in a
1000 variable problems they may be at a Hamming distance of 300-400 from a global
maximum. We postulate that our local search algorithm finds good solutions (close
to, if not at, a local maximum). By clustering the solutions we pick out good solutions
centred around a global maximum (or, at least, around some very good local maximum).
By taking the configuration closest to the centroid we move close to the centre of the
galaxy which has many high quality solutions in its vicinity. These centroid solutions
usually are not very good, because the search space is extremely rugged. However, by
performing a local neighbourhood search we end up finding a solution which is almost
always superior to the previous solutions we found. The major contribution of this work

is to present evidence to support this picture.

As part of our algorithm, we needed a fast method for finding good local solutions for
relatively small problems. The classic local search algorithm for SAT and MAX-SAT
problems is GSAT which performs hill-climbing by exhaustively searching the entire
neighbourhood before choosing the neighbour that gives the best improvement in fitness.
As this will get stuck in a local maximum, a number of variants have been suggested,
most notably WALKSAT which alternates between GSAT moves and walk moves which
alleviates the algorithm from getting trapped in a local maximum. We compared this
algorithm with a basic hill-climber (BHC) where a neighbour is chosen at random, and
a move is made if the fitness is greater than or equal to the current fitness, otherwise the
current position is kept. This is shown to perform much faster than GSAT or WALKSAT
on small problems. Intuitively this is not surprising as tracking the neighbourhood at
each step is slightly more costly than flipping an assignment at random. We will show
later that for larger problems we have developed the fastest GSAT and WALKSAT

implementations.

In the next section, we briefly discuss MAX-SAT and describe how we generate the
instances used in our tests. We then present our study of local neighbourhood search
methods. This is followed in section 4.2 by a presentation of some studies on the land-

scape properties of small problems. Chapter 5 presents the results of a number of



Chapter 4 Landscape Analysis

different algorithms on much larger problem instances.

4.1 MAX-SAT

MAX-SAT is one of the best studied optimization problems—in part because of its
association with SAT, which, besides from its theoretical importance, has a huge number
of practical applications. Although the number of applications of MAX-SAT are small
in comparison with SAT, nonetheless, it has been applied to design debugging of VLSI
and SoC cyles(Safarpour et al., 2007) and in Protein Interaction Inference (Ya et al.,
2005). A large amount of research has gone into characterizing the typical behavior of
random instances. Here, we also concentrate on random Fized Clause Length (FCL)
instances (Mitchell et al., 1992). These consist of a set of m clauses where the clauses
consist of k = 3 literals (we take this to be a strict set rather than a multiset, so that
no clause is repeated). The literals in any clause all involve different variables. Every
allowable clause is chosen with equal probability. In practice we use the FCL method,

section 2.5.1, to generate these problems.

The phase transition has been investigated using statistical mechanics approaches (Monas-
son et al., 1999; Mezard and Zecchina, 2002). Although these are not rigorous, there is
a region around the phase transition where the calculation is believed to be exact in the
limit n — oo (at least, it passes several stringent self-consistency tests and it gives predic-
tion in agreement with carefully conducted simulations). For small values of « = m/n,
the problem has a simple landscape corresponding to one very large cluster of satisfied
solutions which is easily reached by hill-climbing. Around the phase transition, the sta-
tistical mechanics calculation undergoes, so called, one-step replica-symmetry breaking
that is a signal for the existence of many local maxima weakly correlated with each
other. It is has statistically determined that solutions become clustered in the region
3.87 < a < 8.29 the solution space decomposes into clusters which are disconnected.
Away from the phase transition, one-step replica symmetry breaking no longer holds
and it is postulated that the system enters a state of full replica-symmetry breaking
(Montanari et al., 2004; Battaglia et al., 2004). Although there is no analytic solution of
the behavior in this region, full replica-symmetry breaking is taken to be an indication
of complex clustering of the local optima (Mézard et al., 2005). We focus on random
instances with « = m/n = 8, which is deep in the hard phase for MAX-3-SAT where
full replica-symmetry breaking is believed to hold. To investigate the structure of the

fitness landscape we have carried out extensive empirical studies.
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4.2 Landscape of Random MAX-3-SAT

In this section, we present some empirical observations on the fitness landscape of ran-
dom MAX-3-SAT for @« = m/n = 8. These were carried out as part of a broader
investigation of the landscape of MAX-3-SAT, but here we only present results relevant
to our thesis. We studied instances up to size 100 by finding many local maxima. To
achieve this we used BHC starting from different, randomly-chosen, starting points. To
ensure that we had found a local maxima, after running the hill-climber with no im-
provements in many attempts we switched to an complete-neighbourhood search method
that checked all neighbours at the same cost as the current point, and then checked their
neighbours repeatedly, until either a fitter solution was found or else all neighbours at
the current cost had been searched, in which case we could be sure that we were at
a local maximum. By performing multiple searches on the same instances, we were
able to measure statistical properties of the local maxima. A common feature of all
the instances that we investigated was that the higher the fitness of the local maximum
the more likely we would find it. As a rule-of-thumb, we observed that the likelihood
of finding a local maximum roughly doubled each time we satisfied one more clause.
This result is not so surprising as it is easy to imagine why better local maxima could

typically have larger basins of attraction than less fit local maxima.

What makes MAX-3-SAT instances hard is that there are many more local maxima
than global maxima. Thus, even though the basin of attraction appears to be largest
for the global maxima, nevertheless, we are more likely to get trapped in a lower-fitness
local maximum because there are many more of them. The number of local maxima
appears to increase exponentially with the size of the instances, which makes finding a
global maxima increasingly less likely as the instance size becomes large. The exponent
describing the exponential growth is, however, rather small so even for systems of size
100 finding a global maxima is not difficult. At least, for problems up to this size we
were able to find the fittest local maxima multiple times. We postulate that these are
the global maxima, since if there were even a single maxima fitter than those we found
then we would expect to find it with high probability given the number of hill-climbs
we made (unless it had a very atypically small basin of attraction). We call our best
maxima found in this way, quasi-global maxima as we believe them to be the true global
maxima, although we have no proof of this. (For small problems, n < 50, we could find
the true global maxima using a branch-and-bound algorithm. In every case, the best
solution found by performing multiple BHC were true global maxima. We also tested
problems with n = 100 from SATLIB and in every case we were able to find the best
solution for the problem using BHC). Note that if we were to look at much larger-sized
problems, then we would find each best solution only once or a very few times, in which
case we would have no grounds to argue that these are likely to be the global maxima.
The fact that we believe we can find all global optima for relatively large instances makes

this problem class very rich to study empirically.
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FIGURE 4.1: Shows a histogram of the Hamming distance between quasi-global maxima

for 50 instances of size n = 50, 75 and 100 variables and with a clause to variable ratio

of @« = 8. There is a cluster of very close global minima below a Hamming distance

of 10. Also, a significant number of global minima are found at Hamming distances
equivalent to 30-40% of the variables.

We investigated the distribution of quasi-global maxima by examining the frequencies
of Hamming distances between all quasi-global maxima in an instance. In figure 4.1, we
show these frequencies averaged over 300 problem instances. To find the set of quasi-
global maxima we ran BHC followed by complete-neighbourhood search 5000 times.
The histogram has a large peak at a Hamming distance approximately equal to 5%
of the total number of variables. This indicates a clustering of quasi-global maxima
around each other. However, the histogram has a large tail with a second peak at a
large Hamming distance away from the first. This is indicative of multiple clusters that
are weakly correlated with each other (if there was no correlation then the clusters would

be at a Hamming distance of n/2).

To demonstrate that the histogram is consistent with this picture. We generated clusters
using the following procedure. We chose a centre C' = (Cq, Cy, ..., Cy) where C; €
{0, 1}, and a second centre C’ = (C1, C%, ..., Cl) was generated from the first by
randomly changing k variables where k is a uniformly distributed integer between 0 and
3n/4. Thus on average, C and C’, are separated by a Hamming distance 3n/8. We then
generated between 20 and 220 random strings centred around each of the two centres
at an average Hamming distance of n/10. We then computed the correlation between
all pairs of randomly chosen strings. This was then averaged over 100 samples. The

histogram of correlations is shown in figure 4.2. We observe a very strong similarity in
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FIGURE 4.2: Shows a histogram the Hamming distance between randomly chosen

points forming two clusters. The distance between each cluster is taken to be a uni-

formly chosen random variable between 0 and 3n /2. The graph is generated by averag-

ing over 100 samples. We note the strong similarity between this and Figure 4.1. This

similarity is shown in having a large main peak on the left side of the frequency plot,
and several other smaller peaks following the first.

the structure of this figure and figure 4.1 which lends support to the hypothesis that the

quasi-global solutions are themselves clustered around a few centres.

To illustrate how the lower-cost local maxima are clustered relative to the quasi-global
solutions, we measured the Hamming distance between the local maxima and the nearest
quasi-global solution. Histograms of this Hamming distance are shown in figure 4.3. In
these figures, we consider only those local optima at a cost of 4 and 8 away from the
global-maximum cost. We note that the higher cost solutions are closer on average to a

quasi-global maxima than lower cost solutions.

Figure 4.4 shows how the average Hamming distance between the local maxima and the
nearest quasi-global maxima varies as a function of the difference in the cost between
the local maxima and the quasi-global maxima. By scaling both axes by 1/n these
curves appear to collapse onto a universal curve. It is easy to understand why higher
cost solutions should be closely correlated on average with the quasi-global maxima
as local-optimum solutions represent good ways of maximizing the number of satisfied
clauses. Therefore, nearby solutions are also likely to satisfy many clauses. However,
what is perhaps more surprising is that even the solutions whose cost differs by one from
the quasi-global optima have a high average Hamming distance from any quasi-global

optima. Even for relatively small problems with 100 variables this average Hamming
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FIGURE 4.3: Shows a histogram of the Hamming distance between the quasi-global

maxima and local maxima with fitnesses 4 and 8 below the quasi-global maxima. As

the number of variables increase, the Hamming distance to the quasi-global maxima
also increase.
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FIGURE 4.4: The average Hamming distance between the quasi-global maxima and
the local maxima. As the gap in fitness between the quasi-global maxima and local
maxima decreases so does the average distance to the quasi-global minimum.

distance is around 18 which is sufficiently large that the probability of a stochastic hill-
climber reaching a global maximum from a local maximum is negligibly small. To be
more explicit if the Hamming distance between a local maxima and a better solution is
k, then a local search algorithm would typically have to explore every solution up to a
Hamming distance k before finding a better solution. The number of solutions in a ball
whose Hamming radius is strictly less than k is

()

i=0 ’

which for n > k is O(n¥=1/(k — 1)!) (even for small instances with n = 100 and k = 18
this is approximately 8 x 10'®). Within this “Hamming ball of radius k” there will be
no solution better than the current solution (since by assumption the closest solution is
a Hamming distance k away). Thus there is no local gradient information to exploit.
There may be solutions of the same cost in this Hamming ball which are closer to the

global solution, but there is no way of knowing whether it is closer to or further from a

better solution than the current solution.

Although it is always dangerous to rely on low-dimensional pictures to understand what
happens in a high-dimensional space, nevertheless, we offer the following caricature of
our fitness landscape. We imagine the search space as being points on a ‘world’ where
the height of the points representing the fitness values. This is schematically illustrated

in figure 4.5. The good solutions lie in mountain ranges. The mountain ranges have
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hugely more foothills than high mountains. There are only a few mountain ranges in
this world and they are slightly correlated (e.g. all the mountain ranges might lie in one
hemisphere). The mountain ranges occupy only a very small proportion of the world.
As with real mountain ranges, higher solutions tend to lie in the middle of the mountain
ranges. Starting from a random position and hill-climbing we are likely to land up at a
foothill, just because there are so many of them. Finding a good solution through hill-
climbing alone will be very difficult. An alternative strategy is to perform a large number
of hill-climbs starting from different randomly-chosen positions. We could then take the
average of the solutions we find. This will put us in the centre of the hilly hemisphere.
Although, we are unlikely to be at a peak, if we perform a hill-climb we are likely to find
a superior solution than if we started from a random position. However, we can do even
better by clustering the solutions we find after performing hill-climbing. If we are lucky,
a cluster will correspond to a mountain range. The centres of the clusters corresponds
to the regions with many high mountains so if we restart hill-climbing from the centre
of a cluster we have a very good chance of finding a high quality solutions, Figure 4.6.
Of course, this picture fails in many ways. The search space is not continuous, but
is discrete. Furthermore, using a Hamming neighbourhood the topology of the search
space is an n-dimensional hypercube. The high-dimensionality makes it harder for low-
cost solutions to be local maxima since they have a large number of neighbours. Also
the set of costs is discrete so that there is no gradient information. Nevertheless, as we
will see an algorithm based on clustering seems to perform very well which suggests that

this simple picture might not be too misleading.
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FIGURE 4.5: Caricature of the Fitness Landscape showing the clustering of good solu-
tions.
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FI1GURE 4.6: The concept of using K-means to finding high-quality solutions.



Chapter 5

CLGH: A Novel Approach to
Solving Satisfiability

To exploit the structure of solutions presented in the previous chapter we use Clustered
Landscape Guided Hopping (CLGH), and the mechanism used for clustering of solutions
is the K-means algorithm (Hartigan and Wong, 1979). In K-means, a number of points
s are divided into K clusters. In the typical case, when the n-dimensional points are in
R™ space, the sum of the squares are minimised. In this case, the points are n-cubed in
{0,1} space. The sum of the Hamming distances are minimised. The K centroids that

are found for these clusters are used as starting points for Hill-Climbing.

We will see that these points provide good starting points in the search for solutions.
This method is compared with a number of different solo-search and population based
algorithms, and it is found that CLGH produces better solutions on large scale MAX-
3-SAT problems. This approach is shown to be effective at different points around the
phase transition. In addition, different ways of applying CLGH will be discussed to show

that only a single application of clustering is required to find good starting points.

5.1 Experimental Setup

We have tested our proposed algorithm on large instances (6 000 to 18 000 variables) of
MAX-3-SAT for a« = m/n = 8. We are unable to compare our algorithm with most
other algorithms that appear in the literature since the other studies were performed
on much smaller instances (typically around 100 variables). For such small instances
we found that running the basic hill-climber a few times would almost always find a
solution we were unable to improve on and which we believe to be the global optimum.
This made CLGH approach redundant. The only work we are aware of which studied
similar sized instances to those used here is by Zhang (Zhang, 2004). Our algorithm
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substantially out-performs the results given in that paper.

To provide some comparators to the CLGH approach we ran a number of different
algorithms. The main purpose of these comparators was to rule out other possible
explanations of why the approach we are taking is successful. The CLGH algorithm we
propose has not been highly optimized. By careful tuning we would expect that we can
achieve better solutions. However, the purpose of our experiments is to demonstrate

that a significant improvement in performance is obtained by clustering.

We generated random MAX-3-SAT instances using the method described in section
2.5.1. We considered problem instances ranging in size from 6 000 to 18 000 variables in
increments of 2000 variables, and with o = m/n = 8. These are difficult problems since
they are in the over-constrained region. For each increment we generated 100 problems

instances.

