Using Factor Analysis to Generate Clusters of Agile

Practices
(A Guide for Agile Process Improvement)

Noura Abbas

University of Southampton
School of Electronics and Computer
Science
Southampton, UK, SO17 1BJ
n.abbas@ecs.soton.ac.uk

Abstract— In this paper, factor analysis is applied on a set
of data that was collected to study the effectiveness of 58
different agile practices. The analysis extracted 15 factors; each
was associated with a list of practices. These factors with the
associated practices can be used as a guide for agile process
improvement. Correlations between the extracted factors were
calculated, and the significant correlation findings suggested
that people who applied iterative and incremental development
and quality assurance practices had a high success rate, that
communication with the customer was not very popular as it
had negative correlations with governance and iterative and
incremental development. Also, people who applied governance
practices also applied quality assurance practices. Interestingly
success rate related negatively with traditional analysis methods
such as Gantt chart and detailed requirements specification.

Keywards: agile software development, agile process
improvement, empirical research, factor analysis, agile practices

L

Probably the most noticeable change to software
development methodology in the last 15 years has been the
introduction of the word “agile”. As any area matures, there
is a need to understand its components and relations, as well
as the need of empirical evidence about how well agile
methods work in real life settings and what are the best ways
to use these methods.

INTRODUCTION

Organizations apply agile software development
differently, depending on their needs, resources and goals.
Also, each team will choose the set of agile practices that is
suitable for them. A long list of agile practices is available;
each practice is related to one aspect or more of the
development process. Software development teams in
general and agile teams in particular need help choosing the
right combination of agile practices based on their needs.

In order to group the list of agile practices into a more
focused one; we decided to collect data about the
effectiveness of agile practices from projects in real word. A
survey will be the best way to collect as much data as
possible. Before carrying out the survey, we thought of first
explore existing surveys, so we do not repeat questions that

Andrew M Gravell

University of Southampton
School of Electronics and Computer

Science

Southampton, UK, SO17 1BJ
amg @ecs.soton.ac.uk

Gary B Wills

University of Southampton
School of Electronics and Computer
Science
Southampton, UK, SO17 1BJ
gbw@ecs.soton.ac.uk

were asked before. Agile adoption surveys that were
conducted since 2006 (Ambler 2006) were available with
their raw data so other researchers can reanalyze them.

The surveys received good number of responses (4232
responses in 2006, 781 in 2007, 642 in 2008) and they
included questions that can be useful for our research, we
decided to further analyze these surveys data for our research

purpose.
II. AGILE ADOPTION SURVEY 2007

The 2007 survey was performed in March 2007 and
received 781 responses (Ambler 2007). We chose to use this
survey because it collected information not only about agile
projects, success rate and iteration length, but it also included
a section about the effectiveness of different agile practices.
In July 2007, the results were published in Dr. Dobb’s
Journal and they indicated that agile techniques have been
successfully adopted within the majority of organizations and
often at scale. The results showed high success rate as 77%
of the respondents indicated that 75% or more of their agile
projects were successful.

The majority of agile teams had short iterations between
one and four weeks (1 week: 17%, 2 weeks: 32.6%, 3
weeks:12.5%, 4 weeks: 21%). Regarding the effectiveness of
agile practices, the high scoring practices were iterative
development, regular delivery of working software, and
simple design. Pair programming did not score very well.
Ambler argued that this might be because many
organizations do not give it enough time or because he had to
distinguish between promiscuous pairing where pairs are
swapped regularly and nonpromiscuous pairing when he
asked the question.

III. APPLYING FACTOR ANALYSIS ON AGILE ADOPTION

SURVEY 2007

Although Ambler presented the effectiveness of different
practices, we needed to further explore how these practices
are grouping together and how they are relating to success
rate. The survey asked about 58 practices categorized in five

categories: development practices, modeling and
documentation practices, testing and quality practices,
management and organizational practices and work product.
In order to understand the structure of these variables we
needed to reduce the huge data set to more manageable size
while retaining as much of the original information as
possible. Factor analysis (Field 2005) can be to reduce the
data set (58 practices) into a set of factors by explaining the
maximum amount of common variance in a correlation
matrix using the smallest number of explanatory concepts.