In all tests we carried out we started by performing 1000 hill-climbs starting from
different random starting configurations. We used the basic hill-climbing strategy. The
number of iterations used on a problems with n variables is T'(n) = 5n/2 4+ 5000. That
gives 20000 iterations for 6 000 variables and 50000 for 18 000 variables. The number
of iterations were increased with the number of variables so that BHC would be given
more opportunities to find better quality solutions. With the growth of the number of
variables it becomes more difficult for a local search algorithm to reach local maxima,
although the goal was not necessarily to reach a local maximum, but only to find a
good solution. The best result for the 1000 hill-climbs averaged over all 100 problem

instances is shown in the second column of table 5.1.

We then tested a number of different strategies to boost the performance obtained from
these initial 1000 points. The testing procedure we carried out is shown schematically
in figure 5.1. As a baseline we repeated the basic hill-climber for another 7'(n) steps on
all 1000 search points. These results are shown in the third column of table 5.1. This
second round of hill-climbing shows that the solutions found in the first round were still

some way away from being locally optimal.

5.2 CLGH and ALGH

We next performed CLGH using the K-means clustering algorithm on the 1000 search
points found by the initial hill-climbing. These points were not tested for uniqueness.
However, because the problems were large, i.e., 6000 to 18 000 variables, the number
of local solutions are also large, and hence the probability of landing in the same local
optima is very small. This algorithm starts by assigning a random string on the n-
cube to each of K initial “centres” (note that, in this section, K is used to denote the

numbers of centres in K-means clustering and should not be confused with the number



TABLE 5.1: Comparison of different algorithms. Column 1 shows the problem size, while columns 2—6 give the lowest number of unsatisfied variables
found by different algorithms. These are BHC, BHC+BHC (baseline), BHC+K-Means+BHC (CLGH), BHC+Averaging+BHC (ALGH), hybrid-GA
and BHC+Perturb4+BHC. Columns 7 and 8 show the increase in performance over the baseline achieved by using CLGH and ALGH respectively.
The tests were carried out on random MAX-3-SAT problems with a = 8.0. Each test was performed on 100 problem instances for each number of

variables.
#Vars | First BHC | Second BHC (1) | K-Means/ BHC (2) | Average/ BHC (3) | hybrid-GA | Perturb/ BHC | (2) - (1) | (3) - (1)
6000 1971.77 1448.35 1370.61 1385.82 2429.5 1447.92 77.74 62.53
8000 2944.03 2037.26 1913.26 1943.38 3691.22 2038.78 124 93.88
10000 3464.7 2614.65 2456.67 2507.56 4908.87 2617.19 157.98 107.09
12000 4235.8 3247.74 3051.09 3125.79 6218.57 3247.4 196.65 121.95
14000 4999.14 3892.06 3652.23 3761.51 7533.33 3895.38 239.77 130.55
16000 5711.81 4496.69 4226.15 4368.23 N/A N/A 270.54 128.46
18000 6551.83 5256.28 4932.41 5129.12 N/A N/A 323.87 127.16
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FIGURE 5.1: Schematic diagram of the set of tests carried out and reported in table
5.1.

of variables in each clause). Each of the 1000 points is then assigned to the cluster with
the nearest centre. The centres are then updated to be the configuration which best
represents the points in the cluster, in the sense that it minimises the mean Hamming

distances to the set of points in the cluster, C, i.e.

1
X = argmin—- HX)Y 5.1
e > H( ) (5.1)

Clyv

where H(X,Y) is the Hamming distance between configurations. This is equivalent to
rounding the average bit value of each site up to 1 or down to 0. The points are reas-
signed to the nearest centroid and the process is repeated until there are no changes.
This usually happens after five to ten iterations. The computational cost of K-means
clustering is small compared with the time required to do hill-climbing. Once the cen-
troids have been computed, a new starting point is found by rounding each component

of the centroid to obtain a feasible solution.

In the results we summarise in table 5.1, we used K = 100 clusters. This was decided
after a small amount of experimentation. This is probably not optimal, but fits with
our decision not to fine tune CLGH. A second round of hill-climbing is carried out from
the solutions obtained from the 100 centroids. The results obtained after this procedure
are shown in the forth column of table 5.1. In every case there is a considerable gain in
performance compared to the baseline, even though the baseline involved considerably
more work (because the second round of hill-climbing reported in column 3 of table
5.1 was carried out on all 1000 points rather than 100 used in the K-means clustering

algorithm). The gain in performance compared to the baseline is shown in column 8 of
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table 5.1.

We have compared CLGH with ALGH, where we randomly selected 10 points and find
the centroid of the group (for this problem the centroid can be found by taking the
average assignment of each variable and rounding). This was repeated 100 times to
give 100 centroids so as to give a fair comparison with the CLGH method. A second
cycle of hill-climbing is then carried out. The results are shown in the fifth column of
table 5.1. This again produced a substantial gain in performance compared with the
baseline (the gain is shown in the last column of table 5.1), however, these gains are
smaller than those obtained by CLGH, particularly for large number of variables. This
provides further empirical support for the claim that the global maxima are clustered
(although we have shown clustering for instances of size 100, these results are for much
larger instances). It also shows that even the mean of all the good solutions provides a

much better starting point than a random starting point.

We want to show that these results are not due to clustering in CLGH or averaging in
ALGH acting as a macro-mutation which allows the search to escape out of local maxima.
To do so we applied random perturbations of 0.1%, 1%, 2%, 5% and 10% of the variables,
and then repeating hill-climbing. We found that doing this gave us worse performance
than the baseline algorithm. Even with 0.1% the random perturbation appears slightly
detrimental (see column 7 of table 5.1). These results are not so surprising, since it is
clear from comparing the results of the baseline algorithm with the results after the first
hill-climb (columns 2 and 1 respectively) that we are far from being stuck in a local

maximum.

As a final test, we compared our algorithm against a hybrid genetic algorithm. The
hybrid genetic algorithm combined hill-climbing with selection and two-parent crossover.
A population of 100 individuals was used. We used Boltzmann selection where we chose
each member of the population with a probability proportional to exp(—( F;/o) where
F; is the fitness of individual, 7; ¢ is the standard deviation of the fitness values in the
population; and 3 controls the selection strength. Various values of 3 were tried, but
this did not strongly affect the results. Uniform, single-point and multi-point crossovers
were tried. The best results were obtained with single-point crossover. Column 6 of
table 5.1 shows the best results we were able to obtain using a GA. Although we do
not claim that all the parameters were optimally chosen, the results obtained by the
hybrid-GA are disappointing compared to the other algorithms. The reason for this is,
in part, due to the fact that the GA was not given sufficient time to converge. In the
next subsection, we analyse the performance of CLGH when it is run for longer times.

Even then, we will see that the CLGH approach has a considerable advantage over a
GA.

This may seem surprising as two-parent crossover might superficially appear to be doing

something similar to averaging, however it is important to appreciate the difference. This
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is easily seen by considering a simple example. Consider a unitation problem consisting
of a binary string X = (X3, Xy, ..., X,,) with X; € {0, 1}, where the fitness is a function
of the number of 1’s in the string. Defining the proportion of ones as m = . | X;/n,

the fitness is given by

m m < mq
F(z)=q m m1 < m < my

m—mo+m; Mmoo <m

This is shown in figure 5.2 for the case when m; = 0.75 and mo = 0.95.
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FIGURE 5.2: Fitness function of the Iceberg problem. This problem is easily solved by
averaging good solutions, but very hard for a hill-climber or genetic algorithm.

We call this the Iceberg problem because the configurations with m > mso can be viewed
as a small iceberg in a large ocean of solutions with cost my. For large n a hill-climber
starting from a random string with fitness close to 0.5 will climb the slope until it reaches
a state where 75% of the variables are 1’s. When it reaches the plateau it has no heuristic
information. As the density of states falls off very fast as a function of the number of
1’s the hill-climber will, with high probability, lie close to the edge of the plateau with
approximately 75% of the variables equal to 1. A population of hill-climbers will also

lie very close to the edge of the plateau. If we were now to perform crossover on two
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individuals then again with high probability the child would have approximately 75%
of its variables equal to 1. This would be a slightly more efficient way to explore the
plateau than hill-climbing alone as most random mutation moves will, on average, move
away from the all 1’s string (since there are more 1’s than 0’s a random mutation is more
likely to attempt to change a 1 to a 0 rather than a 0 to a 1). Crossover, by contrast
does not change the number of 1’s on average. This concentration effect of crossover has
been discussed in closely related models previously (Shapiro and Priigel-Bennett, 1997;
Jansen and Wegener, 1999; Rogers and Priigel-Bennett, 2000, 2001). Nevertheless, it
still takes an exponential amount of time to find the global maximum using crossover.
In contrast if we average a population of say 100 individuals that have undergone hill-
climbing and round up to 0 or 1, then, for any reasonable size problem, the resulting

solution will, with overwhelming probability, consist of the all 1’s string.

Clearly, this is a contrived problem, its purpose is to demonstrate that averaging is very
different to crossover. This is true even if we used multi-parent crossover (Syswerda,
1993) or a uni-variate estimation of distribution algorithm (EDA), as we will see in
section 5.4, where, despite averaging, the expected time to solve the problem shown in
figure 5.2 would still grow exponentially. Clearly, the landscape of MAX-SAT is much
more rugged on short length scales than the Iceberg problem. On very large length
scales, the landscape of MAX-SAT differs because it possesses multiple global maxima
some distance apart. However, on some intermediate scale this model appears to capture
some important properties of the landscape of MAX-SAT-that is, the globally optimal

solutions lie at the centre of more easily found local optima.

5.3 Temporal Behavior

In the section above the behavior of the hybrid genetic algorithm was particularly poor.
This was due to the limited number of BHCs allowed for each algorithm. When given a
longer time the hybrid-GA performs considerably better. In figures 5.3 and 5.4 we show
the average performance of parallel-BHC, CLGH and the hybrid-GA. Each algorithm
was run for 3 minutes and the results were averaged over 100 instances of randomly
generated MAX-3-SAT instances with 6000 and 10000 variables at o« = 8. In parallel-
BHC, we run 10 BHCs in parallel and show the best of these (ten runs were chosen
as it appeared to give good performance in preliminary tests). CLGH was run starting
with an initial population of 100 where we performed 27 000 BHCs before performing
K-means clustering with K = 10 clusters and then running BHC starting from the
10 centroids after they had been rounded to the nearest feasible solution. No tuning
was performed on the K-means clustering algorithm. Finally we tested a hybrid-GA
with a population of size 10 where we performed uniform crossover, Boltzmann selection
with a selection strength of 3 = 0.1 and BHC. The parameters for the hybrid-GA were

chosen after performing a large number of preliminary tests. As can be seen the GA
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outperforms BHC given enough time, but does not beat CLGH on average, (although

in some instances it does).
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FI1GURE 5.3: Comparison of BHC, genetic algorithms and CLGH as a function of CPU

time run on 100 randomly generated MAX-3-SAT instances with 6000 variables at

a = 8. The large jop in fitness in the CLGH method after around 10 seconds marks
the point where K-means clustering is carried out.

For larger problem instances the speed of CLGH becomes more pronounced so that for
problems with 18 000 variables run for 5 minutes CLGH gave better performance than
a hybrid-GA on every one of 50 instances that was tested. The average performance of
the three methods are plotted in Figure 5.5. These results demonstrate that the benefit
of performing CLGH persists even after some time. We attribute this to the fact that
K-means has moved the searcher to a part of the search space where there are more high

quality solutions.

5.4 Comparison with the Estimation of Distribution Algo-
rithm (EDA)

One concern that could be raised with regards to way we used ALGH with MAX-SAT
is that it closely resembles the way Univariate Estimation of Distribution Algorithms
(UEDA) operate. In UEDA a population of A individuals are randomly generated. The

fitness of these individuals is calculated. Then, via a particular selection criteria, a set
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FIGURE 5.4: Comparison of BHC, genetic algorithms and CLGH as a function of CPU

time run on 100 randomly generated MAX-3-SAT instances with 10000 variables at

a = 8. The large hop in fitness in the CLGH method after around 10 seconds marks
the point where K-means clustering is carried out.

of 1 individuals are chosen from the population. The probability distribution for these
w individuals is found, and either some or all of population is replaced by generating
new individuals from the g individuals. Applying this algorithm to MAX-SAT would
give the impression that UEDA and ALGH are the same. However, we will show by

empirical evidence that they work differently.

Estimation of Distribution algorithms come in different forms. In general they are like
GAs in that they are population based. However, EDAs do not employ the crossover or
mutation operators in general. The only resemblance they have with GA is that they
incorporate a selection criteria based on the fitness of the individuals in the population.
Conversely, EDA is different from GA because it utilizes a statistical paradigm that

allows for the production of the next generation of individuals (Qingfu, 2004).

We use the Univariate Marginal Distribution Algorithm with hill-climbing also known
as the Population Based Incremental Learning (PBIL) (Baluja and Caruana, 1995) in
our experiments. The mechanism of how these algorithms work is simple. Using u
individuals, a probability vector is created based on the number of 1s and Os across

the individuals. This generalizes the information obtained from the population. This
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Comparison between BHC, GA and K-Means as a function of CPU time
run on 50 randomly generated instances with 18000 variables ata = 8
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FI1GURE 5.5: Comparison of BHC, genetic algorithms and CLGH as a function of CPU

time run on 50 randomly generated MAX-3-SAT instances with 18000 variables at

«a = 8. The large hop in fitness in the CLGH method after around 10 seconds marks
the point where K-means clustering is carried out.

probability vector can then be used to set variables of the new individuals based on the
proportions of 1s to Os or their probabilities. Each of the variables in the individuals is
considered independent from the other and hence univariate. This makes the compu-
tations much simpler especially since we are avoiding the cumbersome computations of

the joint distributions of variables (Conzalez et al., 2000).

In principle, Multivariate Marginal Distributions Algorithms (MMDA ) could solve MAX-
SAT Problems more efficiently than UMDA. However, tests on small problems were
performed using hierarchical Bayesian Optimisation Algorithm (hBOA) hybridised with
GSAT (hBOA+GSAT) (Pelikan and Goldberg, 2003). Hybrid-hBOA was compared
with GSAT and WALKSAT on random MAX-3-SAT problems obtained from SATLIB.
The authors report that WALKSAT performed slightly better than hBOA+GSAT on
random problems, and solved all instances of Graph colouring MAX-SAT problems of
which none was solved by WALKSAT.

One of the main problems of GAs and UMDA is premature convergence. This happens
because the population gradually secks a particular optimum. However, solutions have

been proposed to diversify the search. Some of which are based on multiple populations
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interacting with each other occasionally (Baluja and Caruana, 1995). This, however,
imposes a computational burden on the search algorithm having to work on different
populations. Our K-means clustering algorithm in CLGH does precisely this with min-
imum computational overhead, especially since it is a one time operation that directs

the search into the most promising regions of the solutions space.

We performed experiments that compare the performance of Hill-Climbing, GA, EDA
and CLGH. In this test, we used the BPIL algorithm. We start with a population of 20
individuals, then we apply a round of hill-climbing to each member of the population.
After which, we evaluate the fitness of the individuals, and select the top u = 5 indi-
viduals. We average the variables across the individuals to obtain the probability of a
1 for each variable. consequently, an entirely new population is created by setting the
variables of the new individuals based on the probability vector. Finally, another round

of hill-climbing is performed, and the process is repeated.

After experimenting with several trials we have adjusted the taking-of-turns between
PBIL and hill-climbing to obtain the best performance possible. We show from these
results that in the case of MAX-SAT, there are varying performance levels of PBIL
impacted by varying values of «. Figures 5.6, 5.7, 5.8, and 5.9 show this comparison
for 6 000 variables with values of a = 4,6,8,and 10. We see that as « increases from 4
to 10 the performance of PBIL becomes better than GA (around the phase the phase
transition). As « increases, the performance of PBIL lags behind to GA (The more noisy
line represents the performance of GA). In all cases, CLGH offers the best performance

level in comparison.

Although the graphs show that there is a clear advantage to using CLGH, it could be
argued that the single application of K-means followed by hill-climbing could have give
it this advantage. We could, for example, generate a new population in EDA after the
first round of hill-climbing, and follow that with another local search. We argue that the
decisive jump that we obtain from K-means cannot be replicated via the application of
a single selection of individuals and the creation of new individuals via the probability
distribution. We have tested for this, and found that the performance becomes even
worse. We attribute this to the way the next population is created. In CLGH, when the
individuals (using the same terminology used in EDA) are clustered and averaged they
are then rounded to the nearest 0 or 1. Here, we are precisely hopping very near the
centre of each cluster. In contrast to EDA, by creating several individuals for the next
generation from the probability vector, the probability of generating the centre point
becomes smaller as n grows larger. The probability of generating the centre point of the

cluster follows equation 5.2.
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Comparison between BHC, GA, K-Means and EDA as a function of CPU time
run on 10 randomly generated instances with 6000 variables at o = 4
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FIGURE 5.6: Supplementary results all for N = 6000 and 10 problem instances at
different av = 4 values.

Given that X1, Xo, ..., X, are independent. Where X is a variable, and n is the number
of variables. The probability of getting the best starting point for the next round of

hill-climbing becomes exceedingly small as the number of variables becomes large.

Another problem with EDA is the selection criteria. Two main ways are implemented in
the selection process. Either the top fittest p individuals are selected, or the individuals
are selected with a probability proportional to the fitness based on Boltzman selection.
In both cases, the fittest individuals have more chances of being selected. This, as
we have seen in the case of GA, is not always an efficient procedure for combining
individuals. The main problem with this picture is that the individuals chosen might
belong to several regions of the solution space with very different variable-configurations.
This would raise the prospect of having the new population land far away from where

the best solutions tend to be.

In CLGH it is quite a different story. Instead of mixing the population to create the
next starting points regardless of the arrangement of the solutions as in the case of GA
and EDA, CLGH groups similar solutions with each other to create individuals from

each group within the group, hence lead to better solutions. In the beginning of the
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Comparison between BHC, GA, K-Means and EDA as a function of CPU time
run on 10 randomly generated instances with 6000 variables at a = 6
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FIGURE 5.7: Supplementary results all for N = 6000 and 10 problem instances at
different ov = 6 values.

Comparison between BHC, GA, K-Means and EDA as a function of CPU time
run on 10 randomly generated instances with 6000 variables ata = 8
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FIGURE 5.8: Supplementary results all for N = 6000 and 10 problem instances at
different oo = 8 values.
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Comparison between BHC, GA, K-Means and EDA as a function of CPU time
run on 10 randomly generated instances with 6000 variables at o = 10
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FIGURE 5.9: Supplementary results all for N = 6000 and 10 problem instances at
different o = 10 values.

search, EDA and GA could mix individuals from different regions of the solution space.
As the search draws to an end, both algorithms usually converge to a particular region

of space.

5.5 Peculiarities in the Results

It can be easily seen that there are inconsistencies between the performance of the
Hybrid-GA as reported in Table 5.1 and in Figure 5.3. While the tables report results
that show poor performance for Hybrid-GA, the graph shows its results to be competitive
with CLGH. The difference lies in the starting point of each. Despite having the hybrid-
GA use the best 100 assignments obtained from an initial hill-climb, it did not perform
better than when it started from a random genepool of assignments. One would think

that the former would outperform the latter due to the hill-climb advantage.

Upon observing the behavior of the Hybrid-GA in both cases, we found that although it
seems advantageous to have the GA start with good assignments it is quite indifferent

to either. When several high cost assignments are obtained via hill-climbing they might
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differ in as much as 40% of their variable makeup. With the crossover of the first
generation, these differences are amplified, and hence worse costs. In fact, the results
of the first generation crossover are so weak that they return the assignments to costs
that are on average as bad as a random assignment. After the initial disruption caused
by the first crossover, the Hybrid-GA slowly improves on the results by focusing the
assignments to a particular region of space. It is as if the Hybrid-GA started from
random assignments (though they were subjected to hill-climbing) while the CLGH
started right after the first round of hill-climbing.

The rate at which the results are improved is dependent upon the number of hill-climbs
between each crossover. In the first case, only several thousand hill-climbs were per-
formed which gave the Hybrid-GA less of a chance to improve on the results. Contrast
this with K-means in CLGH which focuses the assignments such that the next hill-climb
improves the results drastically; after clustering only a few thousand hill-climbs were re-
quired to enhance the solutions. In the second, however, millions of hill-climbs took

place giving the GA much more room to adjust the assignments.

5.6 Comparison with Local Search Results

Our algorithm performs well on large problem instances. This makes it difficult to
compare with previous results reported in the literature, which tend to concentrate on
small instances. The only work we are aware of which studied similar sized instances
statistically (i.e. gave results of multiple runs on multiple problem instances) where those
given by Zhang (Zhang, 2004). Our algorithm substantially out-performs the results
obtained by Zhang. As an example, using BG-Dyna-WALKSAT, Zhang reports that for
6000 variables and o = 8 he reduced the number of unsatisfied clauses to 1597.36. In
comparison, we have obtained 1370.61 unsatisfied clauses using CLGH. This is a 14.2%
improvement over his results. Also, to provide a comparison with state-of-the-art local
search algorithms we have compared our algorithms to those implemented in UBCSAT!,

which provides a fast implementation of a range of modern algorithms for MAX-SAT.

We tested all algorithms provided by UBCSAT using their default settings. Results are
given on 5 randomly drawn MAX-SAT instances with 18 000 variable and « = 8. Each
algorithm is run five times. We report results for the five best algorithms from UBCSAT
on these instances. These algorithms were steepest ascent-mildest descend (SAMD),
iterated robust TABU search (IROTS), history with random walk GSAT (HWSAT),
greedy SAT with random walk (GWSAT), and GSAT. In each case, we run for 5 min-
utes. The performance is compared with BHC run for 3.5 minutes and two CLGH runs.
In both cases we run 100 BHCs for 200000 iterations and then used K-means to find

5 centroids (again the choice of 5 centroids was chosen after some preliminary experi-

"http://www.satlib.org/ubcsat/
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mentation). This stage took no more that 15 seconds. We then run a hill-climber on
each centroid for 30 seconds (thus the total amount of time spent by these algorithms
was 2.75 minutes). The difference between the two tests was that in the first one we
used our BHC algorithm after K-means while in the second test we used the GSAT
from UBCSAT. The results are shown in table 5.2. As can be seen, CLGH substantially
out-performs all other algorithms in UBCSAT despite giving them more time. Note that
in table 5.2 we report the specific methods used in the CLGH framework. Here we used
BHC/K-Means/BHC, and BHC/K-Means/GSAT.

Algorithm Overall average | Time (minutes)

SAMD 3696.4 5

IROTS 3583.2 5

HWSAT 3678.2 5

GWSAT 3636.1 5

GSAT 3667.4 )

BHC 3667.1 3.5
BHC/K-Means/BHC (CLGH) 3572.6 2.75
BHC/K-Means/GSAT (CLGH) 3527.8 2.75

TABLE 5.2: Average performance of different search strategies on 5 random instances
of 18000 variable MAX-SAT problem with o = 8.

Most of the algorithms seem to plateau after 5 minutes. However, GWSAT (a fast
implementation of WALKSAT) continues to find good solutions. We found that it gave
similar solutions as CLGH using BHC/K-means/GSAT which were obtained in 2.75
minutes if it was run for around 1 hour. We can see from table 5.2, that the best CLGH
improves the cost by 1.55% over the best local searcher IROTS even in 55% of the time
given. However, if we take into account the actual time it would take GWSAT to reach
the same quality of solution reached by CLGH (which is 1 hour), then CLGH reaches
the solutions in 95.4% less time. No doubt some of the algorithms we have tried may
have run faster had we optimised their parameters. We have tried to compensate for
this by allowing the other algorithms more time. Furthermore, we have not attempted
to fine tune the parameters of our own algorithm. The fact that we have obtained such
good performance, provides support for our contention that the CLGH method explores

the landscape in a fundamentally different way to existing algorithms.

As a final set of tests we have performed longer runs on larger problem instances,
n = 20000 and 50000, at o« = 6, 8 and 10. In these experiments, we used GSAT fol-
lowed by K-means followed by WALKSAT. We run 1000000 GSAT 200 times. We then
performed K-means clustering with K = 5. This was followed by 40 000 000 WALKSAT
moves on each of the 5 centroids. We report the best result of the centroid. Although
we take the same number of GSAT and WALKSAT moves, the majority of time is
spent performing WALKSAT, which takes considerably more time to complete a move
than GSAT. We used our own implementation of GSAT and WALKSAT. We compare



Chapter 5 CLGH: A Novel Approach to Solving Satisfiability

this with UBCSAT’s GWSAT run for 100000 000 moves and our own implementation
of WALKSAT for 1000000000 steps. our WALKSAT appears to have the same per-
formance as UBCSAT’s GWSAT, but is considerably faster. We give timings for the
algorithms run on an Intel Core 2 Quad Q6600 with 4 GB RAM running Windows
Vista. We also compare with UBCSAT’s IROTS run for 30 000 000 steps. These results
are shown in table 5.3. We observe that CLGH, despite being given considerably less
time, out-performs 109 iterations of WALKSAT, which in turn outperforms the two top
UBCSAT algorithms.

For the two top performing algorithms CLGH with (GSAT/K-Means/WALKSAT') and
Our WALKSAT, the number of unsatisfied clauses is reduced by 3.4% in 60% less flips
for 20000 variables with o = 6, 0.7% unsatisfied clause at o = 8 and 1.07% unsatisified
clauses at a = 8. For 50 000 variables and o = 6, the number of unsatisfied clauses was
reduced down by 1.2%, 0.2% unsatisfied clauses at o = 8, and 1.5% unsatisfied clauses
at a = 10. This was not an average over many problems, but they were example tests.
We reiterate that these small differences in unsatisfied clauses are not to be taken lightly.

To satisfy these very few clauses takes many more flips by a solo-local search algorithm.

Code running our algorithm is publicly available in a package WinSATS?. We have also
made available the random instances we used in the experiments reported above. These

can be found from the link given.

It is important to emphasise that even though there seems to be a small difference in
the number of unsatisfied clauses between CLGH and WALKSAT in some experiments,
even satisfying this many clauses requires an enormous amounts of flips by WALKSAT
or GSAT alone. We reported that it took an hour for GWSAT to reach the results
reached by CLGH using BHC/K-means/GSAT in 2.75 minutes. The reason for this is
that as the search plateaus it becomes all the more difficult to find the proper variables
to flip to improve the result further. We can see this more clearly from Table 5.3 when
we applied our WALKSAT with almost an order or magnitude more flips, yet in all the
cases shown, the results are still far from those achieved by K-means. True, GWSAT

will ultimately find these solutions, but at the expense of many more flips.

5.7 Room for Improvement

In no way have we attempted to improve the performance of the search by improving K-
means. We have used K-means in its simplest form to test if it does anything to improve
search results. In its simplest form, K-means does not always find the best grouping of
assignments. This depends on the choice of the number of centroids that represent the
clusters, the initial starting point for each of the centroids and the algorithm that maps

the centroids to the clusters. Figure 5.10 shows an example of a centroid in between two

*http://users.ecs.soton.ac.uk/mqq06r/winsat/
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n « | Algorithm Total Number of Time UNSAT
Flips

20000 | 6 | GSAT/K- 2 x 105(GSAT) 4+ 2x | 17.8 min 1539
Means/WALKSAT| 10® (WALKSAT)

20000 | 6 | UBCSAT 108 51.0 min 1602
GWSAT

20000 | 6 | Our WALKSAT | 10° 1.08 hours | 1593

20000 | 6 | UBCSAT IROTS | 3 x 107 52.3 min 1631

20000 | 8 | GSAT/K- 2x 10%(GSAT) +2x | 24.1 min 3916
Means/WALKSAT| 10% (WALKSAT)

20000 | 8 | UBCSAT 108 51.9 min 3953
GWSAT

20000 | 8 | Our WALKSAT | 10° 1.56 hours | 3944

20000 | 8 | UBCSAT IROTS | 3 x 107 50.8 min 4049

20000 | 10 | GSAT/K- 2x 108(GSAT) +2x | 31.2min | 6621
Means/WALKSAT| 10%(WALKSAT)

20000 | 10 | UBCSAT 108 53.1 min 6722
GWSAT

20000 | 10 | Our WALKSAT 109 1.94 hours 6693

20000 | 10 | UBCSAT IROTS | 3 x 107 50.3 min 6699

50000 | 6 | GSAT/K- 2x 105(GSAT) 4+ 2x | 30.0 min | 8684
Means/WALKSAT| 10® (WALKSAT)

50000 | 6 | UBCSAT 108 1.98 hours | 8853
GWSAT

50000 | 6 | Our WALKSAT 10? 1.82 hours 8789

50000 | 6 | UBCSAT IROTS | 3 x 107 2.15 hours | 8821

50000 | 8 | GSAT/K- 2x10%(GSAT) + 2x | 36.0 min | 15955
Means/WALKSAT| 10® (WALKSAT)

50000 | 8 | UBCSAT 108 2.04 hours | 19194
GWSAT

50000 | 8 | Our WALKSAT | 10 2.20 hours | 15992

50000 | 8 | UBCSAT IROTS | 3 x 107 1.96 hours | 16321

50000 | 10 | GSAT/K- 2x 10%(GSAT) + 2x | 47.0 min | 23838
Means/WALKSAT| 10% (WALKSAT)

50000 | 10 | UBCSAT 108 2.11 hours | 24206
GWSAT

50000 | 10 | Our WALKSAT | 10° 2.83 hours | 24075

50000 | 10 | UBCSAT IROTS | 3 x 107 2.23 hours | 24384

TABLE 5.3: Performance of Algorithms for n = 20000, 50000 and o = 6, 8 and 10.
UNSAT is the number of unsatisfied clauses in the assignment found by the algorithms.
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clusters. Starting the search from this centroid is unlikely to produce good solutions.
We believe that the results of the search can be significantly improved if each cluster
is made more homogeneous. A plethora of literature is devoted to optimizing clusters
(Arthur and Vassilvitskii, 2006; Pelleg and Moore, 2000; Wagsta et al., 2001; Pea et al.,
1999; Ding and He, 2004).

.
.
’
/
.

F1cURE 5.10: An illustration improper clustering of solutions. The solid circles rep-
resent the solutions, and the stars are the centroids. One possible way of clustering
where the centroid would not land within a cluster, and hence would not provide for
a good starting point for the search. Note: K-means divides the space into Voronoi
regions (Du et al., 1999). The clusters are encased with dashed ellipses for simplicity.