The data was recoded using SPSS. SPSS was used as a
tool for applying the analysis. First, because the software is
provided by the University with introductory training, many
books are available for self training, and most importantly it
is a well respected tool among statisticians. In order to apply
statistical methods on the current data we had to recode it
into numbers using SPSS. Each practice had a 5 points scale
with 5 being very effective and 1 less effective and options
of “do not know” and “not applicable” which were coded as
missing. This was done using a simple syntax that has to be
applied on all columns we need to recode. The result is a new
set of column with coded data. The frequencies of the
emerging data were compared against the original ones to
make sure that the recoding was done correctly. In the next
section, we will explain how the factor analysis was applied
and we will interpret its results.

A. Initial Considerations

Sample Size: The reliability of the factor analysis is
dependent on sample size. (Kass et al. 1979) recommended
having between 5 and 10 participants per variable up to total
300. (Tabachnick et al. 2001) agreed that it is comforting to
have at least 300 cases for factor analysis. So a sample of
300 or more will probably provide a stable factor solution.
Another way is to measure the Kaiser-Meyer-Olkin measure
of sampling adequacy (KMO), which represents the ratio of
the squared correlation between variables to the squared
partial correlation between variables. According to (Kaiser
1974) a KMO value that is greater than .5 is acceptable,
values between .5 and .7 are mediocre, values between .7 and
.8 are good, values between .8 and .9 are great, and values
above .9 are superb. With our sample size and a KMO of .87
as measured by SPSS, we are confident that factor analysis is
appropriate for the agile adoption survey data.

Data Screening: Before running the analysis, we had to
screen the data to eliminate any variables that should be
excluded before the analysis is run. We can do that using the
correlate procedure to create a correlation matrix of all
variables. We use this matrix to eliminate variables that do
not correlate with any other variables or that correlate very
highly with other variables (r<.9) (Field 2005). In our
example, we could not find any variable that fits the previous
description therefore; we included all the variables in the
analysis.

B. Running the Analysis and Interpreting the Results

We started with selecting the variables we need to
include in the analysis. Also we calculated a number of
important measures, such as KMO which is .87 in our case.

Factors Extraction: There are several methods for
unearthing factors in the data. The method choice depends on
the analysis purpose. When factor analysis was originally
developed it was assumed that it would be used to explore
the data in order to generate future hypotheses. As such, it
was assumed that this technique would be applied to the
entire population of interest. Such techniques assume that the
sample used is the population. Principal component analysis
is an example of one of these techniques. Other techniques
are available for other purposes, such as the maximum
likelihood method and Kaiser’s alpha factoring for results
generalization and the confirmatory factor analysis for
testing a specific hypothesis (Field 2005).

The factor extraction gave us the component matrix were
we can see that most variables load highly onto the first
factor. At this stage, SPSS had extracted 15 factors.
Statisticians recommend not to leave the final decision to
SPSS regarding the number of extracted factors but to use its
results as a guide. With a sample size over than 200
participants, the screen plot provides a fairly reliable
criterion for factors selection (Stevens 1992). The screen plot
shown in figure 1 is a graph of each eigenvalue against the
factor which it is associated with, where the eigenvalues
represents the amount of variation explained by a factor.
(Kaiser 1974) recommended retaining all factors with
eigenvalues greater than 1 which is a substantial amount of
variation. These factors can be seen in the component matrix
which contains the loading of each variable onto each factor
which depends on the variable’s correlation to the factor.
Blank spaces can be seen see for some variables because we
requested SPSS to show suppress loadings that are less than
.4 to make interpretation simpler.

1009

7.59

Eigenvalue

| L W B S I g R A R g N S PO S AT W R SR R S A S SN |
1 35 7 91113151719 21 23 2527 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

Component Number

Figure 1. Screen plot for factor analysis

Factors Rotation: The interpretability of factors can be
improved through rotation. Rotation maximizes the loading
of each variable on one of the extracted factors which
minimize the loading of the other variables. Therefore, this
process makes it much clearer which variables are related to
which factors. In order to decide which rotation method is
more appropriate to our data, we tried to run both methods:
the orthogonal rotation (varimax) and the oblique rotation.
The late one produced a correlation matrix between the
factors. If the components were independent then we would

expect the oblique rotation to provide an identical solution to
the orthogonal rotation and the component correlation matrix
should be an identity one. The fact that these correlations
existed told us than we could not assume independence and
therefore the results of the orthogonal rotation should not be
trusted and the obliquely rotated solution is more
meaningful. The oblique rotation produced two matrices: the
pattern matrix (Table II in Appendix) and the structure

TABLE L

matrix (Table III in Appendix). The pattern matrix contains
the factor loadings that are calculated after rotation. We can
see that the rotation of the factors has clarified things
considerably. The structure matrix takes into account the
relationships between factors. At this stage we can look at
the practices that load onto the same factor and try to identify
common themes, then we double check with the structure
matrix by doing the same thing (Field 2005).