Having stated that, care must be taken in choosing the point at which the K-means
is applied. K-means yields the best results if the assignments have been sufficiently
improved by hill-climbing. Having them less or more mature will render K-means dras-
tically less effective. If the initial random assignments were subjected to a few hill-climbs
they would have very little beneficial information to use in clustering. In the analogy
of the fitness landscape in Figure 4.6 a few hill-climbs would amount to moving on
the ground, and never reaching the foothills. Clustering these points would likely have
the centroids on the ground also. On the other hand, performing a large number of
hill-climbs on each assignment simply saturates the assignments such that averaging a
cluster, with these highly correlated points, creates centroids within the vicinity of the
local optima. There would not be a whole lot of differences to exploit. It would be like
having the assignments very close to each other on one side of a mountain. In our tests
we have found that the best point to apply K-means is when the Hill-Climb begins to

slows down, and before reaching a plateau, Figure 5.11.

We call this point of application the “Sweet Spot”. Although there is a range of points
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where the K-means can be applied to produce good results, the application of K-means
at the sweet spot produces the best results. Outside this range, we obtain poor results.
This is akin to the audible experience obtained in the cinema. Outside the cinema room
no sound is heard. Inside, the sound is heard at varying levels. However, the best
location for a more intense listening experience is the sweet spot where all sound waves

produced by the speakers meet in perfect synchronisation.
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FIGURE 5.11: The best locations for the application of K-means is before after the
maturity of the search, and before saturation.

Tables 5.4 and 5.5 show the result of applying K-means before and after the sweet
spot (before and after the range more specifically). These are individual tests run on
problems with 4000 variables at o = 8. Initially, BHC is applied for 10000 iterations
starting from 100 different random assignments, then K-means or averaging is used, and
finally, another round of BHC with 20 000 iterations is applied to 10 centroids. Table 5.4
shows the results when K-means is applied slightly before sweet spot. The best results
are shown in bold. We observe that for the 20 problems examined, CLGH performs
better than ALGH in 65% of the problems. In Table 5.5, we report results of applying
K-means after the sweet spot. Here, CLGH outperfomed ALGH on only 55% of the
problems. By comparing these results with ones we obtained before the sweet spot, we
find that in all tested problems, CLGH outperfomed ALGH.

Another test was performed was on a relatively small problem. We worked on these
problems to allow BHC to easily reach a plateau. We applied K-means long after
reaching the lowest cost obtained by BHC. We find that the GLCH sometimes produces



Chapter 5 CLGH: A Novel Approach to Solving Satisfiability

First BHC | CLGH | ALGH
1479 830 840
1474 820 846
1452 814 798
1456 828 832
1474 808 836
1459 815 818
1461 834 833
1451 807 811
1454 819 830
1450 831 830
1495 857 860
1454 827 826
1444 811 808
1457 810 814
1453 801 814
1469 826 826
1449 821 824
1452 817 821
1499 873 852
1470 822 839

TABLE 5.4: The performance of CLGH in comparison with ALGH applied slightly
before the sweet spot in the cost vs time plot. The results show that there is very little
difference between CLGH and ALGH of randomly selected solution points.

worse results than the initial search. This is shown in table 5.6

5.8 Other Experiments

Two other investigations centred on different ways of applying CLGH to the solution
space to determine if we can produce finer results. From these experiments we gained fur-
ther insight into how CLGH works. We will see that these experiments set CLGH apart
from conventional evolutionary algorithms. One experiment, and somewhat related to
EDA, iteratively focuses and defocuses centroids, and the other relied on clustering of

only the fittest solutions.

5.8.1 Focusing/Defocusing

One of the ways we can think of K-means is as a focusing operator. When averaging
a cluster, we are finding the focal point of that cluster. Before rounding each of the
variables to 0 or 1 we have a probability vector. Just as in UMDA, we use this centroid

to generate new starting points for the search. Using the probability of the variables
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First BHC | CLGH | ALGH
1129 1038 992
1128 1011 1010
1152 1057 1079
1131 996 1005
1127 1020 1023
1119 988 988
1143 1009 1052
1114 1001 991
1141 1023 1000
1163 1038 1026
1106 1002 993
1121 985 999
1127 989 1020
1127 1005 1015
1143 1077 1048
1132 993 1003
1131 1015 1016
1154 973 1040
1123 1006 1032
1158 1060 1056

TABLE 5.5: The performance of CLGH in comparison with ALGH applied slightly
after the curvature in the cost vs time plot.

First BHC | GLCH | ALCH
204 201 205
193 195 195
216 215 214
204 197 207
201 200 206
192 201 201
202 207 209
216 218 211
206 207 204
203 206 212

TABLE 5.6: When applying K-means after the BHC had plateaued the results worsen
again. The worst results are denoted in bold font.
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we create several new solutions by setting the variables to either 1 or 0. This in effect,
defocuses the centroid to many different solutions around it. An illustration of this is
shown in Figure 5.12. Once we generate different solutions, we restart a local search on
these solutions. Unlike EDA, however, we apply another round of hill-climbing, then
K-means is applied again to these guided solutions, then we repeat this process over.

This is like focusing and defocussing of the results.

FIGURE 5.12: Illustrates the K-means as a focusing operator. Using the solution points
we can focus in centroid. From the centroids we can defocus the into new points in
space.

We ran this test over many problems. The results of the search did not improve at
all over a single application of K-means. It seems that the centroid or the focal point
of the first search provides the best starting point for the search. This shows how
powerful K-means in CLGH is as a one time operation, and it demonstrates that the
focal points of each cluster provides a solution that does not require any restarts or
iterations. Compare this with other evolutionary algorithms. Evolutionary algorithms
rely on an iterative process to gradually improve the results. In previous cases, when
GA or EDA were applied, they were hybridised with hill-climbing. After every few steps
of hill-climbing, GA and EDA operators were applied. With CLGH it is only necessary
to find the centroids once. These points turn out to be best known points for starting a

new search.

5.8.2 Clustering Fittest Solutions

An interesting result we obtained was when we clustered only the fittest solutions in-
stead of relying solely on hamming distance. Prior to this experiment, we clustered all
solutions. K-means did not distinguish between fitter an less fit assignments. It grouped
the solutions based entirely on Hamming distance. We added another requirement to

the clustering in this test. We pick the top p solutions, and then cluster these.
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We have found that mu-CLGH was less effective in this case than averaging of random
solutions, and at times less effective than solo-BHC. This goes against the conventional
view that fitter solutions provide more advantage than less fit ones as in GA and EDA.
We know from Figure 4.4 that on average, the Hamming distance of the higher cost
solutions are closer to the quasi-global solutions. This, however, is the average behaviour
of the Hamming distance versus cost. This means that some less-fit solutions are close in
Hamming distance, and some more-fit solutions are further away from the quasi-global
solutions. In effect, those solutions whose average Hamming distance is closer to the
quasi-global solutions, which do not necessarily have a higher cost, could contribute to

the cluster, and ultimately to the formation of better centroids.

This is yet another distinguishing aspect of CLGH in comparison with other evolutionary
algorithms. Where it seems advantageous to use the fittest solutions for the creation of
the next individuals in the population in both GA and EDA, CLGH looks for structure
in the arrangement of solutions space without strict emphasis on choosing the fittest
solutions. Clearly, we cannot apply CLGH to randomly generated solutions before driv-
ing them into better costs. In spite of that, the cost do not have to be optimal. In
some experiments we achieved the opposite effect. Optimum solutions did not provide

a clustered structure that achieve good centroids. More on this in Chapter 8.2.

5.9 WinSATS Application

In a parallel track to our work we have developed a Windows based SAT Solver applica-
tion. Although the majority of the tests for this work were performed using the Borland
C++ compiler in the command line environment. We have developed this application
using the GUI based Borland turbo C++. The GUI provides a simple interface for user
interaction. In addition, the program was developed in a way that would allow for easy
reporting of results (in a spreadsheet view). Also, since one of our goals was to include
graphs that would report the performance of local search algorithms, Windows seemed

as good a candidate as any other operating system for this task.

The application is capable of loading CNF files or generating random CNF problem
instances, it provides several search methods including our own approach, and generates
a results report sheet, see Appendix B.1. This application has been tested against UBC-
SAT which contains some of the most advanced and up-to-date local search algorithms.
We have shown that our GSAT and WALKSAT perform an order magnitude or more
flips in the same time than the implementations found in UBCSAT for large instances.
In addition, we have shown that using CLGH we are able to outperform every algorithm
there is in UBCSAT even with the use of the basic hill-climbing algorithms such as BHC,
GSAT and WALKSAT.

The main difference between WinSATS and UBCSAT is in the way they were designed
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to handle future algorithms. While UBCSAT was designed to include only solo-search
algorithms such as GSAT, WSAT, TROTS, HWSAT, and so on, the WinSATS applica-
tion was developed to include both solo-search algorithms and algorithms that are based
on populations. This makes it all the more comprehensive. Although we currently have
K-means as the only populations based method incorporated into WinSATS, we will
add other algorithms such as GA, EDA and particle swarm and Quantum Evolutionary
Algorithm (QEA) in the future.

The current version of WinSATS is 2.04. The application has been downloaded by 664
users from all around the world at the point of writing this thesis. We have not had a
single bug reported by any of the users. We hope that the WinSATS application be-
comes a benchmark tool that researchers use. In addition to the WinSATS application
we have developed a web page describing the satisfiability problem for other researchers,
Appendix B.3. Along with this page, we have also included the user manual for Win-
SATS, benchmarks, and comparisons. It is our goal to eventually include the source

code of the application to have it developed by the SAT community.



Chapter 6

The Applications of LGH to the
TSP Problem

It would be interesting to see if the application of LGH extends to other NP-Complete
problems. Is LGH generic enough that it can refine the search in other problems as
well? We could ask whether the landscape of other NP-Complete problems is similar
to that of MAX-SAT, and hence LGH could be applied to them equally well. Do other
NP-Complete problem share the same clustered structure of solutions? It is natural
to assume that real problems (opposed to artificially constructed problems such as toy
problems) would tend to group good solutions in close proximity. A multiple clusters of
solutions is a possible configuration of the solution landscape where CLGH could work
naturally. However, another possible configuration is that although solutions group,

they could very well form a single cluster. In which case ALGH would also work.

We have a plethora of NP-Complete problems with which we can test LGH. The most
famous of these is the Traveling Salesman Problem (TSP). Just as in MAX-SAT prob-
lems, exact and non-exact methods have been developed to solve it. The best of these
methods rely on local optimisation techniques. Our goal here is to see the effect of the
application of LGH on TSP, and although we intentionally did not perform rigorous
analyses on the structure of solutions for this problem, we will supplement this work
with a few experiments. We shall see in the next section that it is not clear whether the

solution space of the traveling salesman problem follows a many-clustered view.

6.1 The Traveling Salesman Problem

The traveling salesman (TSP) problem is defined as the shortest round trip traversing
a number of cities such that each city is visited once. This combinatorial optimization

problem is well known to be NP-Hard. It has been studied extensively, and a prodigious
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amount of algorithms were designed to solve it, some, with fantastic efficiency (Helsgaun,
2006; Applegate et al., 2006). However, it remains computationally difficult, and as
with satisfiability, the size of the problem greatly affects the efficiency of finding optimal
solutions. Nowadays, TSP problems are large enough that they require either more

computing power or more efficient algorithms.

Despite TSP being computationally hard to solve, from 1950 up to 2006 the TSP chal-
lenge problems that have been solved grew significantly in size (Applegate et al., 2006).
With the increase of computer power and, more importantly, improved search techniques
these large problems have been solved to optimality. The largest problem that was solved
in 2006 contained 85,900 cities. The next challenging problem has as many as 1,904,711
cities, and although no exact solutions have been found for this problem to date, the
closest approximation is 0.058% away from the Held-Karp lower bound (Valenzuela and
Jones, 1997). It is remarkable that such large and rapidly growing problems have been
solved considering that they belong to the NP-Hard category.

TSP has a wide range of real world applications which makes it more desirable to solve.
It directly maps to drilling circuits on microprocessors boards, and Vehicle Routing
Problem (VRP) (Toth and Vigo, 2002) (While I was working for FedEx in the US
during my summer breaks as an undergrad I was working with large databases of truck
routes. We were trying to find shorter distances for the drivers. It never occurred to
me then that I was working on the Traveling Salesman Problem). With modifications,
it can be applied to a plethora of other problems such as planning, guiding lasers for
crystal art, Aiming telescopes and X-Rays, logistics, and Gene sequencing (Applegate
et al., 2006).

TSP is formally defined as a set of cities c1, ¢, ..., ¢ or nodes with the distance d(c;, ¢;)
between each two distinct cities or edge. The permutation of the cities generates a set
of edges that establish a Hamiltonian cycle through the cities. It is required to find the

permutation with the minimum tour length (David, 1990),

N—-1
min >~ d(Cr(i), 1)) + der(ny, Cxr) (6.1)

i=1

The distance measure d(c;,c;) can be Euclidean in 2 or 3 dimensions, geographical,
Manhattan, or it can be determined using a special function. In addition, the problem
can be either symmetric or non-symmetric. That is, in a symmetric problem the distance
d(c;, ¢j) = d(cj, ¢;), while in the non-symmetric case d(c;, ¢;) # d(cj, ¢;) is allowed. For
our purposes we used symmetric problems with 2-D euclidean distance measure, which
is the easiest form of distance measure to start with. We provide an example of a TSP
problem in Figure 6.1. This is the rat783 problem solved to optimality. This problem is

a symmetric 2-D problem.
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FIGURE 6.1: The rat783 problem with 783 nodes. The tour that is shown is optimal.

The goal of our tests that follow is not to compete with algorithms that have been
gradually and systematically developed over the past two decades. This would be a
futile exercise as this problem has been tackled by a prodigious number of researchers
over the years, and the algorithms that have been developed to solve it have been made
extraordinarily efficient. Here, we aim to investigate the effects of applying LGH to

TSP, and to broaden our understanding of the performance of LGH on it.

We have seen that applying CLGH to the satisfiability problem produces exceptional
results compared with many stochastic algorithms. We have shown it to gives a clear
edge even over the state of the art methods. In spite of these results the application
of clustering or averaging in LGH are not stand-alone techniques. They can be used to
enhance the performance of other search algorithms. This justifies our goal for not going
after maximum efficiency since we can in principle, if the K-means or averaging exploit

the the solution structure, if it exists at all, utilize them within well known stochastic
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algorithms.

This view is not without merits. By taking a set of tours, and considering each edge
that appears most frequently in them as the set of edges that form a backbone one can
use these edges to form a good starting point for a local search algorithm (Zhang and
Looks, 2005). However, the edges are not suspended from the search by locking them in.
Rather, the frequency of the appearance of the edge is given a probability that makes
it malleable. The backbone or rather pseudo-backbone information that is extracted
from a multiple number of solutions cannot by itself be used to solve TSP problems. It
must be incorporated into a local search algorithm that would benefit from it to bias
the search. Zhang’s backbone method (Zhang and Looks, 2005) has been successfully
incorporated into one of the most well known search TSP heuristics, the Lin-Kernighan-
Helsgaun (LKH) method (Helsgaun, 2006). It has been shown to give state-of-the-art
results in VLSI problems. As a stand alone algorithm the backbone guided method

would not work; it would have to be included with other local search algorithms.

6.2 Local and Constructive Search Algorithms

Several local and constructive search algorithms have been proposed to solve the TSP
problem with varying degrees of effectiveness. Nearest Neighbour is a simple greedy
constructive heuristic, whereby a city ¢; is chosen arbitrary as the starting city, then the
closest city c; is chosen as the next city in the tour, and then the next closest, ¢, and
so on. This is repeated for all the cities until a full cycle is completed. Although this
greedy method might yield good solutions, it usually produces suboptimal solutions, and

in fact might even produce unique worst tours (Bang-Jensen et al., 2004).

Another method is the Nearest Insertion. In this method we start with two cities that
are closest to each other. We form the initial tour ¢; — ¢; — ¢;. The next step is to find
the city ¢, that is closest to any node in the sub tour ¢; or ¢;. Insert that city into the
subtour to create the shortest distance possible. The same steps are repeated until the
tour is completed. Another variation of this algorithm is the Farthest Insertion. Start
with cities ¢; and ¢; that are furthest from each other. Create a sub tour ¢; — ¢j —
¢;. Then find the furthest city ¢; from both of ¢; or ¢;, and insert it into the subtour.
Repeat for all the cities until a full tour is create (Golden et al., 1980).

There are other variations such as Cheapest Insertion, Arbitrary Insertion, Convex Hull
(Golden et al., 1980) and simulated annealing (David, 1990). Most of these early algo-
rithms have become obsolete, or they have been infused with other algorithms, but on
their own they have been used for their illustrative value rather than their practicality.
They are used less today on their own in favor of more robust algorithms. One of which
is the Lin-Kernighan Algorithm. This method has become the basis for some of the

most sophisticated modern TSP solvers.
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More recent solvers are population based. Some use genetic algorithms (Kaur and Mu-
rugappan, 2008; Baraglia et al., 2001; Huai-Kuang et al., 2004), other methods use Ant
Colony optimization (Dorigo and Gambardella, 1997). Population based algorithms
usually require high execution times by design. Nevertheless, the biggest obstacle pop-
ulation based methods face is the representation problem. We too had our share of
troubles in determining the best way to represent tours in such way that would fit into

our clustering mechanism.

6.3 k-Opt and Lin-Kernighan

One local search method that is applied to TSP is the k-Opt method. We start with a
random tour, then a systematic exchange of k edges with another k£ edges is performed
such that the result of each exchange yields a shorter tour. Suppose that we have 9
cities with the edges denoted with x1, x2, ..., zg as in figure 6.2. With 2-Opt we replace
the edges 1 and x5 with the edges y; and yo given that y; + y2 < x1 4+ z2. This process
is performed until all possible 2-Opt exchanges are exhausted. This yields either a
globally or locally optimal solution (Lin and Kernighan, 1973). As k becomes larger, the
complexity of the search also becomes large, since the permutations of finding the proper
k exchanges increase in number. Therefore, the number of k£ exchanges are restricted to

2-Opt or 3-Opt in most implementation of the k-Opt algorithms (Helsgaun, 2006).

FIGURE 6.2: Applying 2-Opt to a tour by exchanging two edges for another two edges
such that the resulting tour length is smaller.

The total number of exchanges performed in k-Opt is E = 2°~1(k — 1)! where E is the
number of exchanges (Helsgaun, 2006). Figure 6.3 shows some of the possible 4-Opt
exchanges for 4 edges. Just for a particular set of four edges in the tour, the number

of possible exchanges is £ = 48. Here, the solid lines signify a partial tour starting
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with a particular city and ending with another. There could be other cities that are in
between, but they are not included for clarity. The dashed lines represent edges going
from one city to the next with no other cities in between. Each partial tour is labeled
with a number from 1 through 4. The sequence of labels below each exchange in the
figure shows the order of the partial tours going clockwise. We can think of swapping
two edges in terms of flipping an entire partial tour. If the tour is to remain unflipped,
then it is assigned a positive sign, (e.g. +1). On the other hand, if the partial tour is
flipped it is assigned a negative sign. This makes the process of 4-Opt clearer than if we

had to think of swapping the edges themselves.

It should be made clear that despite the number of exchanges for a 4-Opt is small,
E = 48, the number of 4-exchanges that must be done is very large when we have to
consider taking all possible combinations of 4 edges in a tour. That is, not only do we
have to perform exchanges between 4 edges, we also have to do this for every possible
4 edges in the tour against all other 4 edges. Therefore, instead of performing these
exchanges on all possible edges, only a subset of the edges are considered. One way to
limit the number of edges is to only apply 4-Opt to neighbouring cities, since it is clear
that adjacent edges are more likely to be swapped with each other than ones on the

opposite side of a tour. We will talk more about that in section 6.6.

Lin-Kernighan (Lin and Kernighan, 1973) proposed a heuristic that would allow for
variable k£ exchanges where 2 < k < N. The LK algorithm starts with a random non-
optimal tour. Then, an edge by edge exchange is performed as long as the total length of
all the edges exchanged produce a shorter tour. The process starts with an edges z;, and
it is exchanged with another edge y; such that this would maximize the improvement. If
initial exchange was successful, then the process is repeated with next two edges. This is
repeated for i = 1, 2, ...k until there is no more room for improvement. This removes the
restriction that k be set a priori, since it is not known beforehand how many edges are
to be exchanged. In addition, it alleviates the remarkably large number of permutations
required by testing each and every k exchanges. Although the number of k-exchanges
can in principle extend to any number, however, because of the other computational
costs, a top limit has been set for k. In the case of LKH, empirical tests have been
carried on the effect of increasing k up to 8, and it has been shown that the CPU time

increases exponentially with & (Helsgaun, 2006).

The LK algorithm has become an integral part of the most successful algorithms. The LK
method as it stands has been known to find solutions of the traveling salesman problem
within 1-2% of the optimum (Helsgaun, 2006). Moreover, current implementations such
as LKH are ever more effective in solving large TSP problems within reasonable times.
LKH removed some of the restrictions imposed by Lin-Kerninghan, freed the algorithm
from costly computations, and improved solutions. We will not delve into the details
of the numerous improvements and additional implementations made to the original

LK algorithm as this has no bearing on the work we have done. What we have done
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FIGURE 6.3: Shows some of the possible combinations of a 4-Opt exchanges. This

operation shows enormous number of permutations when exchanging 4 edges. This

number becomes amplified with we consider that this is done for all (IZ ) subset of
edges.
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was to apply only 2-Opt moves within the framework of an Iterated Local Search (ILS)
algorithm, and performed comparisons within this framework. We will discuss this in
the section 6.6.

The LKH algorithm is an algorithm that uses a number of different concepts to solve
the traveling salesman problem efficiently. It contains several state of the art methods.
A method that has been added recently to the LKH is Zhang’s Backbone Guided Local
Search method (Zhang and Looks, 2005). It has been shown to be particularly effective
with VLSI TSP problems. Just as in the SAT problem, backbone information is gathered
from multiple LK searches to build backbone information. Since the LK method reaches
local solutions that are within a small percentage of the optimum tour, the frequency of

the edges over several locally optimum tours is accumulated.

These frequencies are turned into the probability p of an edge being the globally optimal
solution. The more an edges appears in the different tours the higher the probability
that the edge is part of the optimal tour and vice versa. However, once the backbone
information is gathered, Zhang does not fix these edges based on their probabilities.
Rather, the distance between two nodes is made elastic based on the probability of the
edge being an element of the optimal tour. If the length of the edge was [;, then by
computing the length of the tour, the adjusted length becomes I = I; - (1 — p;). This
morphs the lengths of edges such that the edges with higher frequencies are reduced in
size so as to preserve them in an exchange, and the less frequent ones are elongated to

allow them to be exchanged more readily.

6.4 LGH and TSP

The application of LGH in TSP is a little more involved than the way it is applied to
MAX-SAT. This process requires that we look the at the sequence of edges in a tour
instead of the sequence of cities. This was proposed by (Peter and Bernd, 1999). They
found that the correlation between tours represented by their city-sequence is lower
than those represented by edge-sequence. In city-sequence representation, each tour is
represented by a sequence of cities as they are presented in the tour. They are labeled
from 1 through n. Figure 6.4(a) illustrates a tour sequence of 20 cities. As a consequence
of having this representation, the sequence can be rotated cyclically while maintaining

the same tour length, Figure 6.4(b).

Because the same tour can be represented in many different ways, using the city-sequence
representation for clustering would be impractical. This is because even if two solution-
tours are close to each other in terms of the order of the cities (having very close fitnesses),
but are rotated differently, their points in the solution space will be in two far apart

locations. In this case, clustering would not be able to group these two similar solutions.
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4 1 20 | 3 6 19 | 12 5 10 8 9 2 116 | 7 11 15 17118 [ 13 | 15

(a) Tour sequence

6 19 [ 12 5 10 8 9 2 |16 |7 1 |15 17 118 |13 | 15 4 1 20 | 3

(b) Same tour sequence rotated

FIGURE 6.4: The same tour sequence can be represented differently by cyclically ro-
tating the sequence of cities.

Two studies, the Maximal Preservative Crossover (MPX) (Mathias and Whitley, 1992)
and Distance Preserving Crossover (DPX) (Freisleben and Merz, 1996), used crossover
of parent individuals in a population in GA. Both of these methods used the city-
sequence string to represent the individuals in the population. In another study, edge
recombination was used (Whitley et al., 1991). We adopt a string of the edges between
each city and the next. In this case each tour of length n cities would be represented
by a string of edges that is n(n + 1)/2 edges long. An example is shown in Figure 6.5.
When an edge exists between two cities the edges string is set to 1 otherwise 0 for these

two cities. This fits very well with K-means as we shall see next.

1-2 13 1-4 1-5 1-6 19-16 19-17 19-18 19-20

0 0 1 0 0 o o o 0 0 o | 1

FIGURE 6.5: Representing a tour by its edges. Instead of using the sequence of cities
vector, edges between cities can be stored in a vector. With this, we avoid the cyclical
problem.

The next step is to apply CLGH to these strings of edges. Again, we use K-means in
our CLGH. K-means groups similar edge configurations with each other into K different
clusters. With this simple representation we can directly use the Hamming distance as
a measure of similarity between a tour and the centroid. To average each cluster, we
count the frequency of the appearance of the each edge in all of the suboptimal tours
in each group. The frequency count of the edges is used to generate the centroid tour.
These centroids do not necessarily create a valid tour. Hence, we reconstruct a valid

tour from this centroid.

6.5 Tour Reconstruction

We use the centroid in two ways. First, we reconstruct a valid tour from it by keeping the
edges with the highest frequencies while maintaining a proper tour. At times, more than
two edges are connected to a single city appear with a high frequency. We make sure that

no invalid tour is created even though we obtained unusual centroids from averaging.
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Second, we preserve the frequency information of the edges. This information is crucial

for the second round of the search. We use this information to apply Zhang’s method.

Constructing the centroid is a laborious work. It requires several steps, but because it
is a one time operation, the overhead of processing the proper tour is minimal. The
first step in reconstructing the tour, is to sort the edges in the order of their frequency
counts. There are two important points that need to be checked when building a proper
tour. First, centroids might have several edges connected to one city. The number of
edges connected to a particular city is dictated by the frequency of the appearance these
edges. This invalidates the tour, and in the process of reconstruction, the extra edges
are discarded. The second, and also important step, is to make sure that as we add
edges we do not create a partial closed tour, Figure 6.6. As the edges are accumulated
based on their frequencies, their might be two cities that close the loop before all the

edges are added.

C.

Cs

FIGURE 6.6: Reconstructing a tour from a centroid might create a partially closed tour.
This is because a centroid is not always a proper tour.

Using disjoint sets, which is an efficient data structure to solve the equivalence problem,
we ensure that a tour is not closed prematurely (Weiss, 2007). When a pair of elements
(a,b) are related by some relation, a ~ b such that a,b € S where S is set, and ~ is
relation on the set S, then we can call this relationship an equivalence relationship if it

satisfies the following three properties:

e Reflexivity: a ~ a
e Symmetry: a ~ b

e Transitivity: a ~ b and b ~ ¢ then a ~ ¢
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All these properties apply to the cities in a TSP problem where the edge is the relation,

and the cities are the elements.

After sorting the edges by their frequencies, we take each edge in the order of its ap-
pearance in the ordered list, and insert it in the set of edges. Initially, all the edges will
be in different sets, and no two sets have a relation, i.e., S; N S; = (. When an edges
is inserted via the union of the two cities, ¢; and c¢; that are connected to it, two cities
are assigned to the same set, S;. As we add more edges, more relations are added to the
sets. Sets are merged into Sy = S; U S; if two cities ¢; € S; and ¢; € S; are connected
by an edge. Before adding new edges, it can be determined if the two cities are in the
same set. If they are, then we have a closed tour. This situation is avoided before the

inclusion of the new edges.

There is another very important verification that is carried before inserting an edge into
the sets. It must be checked that the edge is not connected to a city that has two edges

already connected to it. The disjoint set algorithm does not check for this.

The final step in the reconstruction of the tour is to check if there any orphaned cities.
This happens when some sets are disjoint. This means that the tour is incomplete, and
there would be orphaned cities. The reason this happens is because the centroids do not
usually produce proper tours. They are a mixture of edges from different tours with their
respective frequencies of appearance. Building a tour from the highest cost edges will
likely produce partial tours. We fix this by inserting edges between the tour fragments.
These tours might not be best selection of edges, however, they will be corrected for in

the next round of the local search.

6.6 Experimental Results

Developing a TSP search engine that would make use of CLGH requires 3 stages. First,
an initial population of random tours is searched for locally optimal solutions. Second,
these tours are clustered and each cluster is averaged to create centroids. Finally, the
centroids are put into a second round local-search with the use of the probabilities of
the edges. For the local search algorithm we have used Iterated Local Search (ILS)
(Ramalhinho et al., 2000) with 2-Opt. The local search algorithm works as in Appendix
A Figure A.5.

The local search that is incorporated into this algorithm is a basic 2-Opt. We perform
a systematic 2-Opt on all the cities to ensure that no two edges are overlapping. When
there are no more edges that can be swapped, the tour is a locally optimal solution.
Initially, we take two edges, then we swap their ends. If the resulting tour is shorter, we
keep the exchange. We perform this task on all the edges in the tour until there are no

edges that can be swapped. More improvements can be obtained for the tour via the
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ILS algorithm, where perturbations and 2-Opts are performed iteratively.

If this process is carried out on the entire set of edges against all other edges in the tour
it would be costly. The number of possible edges that can be exchanged is enormous in
large problems. We, therefore, restricted the 2-Opt operations to neighbouring cities.
In the initial phase of the algorithm, we find the neighbours by looking at every city in
the problem, and choose the closest R cities. In this case, we have chosen R = 30 cities
as we have found this to be a reasonable number of neighbours. We performed a variety

of tests on multiple problems to come to this judgement.

Figure 6.7 shows the a280 TSP problem with a few examples cities and their neighbours.
Each city encompasses its neighbours within a circle (the circle is just for illustration).
Each city has a variable size circle. We are not concerned with the size of the circle.
Instead we concentrate on the number of neighbours. Once we have these neighbours

we can apply 2-Opt within the locality of city, and this reduces the search space greatly.

- e

Tj

FIGURE 6.7: Limiting the search space by apply k-Opt only to neightbouring cities.

To limit the search space we have only applied the search to the nearest 30 neigbours.

This figure illustrates this concept with 5 cities each having 15 neighbours. The size

of radius for each point is variable, and it ensures that each point has 15 neighbours
associated with it.

Choosing neighbours by selecting the closest R neighbours has a serious shortcoming.
If the cities are uniformly distributed in space, then this problem would not be obvious.
However, if the cities are clustered (this should not be confused with the solution space.
We are discussing the position of cities in 2-D Euclidean space), then choosing R neigh-
bours in this direct fashion limits the search for an optimal tour. Take for example figure
6.8 which was generated using DIMACS TSP Challenge code. The cities in the tour
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are randomly generate in clusters. If R is less than the number of cities in each cluster,
then all the neighbours would naturally be chosen from within the cluster. This limits
the exchange of edges to within the cluster itself, neglecting the neighbouring clusters,
and thus leading the search to suboptimal results. In our experiments we avoided using

clustered cities even though this does not mitigate the problem entirely.

FIGURE 6.8: Randomly generated clustered tour. If R is chosen to be smaller the
number of cities in a cluster, then every city in the cluster would have its neighbours
form within the cluster. This might produce suboptimal solutions.

Initially we start by creating several random initial starting tours. For our experiments,
we created 100 random initial tours, then we applied 2-Opt to each tour until no more
improvements were possible. After that, we applied ILS to further enhance the tours.
We next applied K-means with 5 clusters. Once the centroid-tours are assembled, they
are put through another round of 2-Opt/ILS. We tried different ways of performing the
random perturbations. Additionally, we tried varying the number of cities that are be
affected by the perturbations. We have found that some perturbations work better than
others. Once the tours are perturbed, we adjust the edges using 2-Opt again. If the
resulting tour is shorter, it is kept. Otherwise, we revert back to the tour before the

perturbation, and we repeat the ILS and 2-Opt.

In the second phase of the search, we used the frequency information collected from the
clusters. By obtaining the mean of the frequency values, we assign probabilities to the
edges that give them a degree of importance. The closer the probability of an edge is
to 1 the more important it is to keep it, and the closer to 0 the less important it is.

However, we use the probabilities of the edges in a different way. If the length of the
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edges is [, and the probability of the edges is p, then we modify the length of the edges
tobe !’ =1-(1—p). What this effectively does is to give the edge a weight based on the
proportion of its frequency. In the extreme case when p = 0, the edge is longest, and
thus making it less likely to be kept in a exchange, and when p = 1, the length becomes I’
becomes 0 and thus would be more likely to be kept after the exchange. We will call this
method, Edge-Smoothing, since it is related to a similar method developed by (Gu and
Huang, 1994). The edge-smoothing method was used in the backbone guided method
(Zhang and Looks, 2005), and it was found to be extremely effective for improving the

solutions to many TSP problems.

Another very important detail that should be mentioned about the way we chose to
keep an exchange of edges. After the edges are perturbed, and the exchange of the
edges is performed based on edge-smoothing, the acceptance for exchange is based on
the actual tour length rather than I’. To be more precise, when a tour is perturbed, then
it is perturbed on a number of neighbouring cities. Correcting for the perturbation is
carried using smoothing, and while smoothing allows for the acceptance of the exchange
locally, the exchange might not necessarily produce shorter tours. This is the reason for
checking the actual full tour length via the actual edge-length, [. This was done after all
the exchanges were applied. Once it is found that the full tour is shorter, all the edge

exchanges are kept.

The first comparison we made was CLGH against solo-ILS. Figure 6.9 shows results of
averaging of 100 simulations on the fnl4461 problem. It can be seen that CLGH produces
better results than solo-ILS. With 100 initial starting points, 5 centroids, we show the
results of best centroid out of 5. For the solo-ILS, after the initial 100 search we chose
the top 5 performing tours, and carry another search on each. The graph shows the
result of the best of the top 5 tours.

To see if CLGH took advantage of some form of clustering we compared it to ALGH
on randomly selected tours. We ran the same tests on three different problems: rat783,
fnl4461 and pr1003. CLGH was applied exactly the same manner it was in MAX-SAT.
In ALGH, we selected 5 tours at random from the 100 tours. We obtained similar
performance levels between CLGH and ALGH. These tests can be seen in Figure 6.10,
6.11, and 6.12.

6.7 Understanding the Results

What we have seen in these experiments is that CLGH and ALGH provide an advantage
over solo-ILS. However, there was no clear difference between CLGH and ALGH. There
could be several factors that are affecting the results. First, if we assume that there is
a clustered structure to the solutions in TSP, then the reason would probably be that

we did not apply K-means in CLGH at the sweet spot. This was our experience in
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FI1GURE 6.9: Comparison between solo-ILS and CLGH. CLGH produces better results
than solo-1LS
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F1GURE 6.10: Comparison between the performance of CLGH and ALGH on the rat783

TSP problem. The number of initial random tours that were created were 100, clustered

into 5 clusters. The result shown for CLGH is based on the best of the 5 centroid. With

ALGH, 20 tours were selected at random from the 100 tours, and averaged. This plot
shows the best result out of 5 different centroids.
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FIGURE 6.11: Comparison between the performance of CLGH and ALGH on the
fnl4461 TSP problem. The number of initial random tours that were created were
100, clustered into 5 clusters. The result shown for CLGH is based on the best of the
5 centroid. With ALGH, 20 tours were selected at random from the 100 tours, and
averaged. This plot shows the best result out of 5 different centroids.

MAX-SAT. Before finding the sweet spot where K-means is applied, the results showed
that CLGH and ALGH to be the same.

In MAX-SAT we found that the best location to cluster was right around the maximum
curvature in cost versus time graph 5.11, the sweet spot. We have verified this with a
large number of experiments, and for all the experiments we carried, this location seems
to apply to all the problems we tested. In TSP, we applied K-means at around the
same point, and it was effective against solo-ILS. Notwithstanding, to over come ALGH
it could be that the sweet spot is somewhere else. We will see in Chapter 7 that this is
the case for some problems in Artificial Neural Networks. We get, better solutions after

the search plateaus much farther away from the sweet spot found for MAX-SAT.

Here, we could not find a sweet spot which provides CLGH with an edge over ALGH in
our experiments. We tested for it before and after the maximum curvature, but there
was no success in finding it. We tested for it in different locations along the search in
steps with gaps in between. We could have missed it, since it could have been confined
to a more a narrower region of the search. The smallest problem that we considered
to be somewhat difficult, and a good starting point for our experiments was the rat783
problem. With each test consisting of at least 50 runs, each experiment required around

4 days to be completed. We could have performed more tests, but it required many
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F1GURE 6.12: Comparison between the performance of CLGH and ALGH on the
randomly generated pr1003. The number of initial random tours that were created
were 100, clustered into 5 clusters. The result shown for CLGH is based on the best of
the 5 centroid. With ALGH, 20 tours were selected at random from the 100 tours, and
averaged. This plot shows the best result out of 5 different centroids.

more months of testing. The point of application is an open question. We leave the

discussion of this point for the chapter on Future Work.

A second reason that could account for similarity in performance is that there really is
not a clear structure of clusters in TSP problems. In our investigation of MAX-SAT, we
generated thousands of random problems, and composed a picture of the landscape. The
tests we ran on these hard random problems were indicative of the how our algorithm
would behave with DIMACS structured benchmark problems (Selman, 1995). In TSP,
even though researchers such as (Miithlenbein, 1992; Bianchi et al., 2002) tested their al-
gorithms on randomly generated problem, there is no clear evidence that these problems
provide a similar structure to real world problems. Hence we avoided the generation of

random problems for this specific task.

We could not have studied the structure of TSP in the same way as MAX-SAT. TSP is
quite different from MAX-SAT. In MAX-SAT finding local solutions was dependent on
single flips of a variable assignment. Measuring the relationship between two solutions
was direct. We used the Hamming distance, and it gave a clear indication of the resem-
blance between two solutions. In TSP, we found solutions using 2-Opt, or by changing
two edges at a time. Purely applying 2-Opt led to local solutions that were quite far
from the optimum. We could, on the other hand, find better solutions with 3-Opt, or
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even better ones with 4-Opt, and so on. However, the computational complexity in-
creases enormously, prohibiting us from performing structural analysis with our current

computational power.

We used ILS which perturbed the tour, and corrected the perturbation with 2-Opt.
With this method we were able to find better solutions. This though still does not solve
the problem of finding a structure. In MAX-SAT we used BHC for hill-climbing. When
applying BHC, we moved to local optima with ease. After which the search would get
stuck. BHC did not include any random walks. This meant that the search would
constantly move towards a local or global optimum. When the solutions reached by
2-Opt are perturbed in TSP, it moved the search away from local solutions, and in to or
out of local solutions. It was not clear what these solutions signified. Were these local
optima? In MAX-SAT we used local optima to compare with global optima. With this,
and the relationship between global optima the structure was exposed. This was not
possible with TSP.

We therefore tried different measures to understand the landscape. One method was to
apply Principle Component Analysis (PCA) to reduce the dimensionality of the solution
points. Using the first 5 components we plotted the different 3-dimensional figures using
different combinations of solutions for the Berlin52 problem, Figures 6.13 and 6.14. We
hoped to get a general outlook of the landscape. We did not find a clear indication
that there was clustering. With the first three components in Figure 6.13, we find that
there seems to be clustering. However, as the other components are viewed, clustering

information is reduced as can be seen for the components 2, 4, and 5 in figure 6.14.

In addition, the plot of the first three components show that there is a relationship
between the cost and the Hamming distance to the optimal solution. As the length of
the tour gets smaller, the distance between better solutions and the global optimum
gets smaller. The spectrum of colors expresses the cost. The red colors show the worse
solutions, and the blue colors show the better solutions. However for the components 3,

4 and 5 in Figure 6.14, the relationship is almost non-existent.

In fact, PCA could not have produced good results since most of the other components,
beyond 5, that were removed were just as important in showing the rest of the picture.
It should be noted that each solution point was n(n — 1)/2 long. They represent the
tour edges. With Berlin52, which had 52 cities, the number of possible edges where
1326. Although the representation was sparse, reducing it to 5-dimensions becomes less
meaningful. However, even this much of a glimpse showed us that there was no clear

evidence of a clustered structure, or a clear cost versus Hamming distance relationship.
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We also found the frequency distribution of the edges in 20 different tours. In this
experiment we generated 20 different random tours, and applied ILS on each tour until
we obtained no improvements. We ran this experiment 100 times for each of the different
problems, C1K1, fnl4461, pr102, and rat783 tsp problems. We compared the edges of the
tours to each other in each problem, and determined how many times an edge appeared
once, twice, and so on until 20. An example of this is shown in Figure 6.15. If we have
5 cities, and 3 different tours, then the edges are stored in an array of edges. We count
the occurrence of an edge in all the 3 tours. After that we find the frequency of having

an edge appear once, twice and so on.

1 1 1

Q) ® ®

Count 1 2 1 2 3 1 1 1 0 3

FIGURE 6.15: An example of a tour with 5 cities. The edges of the different configura-
tions accumulated. Then the sum is used to determine the frequency of the appearance
of each edge in the tours.

Figure 6.16 shows the normalized frequency for the results for 20 tours in each of the
problem mentioned earlier. A great number of the edges appear only once. As the
number of occurrences of the edges increases, the frequency of these decrease. The
tail end of the edges increase in frequency again. This shows that the tours have very
dissimilar arrangements, and this could account for suboptimal solutions that are quite

far apart in space.

At the tail end of the plot we see that some edges appeared to have been fixed for all
tours. That is the reason for the increase in their frequency even though the tendency for
frequencies of the edges to go down. We can use the example in Figure 6.15 to explain
this. The smallest edge is between cities 4 and 5. This edge would likely stay fixed

amongst different tour configurations because it cannot be replaced by a better one. Of
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course this does not mean that optimal solutions would necessarily have to contain these

shorter edges.

0.25 T
C1k1
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Normalised edge Frequency

0.05
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FIGURE 6.16: The frequency distribution of common edges between 20 local tour-

solutions over 100 runs each. Most tours contain dissimilar edge configurations. Very

few edges appear in most tours. The tail end of the graph shows some edges persist
over many tours.

We also obtained the mean and the standard deviation for the number of shared edges
between any 2, 3, 4 and 5 tours amongst 30 suboptimal tours in the Rat783 problem.
Table 6.1 shows that the more tours are included in the comparison, the fewer edges
these tours share. With 783 edges for each tour, the average number of shared edges
between two tours is 489.821 edges. This is only 62.6% edges in common. This average
is reduced even more as the number of compared tours are increased. For 5 tours, the
average number of shared edges becomes 274.182, which is 35.02% shared edges amongst
the 5 tours. This suggests that locally optimal tours are a long distance apart with little

evidence of clustering.

# of compared tours | Average Std
2 489.821 | 13.8363
3 377.104 | 13.052
4 314.679 | 11.8763
5 274.182 | 10.7783

TABLE 6.1: The average number of shared edges between 2, 3, 4 and 5 tours using 30
suboptimal tours in the Rat783 problem.

The only study that claimed that there was a structure to the solutions, and considered
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landscape of TSP problems to have a globally convex or a big valley characteristic is
found by (Boese, 1995). This study found that lower cost solutions tend to be in the
vicinity of other better solutions and the optimal solution. It also showed that the
optimal tour is located centrally within good solutions. While we had hoped to find
this picture, their study only took into account a single problem with 532 cities, and it

cannot be generalised over all problems.

Another study on the cost versus distance correlation (Peter and Bernd, 1999) showed
that by using the LK algorithm the solutions showed less correlation than when using
differential greedy algorithms. In fact for some problems, such as Cat5252 (Peter and
Bernd, 1999), it seems that the is no correlation between the local and global optima
when using LK algorithm. Although, LK heuristic performed better than the differential
search heuristic. Both these tests show that the cost versus distance relationship is
different for different search methods. More tests are needed to render a comprehensive

description of the TSP landscape.

Finally, we have shown success in producing results using CLGH or ALGH. Averaging
of solutions in this way is akin to Zhang’s backbone guided search method with a small
difference. With the backbone guided method, the improvements obtained by gathering
backbone information were not only used for building the backbone, they were also used
to generate more feasible starting solutions. On the other hand, K-means or averaging
is sandwiched between two search heuristics. After its application the results are used

to go further into the search without reintialisation.
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LGH and Continuous Problem

Spaces

We have so far, in this thesis, applied LGH to discrete problems. We have shown
that CLGH works very well with MAX-SAT problems, and we have also shown that it
works effectively with the TSP problem, even though there was no difference between
CLGH and ALGH in the TSP case. All the problems we have tested LGH with were
combinatorial optimization problems. So far, we have not applied LGH to problems in
the continuous domain. The next step in the analysis is to see what performance gains

we could obtain in the continuous domain.

A good test bed for LGH is the Artificial Neural Networks. Here, we will only apply
LGH to test its feasibility (no landscape analysis will be offered for this problem). To
examine LGH, backpropagation is used. Here, we will attempt to cluster the weights in
a fully connected feedforward Artificial Neural Network with one hidden layer. Then we
will apply the K-means clustering, which will be somewhat different than in the case of
MAX-SAT and TSP, and that is due to representation issues. We will see the difference

in representation later in section 7.4.

From these tests we will show that CLGH works very well for difficult classification
problems, and produces equal results on less challenging ones. When CLGH is successful,
the search rapidly finds very good results. This will show that LGH establishes itself as
a more generic form of local search that can be applied in the continuous problem space

too.

7.1 Artificial Neural Networks

An Artificial Neural Networks (ANN) (Haykin, 1999) is a very simple representation of

the brain’s neural networks. It captures the nonlinearity of the way the brain works
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and the parallel processing of neural networks (although most implementations in pro-
gramming have been sequential). Despite ANN’s simple representation they have been
shown to be very effective in numerous applications, too numerous to list. We only
include some categories in which it was applied. It has been applied across many dis-
ciplines. Some examples are Artificial Intelligence, Vision recognition and simulation,

voice recognition, data classification, stock market prediction, and so on.

There are several ANN learning paradigms. They are classified as supervised learning,
unsupervised learning, and reinforcement learning. Supervised learning is the process
of adapting a network to produce specific output patterns given specific input patterns
(Reed and II, 1999). In learning it is meant that the networks finds a subtle relationship
between the input and output by incrementally and gradually optimising for it. The
supervision means that both the input and the output are provided for the networks so
that it can learn the relationship. An example of the supervised learning algorithms is

Back-propagation (Rumelhart et al., 1986).

In unsupervised or self organised learning there is no sense in the learning of input and
output relationship. In this case, the training data is not labeled, and the targets are not
defined. The goal of an unsupervised ANN network is to find patterns and regularities in
the data guided by the implicit rules in the design. Reinforcement learning is a mixture
of supervised and unsupervised learning. The input output relationship is defined with

less rigor or in a more abstract fashion (Reed and II, 1999).

7.2 Back-Propagation

We have chosen backpropagation (Hecht-Nielsen, 1989) in the supervised learning class
as a test case. It is one of the most widely used neural network architectures, and
it is highly studied. The feedfoward multi-layered neural network is a fully connected
network with an input layer, an output layer and h number of hidden layers. Figure
7.1 shows an example of a fully connected neural net with one hidden layer. Each layer
contains nodes that are interconnected with every other node in the other layers via
weights w. Given a set of training examples (t1,01), (t2,02), ..., (ty,04) where t; is a
vector of the training input pattern, and oj is a vector of the desired output pattern, it

is required that if the input t; is shown to the network, the output o; is produced.

The inputs t = (t1,t2,...,ty) are shown to the network, and they are propagated by
multiplying each input by the corresponding weights and then summed, p; = > t;w;;.
This sum is then passed through a bounded monotonic function such as the sigmoid
function f(u) shown in equation 7.1. The output of the function f(u) is carried through
the network performing the same operations throughout, the result 0 = (01,02, ..., Ok)

is produced at the end of the network.
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FI1GURE 7.1: An example of a fully connected neural network with the input layer, one
hidden layer and the output layer.

1

) =1

(7.1)

The process by which the network is trained to produce o; from t; is by feeding the
inputs t; and propagating them through the network in a forward fashion. The outputs
0; of the network are compared with the desired values o;. Then the error difference
between the desired and actual outputs are propagated backwards in the network, and
the weights of the network are adjusted to minimize the error. This process is repeated

until the error get small enough. This is called, Backpropagation.

The set of weights that connect each of the nodes 7 in the previous layer to the node j
in the next layer, w;;, are adjusted by equation 7.2. This equation basically performs a
simple gradient descent (Riedmiller and Braun, 1993) by adjusting the weights with the

partial derivative of the Error, F/, with respect to the weight wj;.

)
8wij

w(t+1) =w(t)—n (7.2)

Where 7 is the learning rate that takes on values 0 <7 < 1.

Backpropagation has limitations. It has been shown to get stuck in local minima both
empirically and theoretically before learning the entire training set (Gori and Tesi, 1992).
Backpropagation is also known to be slow in optimising the set of weights in the network
with current computational power (Hamm et al., 2007). Several local search algorithm

are proposed for reducing the effects of these problems.
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7.3 Local Optimization of the Weights

Many different methods have been proposed to enhance the performance of neural net-
works. Aside from improving the performance of reaching an optimum for the weights
by improving the backpropagation method (Trejo and Sandoval, 1995; Magoulas et al.,
1999), there are many other local search methods that do not fall into this classical
scheme. The reason for using local search methods is because methods that rely on
gradient descent are slower. In the time that it takes a gradient descent algorithm to
reach a local minimum, a local search algorithm can be restarted many times, and hence

could provide better solutions (Hamm et al., 2007).

Some of these methods use genetic algorithms (Montana and Davis, 1989), Particle
Swarm optimization (Eberhart, 1995), and simulated annealing (Sexton et al., 1999).
Not only do some algorithms develop values for the weights for a fixed network topology,
some also develop the topology of the network entirely relieving the designer from trying
different node and connection configurations. These techniques have been called evolving

neural network algorithms (Maniezzo, 1994).

7.4 Experimental Results

One of the main stumbling blocks of applying CLGH to the weights of a multilayered
neural network is representation. We have tested several ways of creating the weight
vectors for the purpose of clustering. One way is to take the entire set of weights in
an ANN and represent them as a vector, or we could separate the layers and take the
set of weights of each layer independently. However, both of these ways are susceptible
to the hidden layer permutation problem (Radcliffe, 1990; Hancock, 1992), also known
as the competing conventions problem. Because of the interchangeability of the hidden
nodes, if the weights are set as a vector without taking this into account, we introduce
symmetric regions into space that would be detrimental to clustering. This is because
the same vector of weights can be reordered in many different ways. Although the
permutation problem does not affect the networks input to output relationship, the

entire set of weights, if represented as a vector, can be ordered differently.

The permutation problem is shown in Figures 7.2 and 7.3. All the set of weights in
Figure 7.2 can be represented as a vector as shown in Figure 7.2 (a). If the hidden
nodes 1 and 3 are interchanged, then the vector representation would change as shown
in Figure 7.2 (b). The change in the network does not affect the results, but the string
would place two identical solutions in two different regions of the space. This sort of
problem will arise with multiple runs of backpropagation starting from random initial
weights. As gradient descent corrects for the weights, the group of weights connected to

a hidden node could be exchanged in the next run.
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F1GURE 7.2: Shows the permutation problem. This example shows that nodes 1 and
3, in the hidden layer, can be swapped without affecting the input/output relationship.

sz‘ W42| W13| W23| W33| W43H Wis W24‘ W.M‘ W44‘ Wis W25‘ W;s
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FIGURE 7.3: Shows the effect of the permutation problem on weight representation.
The nodes in the neural network can be swapped where this would not have any impact
on the network. However, the string representation of the weights are entirely different.

To mitigate the problem of the hidden layer permutations we worked with one hidden
layer, we took all the weights that are connected to each node in the hidden layer, and
considered each set of weights as a vector. An example of the weights selected for one
node is shown as the thick dotted lines in Figure 7.2. In this example, we would have
5 vectors each being 7 elements long. Figure 7.4 shows one of these nodes. This is
because the number of weights connected to each node in the hidden layer is 7 (4 on the
left side, and 3 on the right). With this method we avoid having to worry about the
interchangeability of the hidden layer nodes. We can reconstruct the network by simply

reassigning the weight vectors to any of the hidden nodes without regard to order.

| le‘ sz‘ W}z‘ Wy Wn‘ sz‘ W33|

FIGURE 7.4: To avoid the permutation problem, the weights connected to each hidden
node are stored in separate vectors.

If we run backpropagation multiple times, and have similar weight values that are as-
signed to different hidden nodes, then weight vectors will form clusters with close prox-

imity in the weight-space. With this representation, we cluster the solutions in a very
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different way. In previous problems such as MAX-SAT we would run the local search al-
gorithm several times, and then decided how many clusters were needed, then K-means
is applied. Here, we cannot apply the same concept. The number of clusters is dictated
by the number of hidden nodes. Once the weight vectors are created, we set the number
of clusters to the number of nodes in the hidden layer. Then K-means is applied, and
the centroid of each cluster is found. The centroids can be assigned to the hidden layer

arbitrarily. We then proceed with another round of backpropagation.

Figure 7.5 shows the comparison between CLGH and backpropagation alone for the Iris
(Fisher, 1988a) problem. This problem is multivariate classification problems with 3
classes. Each class refers to a type of an Iris plant. The three classes are not linearly
separable which makes classification difficult. It contains 150 instances with 4 attributes.

The Iris dataset is one of the most used in pattern recognition literature.

We create a network with 5 inputs, 1 output, and 20 nodes in the hidden layer. Then
the network is trained for 80 seconds with 50 different initial random weights. For
the solo-backpropagation, the best of 50 runs is chosen. The best set of weights is
used for the second round of backpropagation. As for CLGH, the weights are clustered
with 20 clusters. We used all of the centroids for the weights in the second round of
backpropagation. The results are averaged over 50 simulations. Figure 7.5 shows that
the CLGH method yields better results than those obtained by solo-backpropagation
even after the training is run for a total of 200 seconds. The plot also shows the common
sharp spike found previously in MAX-SAT problems, followed by a steep drop in the

error.

Another experiment is performed on the multivariate Forest Fires dataset. This problem
is also claimed to be a difficult regression task (Fisher, 1988b). It contains 517 instances
with 13 attributes. The networks is trained with 10 initial random weights. After which,
K-means was applied at the first second of the search. Figure 7.6 shows the performance

boost obtained by CLGH averaged over 20 simulations.

Despite achieving better results for the Iris and Forest problems, not all problems tested
gave similar performance levels. In some cases CLGH was only equally as good as solo-
backpropagation. As an example, the test is performed on the Wine problem. This
problem has 178 instances with 13 attributes. This problem, according to the donors is
not a very challenging one (Fisher, 1988c). In this instance, the results of CLGH are as
good as solo-backpropagation. The same performance is obtained for the Breast Cancer
classification data, Figure 7.8. This problem has 569 instances and 32 attributes. The
reason for this equal performance level is because both problems are easy. Both methods
reach optimum solutions very easily. This occurred with MAX-SAT problems also. The

enhancements CLGH provides can be easily seen in more difficult problems.

Even in the instances where CLGH worked well, the sweet spot was hard to find. This

was especially the case with the Forest Fire dataset. Clustering was applied at the first
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FIGURE 7.5: Shows the performance of solo-backpropagation against CLGH for the
Iris problem. We can see that there is a significant difference in applying CLGH in
reducing the MSE.
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FIGURE 7.6: Shows the performance of solo-backpropagation against CLGH for the
Forest Fires classification problem problem. K-means was applied after the first second
of backpropagation. Here, we also get a performance boost via CLGH
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F1cUure 7.7: Shows CLGH performing slightly worse than solo-backpropagation on the
Wine data.
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FiGURE 7.8: Shows CLGH performing slightly worse than solo-backpropagation on the
breast-cancer data.
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second in the search. If it was applied slightly less or more than one second; even by as
much as 0.25 seconds earlier or later, the results would not have been as good. With
ANNs the number of local minima is enormous (Hamm et al., 2007). We could have
the centroids close to a global minimum, but if they were surrounded by many local
minima, applying backpropagation would drive the solution into a local minimum. This
is also true of other local search techniques being applied to neural networks (Hamm
et al., 2007).

We tried different hidden nodes to see what effect this would have on CLGH, but the
results did not differ much. Although the overall performance of solo-backpropagation
was affected by varying the number of hidden nodes, but overall the performance CLGH
was better. Also, we did not apply the weight decay term, 7.3, which speeds-up the

learning process.

oOF

wit+1) = put) 15—
1)

(7.3)

This improvement would have enhanced backpropagation, but it is not crucial to our

experiments.

Our approach to clustering in ANN was not same as that of MAX-SAT or TSP. Although
we used K-means to cluster solutions, the clustering was in effect performing a single
average for each of the nodes in the hidden layer. We can see from these experiments
that CLGH works well with ANN problems. In these cases when CLGH performed
at the same level of solo-backpropagation, the problem were known to be easy. When
backpropagation finds it hard to solve a problem, this is when CLGH seems to offer

better results.
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Conclusions & Future work

8.1 Conclusions

We have discussed the satisfiability problem in brief, described some complete and in-
complete solutions, and looked at the structure of the space in which these problems
reside. The majority of phase transition analyses provided by researches were performed
on SAT and MAX-SAT problems using depth first search algorithms. However, a few
researchers performed the same analysis on MAX-SAT problems using a local search
algorithm. We also performed phase transition analyses using a local search algorithm
with a slight difference. The difference is that the previous results were done on fully sat-
isfiable problems below the phase transition, and a targeted number of satisfied clauses
were set beyond the phase transition. We performed our tests on random 3-SAT prob-
lems through the easy-hard-easy regions with focus on local optima. This was important.
It gave us an initial intuitive insight into the solution landscape with regards to the local

and global optima.

Most researchers use stochastic methods to find solutions of SAT and MAX-SAT prob-
lems, and in fact most of them apply these methods to the most difficult regions. Our
analyses show that these solutions might still behave poorly around the phase transition
even for local optima, and the difficulties start to be evident when problems grow in
size. From the phase transition analysis, we were able to form a picture of the landscape

of solutions, and we were able to relate this picture to the easy-hard-easy transition.

The phase transition analyses were followed by a thorough analyses of the structure of the
solution landscape in order to provide a more comprehensive and expansive view. The
empirical evidence described in this report provides strong support for the hypothesis
that we are able to learn about the large-scale structure of the landscape for large MAX-
3-SAT problems. By doing so we have produced a general framework, LGH, by which
clustering (CLGH) or averaging (ALGH) can applied. With LGH we substantially out-

performs more conventional algorithms. It was not the intention of the paper to tune
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our algorithm and so we believe these results to be due to the substantive difference in

approach not superficial reasons.

Interestingly a genetic algorithm using conventional crossover does not learn this large-
scale structure nearly as well as clustering or averaging. Averaging, or using the centroid
of a cluster, breaks the metaphor of natural selection. Averaging acts like blending
inheritance in that it reduces the diversity in the population. Since the modern synthesis,
it has been understood that an essential component of natural selection is the particulate
nature of genes such that crossover exchanges genes rather than average them. As a
consequence, the kind of averaging we have undertaken has been little explored, yet, as
we have argued, this averaging allows the landscape to be explored in a very different
way to conventional crossover. Perhaps some of the algorithms which come closest to
exploring landscapes in an analogous way to the CLGH and ALGH proposed here are
the univariate estimation of distribution algorithms. Yet as we have shown even these

do not perform moves similar to averaging.

We chose to study the random MAX-3-SAT problem as this is one of the best understood
NP-Hard problems. An important question is whether we can obtain similar performance
on other NP-Hard problems? Clearly, this can only be determined empirically. For this
we explored TSP problem. In TSP, we showed that averaging of solutions provides a
centroid that can be used as a better starting point for the search. However, there was
little evidence that the solution space was clustered. The limited number of analyses we
were able to perform (due to many complications intrinsic to TSP) confirmed this view.
Instead, as researchers have pointed out, there might be a single cluster. Hence, CLGH

and ALGH produced similar results.

We are however optimistic that the LGH approach taken here should be applicable to
many other problems. The essential features of the landscape which made our approach
work was that good solutions are, at least weakly, correlated with global optimal solu-
tions. This seems to be a property of many NP-Hard problems, which suggests they

may be amenable to a similar approach.

With ANNS, the results were problem dependent. In some problems, there was a clear
advantage to using CLGH. The results showed a significant gain in performance. In
others, CLGH performed just as well as solo-backpropagation. We have not studied
the landscape of this problem, nor have we compared it with state-of-the-art solvers.
Nevertheless, there is an indication that CLGH can be used to improve the results in

sSome cases.

The studies carried out in this paper have lead to a number of significant observations
about MAX-3-SAT, TSP and ANN. The three most striking observations were the fol-

lowing

e Very significant improvements can be achieved by clustering good solutions and
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restarting a hill-climber from the feasible configuration closest to the centroids of

the cluster.

e Taking the average of a set of solutions is radically different and, for this problem,

substantially better than crossover.

e Finally, to maximise the benefits of clustering it should be applied at very specific

points in the search.

In retrospect, the application of CLGH looks like a straightforward way of solving dif-
ficult problems. Indeed, we started with the proposition that clustering of solutions is
a natural way for solving satisfiability problems. There were two reasons why we came
to this conclusion. First, we have already seen the limited study of the structure of
solutions by Zhang. It was limited to showing the solution space as a single cluster.
His research showed that better-cost solutions shared common traits with the global
optima. Second, we have shown from our cluster-analysis that the correlation between
local and global optima increases as the cost of the optima get better, there might be
multiple global solutions, and that the better-cost solutions are clustered around the
global ones. This automatically led us to believe that clustering would natively work
with this picture. The implementation of a clustering technique to solve satisfiability

problems did not work directly.

What we initially found was that directly executing K-means on solutions obtained from
hill-climbing was not beneficial. In fact, the results from the search were either as good
as averaging of random solution points or worse. These unexpected results went against
the way the solutions described the space in which they reside. After many experiments
we found the reason for this lack of performance. It was the point of application of K-
means on the solutions obtained from the initial search. We can neither apply K-means
before or after a certain point in the search. We believe that this simple and direct
approach was not used previously by researchers due to this fact. Here is the central

question that needs to be answered, at which points should we try to find the centroids?

K-means has been used on an incredible number of problems. It is used in vector
quantisation in image compression (P. C. Cosman et al., 1993), Classification (Li et al.,
2002; Wagsta et al., 2001; Wang et al., 2002), intrusion detection (Laskov et al., 2005)
and more. In all these cases, the data that is clustered is available beforehand. It is clear
what needs to be clustered. The goal is to find centroids that best represent each cluster.
For example, if an image is to be compressed using vector quantization (which uses K-
means or what is commonly referred to as the LBG algorithm (Linde et al., 1980) in the
image compression world), then an image is segmented into blocks. Each block is turned
into a vector in an N-dimensional space. Then these vectors are clustered to get the
centroids that best represent the cluster. It is the same with classification. Individual
centroids represent particular classes. Image data, intrusion data, or even data to be

classified have an inherent structure. K-means exploits this existing structure.
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Here, what exactly are we trying to better represent? We argued that we are trying
to represent the solution space. However, which points in the solution space are these?
Indeed, we are generating these points based on a fitness function. This function de-
scribes the solution space, but does not render its shape. For the fitness function to
be useful, it must be applied to different points. We can think of the fitness function
as an abstract description of the solution space, and the points as the actual physical
or concrete description. Another way we could think of the function is as an implicitly
defined landscape, and the point as explicit points or samples representing part of that

implicit landscape.

We obviously cannot classify randomly generated solutions. Random solutions tell very
little about the landscape. Instead we generate random points, then search the space
starting with these points, and improve their costs. These points coat important regions.
We recognise that this too is not enough. If the points were under-searched or over-
searched they loose structure. They simply do not contribute information to create a
useful centroids. Figure 8.1 shows an illustration of 3 levels of the application of local
search. The first, A, is the randomly generated points in space. clustering these points
does not offer any advantage to the local search algorithm, because the points are simply
scattered in space. If we perform a local search moving from the A to C directly, then
we have moved the solutions closer to local optima. Suppose that the global solutions
are denoted in stars, as positioned in C, then clustering might provide a centroid that
is closer to the one of the global optima, but it is more likely that it might not. The
solutions are highly correlated. The best point in clustering is somewhere in between,

B. We referred to this point as the sweet spot.
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FicUure 8.1: An illustration of the solution landscape in 2-dimensions. A proposed

location for the application of K-means. There are 3 stages of the search. The first is

the random initialisations of assignments. The second stage is locating good solutions.

The third is over-fitting of the solutions. The best location to apply K-means is at the
mid stage. This is because at this stage these solutions expose structure.

Evidence of this behaviour can be seen when we compare K-means clustering with

averaging of random points. When we initially compare the two at the wrong point
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in the search we discover that averaging performed sometimes better and other times
worse. Only when we applied K-means at the right point in the local search did it
beat averaging. This was evident for MAX-SAT. However, this can be seen more clearly
in TSP. CLGH and ALGH perform equally well. It could be that either there are no

clusters we can exploit, or the sweet spot was not found.

We have been successful in using LGH in MAX-SAT, TSP and to some degree ANNs.
CLGH is even more successful than the state of the art algorithm, BGWALKSAT, and

we have shown it to outperform every other local-search algorithm in its genre.

8.2 Future Work

We believe that this success can be extended to other optimization problems especially
if the problem follows the same sort of structure found in satisfiability. More difficult
problems should be tested for the viability of LGH search. Initially, the structure of
many problems should be studied. However, this is not enough. More should be done

to understand what solutions contribute to creating representative points or centroids.

Also, more should be done to understand the structure of solution of other problems. We
have seen how highly advantageous it is to understand the clustered MAX-SAT solutions.
We have seen that global solutions were separated in space, and they resided within a
cluster of similar less optimal solutions. This study should be applied to TSP, ANNs
and other problems to see if clustering is even appropriate to begin with. We have not
done enough to understand these other problems. We attempted to implement CLGH
to these problems based on the assumption that they too have a structure. Although

this might be the case, only the analysis could prove that to be so.

Finally, many other clustering models beside K-means are available in literature. They
should be studied and applied. Our simple use of K-means to cluster solutions certainly
applied quite well to MAX-SAT. It yielded great results. We propose that these solutions
can be further enhanced if more advanced methods were applied. Currently, we initialise
the centroids randomly. Then they are iteratively improved. These centroid might
converge to cluster or each might represent more than one cluster. The choice of the
initial starting points is important. Also, choosing the number of centroids to match

the number of clusters is crucial. This too will help assign each centroid to each cluster

properly.
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Algorithms

1: Procedure BasicHillClimb(X)
2: for i « 1 to MaxTries do
3: X « random Boolean assignment

4: ' — cost(X)

5: for j < 1 to iterations do

6: indexToFlip < random(1,2, ..., N)
7: X' « flip(X, indexToFlip)
8: ¢« cost(X’)

9: if (¢ =0) then

10: return X

11: else if (¢ < ) then

12: d—c

13: X — X'

14: end if

15: end for

16: end for

17: return X

F1GURE A.1: The Basic Hill-Climber Algorithm
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1: Procedure Exhaustive(X)

2: ¢« cost(X)

3: Save X into Hash

4: Push X into Stack

5. while (Stack is not empty) do
6: X « Pop Stack

7: for i < 1 to size of X do

8: X' flip(X, 1)

9: ¢« cost(X’)

10: if (¢ = c¢) then

11: if (X’ is not in Hash) then
12: Save X’ into Hash
13: Push X’ into Stack
14: end if

15: else if (¢’ < ¢) then

16: clear Stack

17: clear Hash

18: c—c

19: Save X into Hash
20: Push X into Stack
21: end if
22: end for

23: end while
24: return Hash
25: End Procedure

F1GURE A.2: Exhaustive search algorithms

Procedure K-MeansSearch(X)
X « GenerateRandomAssignments(N)
for i —1to N do
X! — BasicHillClimb(X;)
end for
C « K-Means(X', N, nCentroids)
for i «— 1 to nCentroids do
C; « HillClimb(C;)
end for
End Procedure

—_
e

FIGURE A.3: K-Means algorithm
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1: Procedure K-Means(X, N, nCentroids)
2: C « GenerateRandomAssignments(nCentroids)

3: repeat

4: CreateZeroed(clusterCount)

5: CreateZeroed(C")

6: for i +— 1to N do

7 d' — Hamming(X;, C})

8: index «— 1

9: for j «— 2 to nCentroids do
10: d «— Hamming(X;, C;)
11: if (d < d') then

12: d —d

13: index «— j

14: end if

15: z{ndem — Cz{ndex + XZ

16: clusterCount;pger < clusterCount,ges + 1
17: end for

18: end for

19: for j « 1 to nCentroids do

20: C; « C;/clusterCount;

21: end for

22: until No Change between current C and previous C
23: return C
24: End Procedure

FIGURE A.4: K-Means search algorithm

1: procedure ITERATE LOCAL SEARCH

2 Ty «+ GenerateRandomTour()

3 T « LocalSearch(Tp)

4 for i «— 1 to MaxTries do

5: T’ — Perturbation(T, history)

6 T” «— LocalSearch(T")

7 T «— AcceptanceCriteria(T,T”, history)
8 end for

9: end procedure

FIGURE A.5: Iterated Local Search
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Extension

B.1 WinSATS Application

In an effort to support the SAT research community we have developed the WinSATS
application. It is a robust Windows based application that is friendly and easy to use.
Its primary use is to help researchers run different algorithms on SAT problems, and
provide results that can help in their analyses. Currently, the program is in its second
version. It contains several stochastic search algorithms such as Basic Hill-Climbing,
GSAT and WalkSAT, and it accommodates search enhancers such as the CLGH method

and perturbations.

WinSATS allows users to open CNF files, and apply different search methods on them.
It can be used to cascade the different search methods one after the other, loop through
them several times and observe the results at each stage of the search. The search can
be started from a user specified number of assignments. The application is capable of
creating random instances using the FCL model for a range of k values, variables and

ratios, a. The main panel of the application is shown in Figure B.1.

There are many different settings that can be applied to each of the search methods.
Examples of these settings are, the number of iterations the method is run before the
search is stopped, the probability of the random walk in WalkSat, or the number of
centroids K-Means algorithm creates. An example of these settings Figure B.2 shows

the settings that are applicable to K-means.

Once WinSATS is run, it stores the results of the search for each of the assignments
in a sheet. This information contains the problem description along with the cost (the
number of unsatisfied clauses) of each assignment that was searched. Each new problem
that is searched will have its results recorded in the sheet separately, Figure B.3. From

the results sheet the CNF file that was loaded or randomly created for test can be
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B WinSat
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FiGURE B.1: The main control panel of the application WinSATS

viewed. In addition, the resultant true/false assignments, represented by 1s and 0Os, can

be viewed through the results sheet.

There is much more to WinSATS that is left out of this document. However the com-
plete documentation for this application and the application itself can be found and

downloaded at: http://users.ecs.soton.ac.uk/mqq06r/winsat,/.

It is our goal to include many more of the well known complete and incomplete methods
in this application. Ultimately, we hope to release the code to the research community
to implement their own methods into it without having to worry about opening CNF

files, creating random instances or even finding the cost of assignments.
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Tﬁ Settings [Z]@—‘

K-Means Settings

[iZentroids

Murnber of centroids: |10 i+ Percent of Assignments

7 Centroids

[~Assignment Conkrol

(+ Keeponly centroids (discard all assignments)
" Diversify results using cenkraids by creating 10 new assignments

1

" Replace weak assignments with cetroids and keep the rest
Zancel I ok |

Ficure B.2: This dialogbox contains the settings that can be applied to K-Means as
an example.

B.2 A fast implementation of GSAT and WalkSAT

In WinSATS we improved the GSAT and WalkSAT methods such that we were able to
compete with UBCSAT’s state of the art implementation of these algorithms. We believe
that our implementation is similar to UBCSAT’s with one exception. We improved the
speed at point when the search plateaus. This gave WinSATS the advantage, and
provided speed-ups up to an order of magnitude more over UBCSAT on the large scale

problems we have tested.

Initially, we implemented GSAT and WalkSAT in such a way that was much slower
than BHC. The way GSAT works is by flipping the bit of a variable in an initial random
assignment that gives the maximum number of satisfied clauses. This process is repeated
until the search plateaus. By running many experiments we have realised that a boolean
assignment comes to a point where flipping any variable provides either no improvement
on the cost, or makes the cost worse. In our early implementation of the GSAT and
WalkSAT algorithms, we searched the assignment by testing every variable to determine
what cost improvement it would yield. After performing a full check on all the variables,
we would chose the best flip. That meant that if there are n variables, then for every flip
there was n checks. This was a long process which slowed the algorithm considerably. In

BHC, we picked a variable at random, checked whether it improved the cost, and flipped
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F1cURE B.3: The results of each problem searched is stored in the Results Grid

it if did. The BHC algorithm performed extremely well on relatively large problems in

comparison.

The improvement we introduced was to constantly track variables as the they are flipped.
When the initial assignment is generated randomly, a full sweep of the cost of each
variable, z1, o, ..., x, flip is found. This overhead is computed only once, and we store
this information in a list. Now that we have a record of the costs of all the variables, we
flip the variable x; with the highest cost. After each flip, we find the effect of flipping
x; variable on each of the other variables it is in. We apply these new changes to the
list. In this list, we store the cost of the flip and the index of the variable to be flipped.
We perform the same for the next variable and so on. This we believe is how it was also
implemented in the UBCSAT.

For this, we developed a specialised fast set data structure which involves two arrays.
The first array is a simple list of the elements in the set. The second array indexes
the elements in the first array where an index of -1 indicates the element is not in the
array. Note that the size of the index array is the total number of elements that can be

put in the set. This set allows O(1) insertion, deletion, checking whether the element
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is contained in the set, and choosing a random element from the set. This provides a
considerable speed-up over a conventional binary tree structure which is order O(log(n))

(A hash set is impractical as it takes O(n) to generate random numbers).

Cost Index

Cost > 0 storage

Cost 0 storage 4 7 1 3 8

F1cUrE B.4: Two levels of storage are utilized to speed up the GSAT and WALKSAT

algorithms. The first is tree structured list, and the second is a simple array. The first

structure stores costs greater than 0, and the second stores costs equal to 0. Since the

search spends most of its time in the 0 cost flips, we gain a great deal of speed by
allowing for this second level of storage.

B.3 SAT and MAX-SAT for the Lay-Researcher

In addition to the WinSATS application, we have created a web page that introduces sat-
isfiability and maximum satisfiability for starting researchers. It was made simple using
an informal language. This page can be found at: http://users.ecs.soton.ac.uk/mqq06r/sat/.
Both this page and the WinSATS application page were posted on the Wikipedia Satisfi-
ability page by us, and the link was reinserted into the Wikipedia Maximum Satisfiability
page by others. The research community has shown interest in the page by visiting it

at more than 5000 times since its inception.
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