THE EXTRACTED FACTORS AND THEIR RELATED VARIABLES

Factor1: architecture modeling

e initial agile architectural
modelling

® initial agile requirements
modelling
evolutionary design
proved architecture early

Factor2: traditional analysis

Gantt chart details

Gantt chart high-level
case tool modelling
architecture specification
detailed

® requirements specification
details

Factor3: process/governance

burn down chart
velocity

planning game

daily stand up meeting
iteration task list
regular status report
defect trend metrics

Factor4: database practices

continuous database integration
database testing

database refactoring

data naming conventions

Factor5: communication (team) —
whiteboard Practices

e whiteboard sketches
e whiteboard sketching modelling

Factor6: agile quality assurance

continuous code integration
test driven development
code refactoring

developer tests

flexible architecture
evolutionary design

simple design

collective ownership

Factor7: communication (team)

e paper based modelling
e paper models
® pair programming

Factor8: code analysis and inspection

e static code analysis
e code inspection

Factor9: lightweight testing and
review

¢ independent confirmatory
exploratory testing
customer acceptance tests
model document reviews

Factor10: architecture and
configuration

e architecture specification high-
level

e configuration management

e architecture specification
detailed

Factor11: traditional quality
assurance

test plan

source code

defect reports
regular status report

Factor12: coding standards

e coding standard
e data naming conventions

Factor 13: lightweight requirements

® requirements specification high-
level
® use cases light

Factor14: incremental and iterative
development

incremental delivery

small releases

iterative development
sustainable pace

active stakeholder participation
working demoable software

Factorl5: communication (customers)

e co located team
e active stakeholder participation

After studying both pattern and structure matrices, we
were able to recognize the extracted factors. The identified
factors are shown in table 1 were we can see each factor and
the associated practices that load highly on that factor, The
practices in italic have been added after considering the
structure matrix. For example, the practices that load highly
on factor 15 are: iterative development, incremental delivery,
small release and sustainable pace which are the core of agile
software development. We can call this factor iterative and
incremental development. Also, the practices that load highly
on factor 6 are all agile quality assurance practices:
continuous code integration, test driven development, code
refactoring and developers’ tests. We can call this factor
agile quality assurance practices. We can see that the factor
analysis had re-categorized the 58 agile practices so we can
study a smaller set of variables (15 compare to 58).

We can see that many practices are related to more than
one factor, which is not surprising. The extracted factors can
be used as a checklist in case a company or organization
wants to focus on improving one aspect of the development
process. If we consider the factor governance for example,
the practices that formed this factor such as burn down chart,
velocity, and planning game can be used as a guide for the
company in order to focus on governance. An interesting
factor is the agile quality assurance factor which includes all
agile practices that relate to quality assurance such as
continuous integration, refactoring and test driven
development, where traditional quality assurance practices
formed a different factor.

Factor Scores: The factor scores are another important
output of the factor analysis. A factor can be described in
terms of the variables measured and the relative importance
of them for that factor. Therefore, it should be possible to
estimate a person’s score on a factor based on their scores for
the constituent variables. The most use of factor scores is to
reduce a large set of data into a smaller subset of measurable
variables where the factor scores tell us an individual score
on this subset of measures. Furthermore, we can carry out
future analysis on the factor scores rather than the original
data.

There are several techniques for calculating factor scores,
of which the regression method preferred as it is the most
easily understood one. However, the problem with this
method is that it produces factor scores that are biased as
they can correlate with other factor scores. There are two
methods to solve this problem; the Barlett Method which
produces scores that are only correlated with their own
factors, and the Anderson-Rubin method that produces
uncorrelated scores. In our example correlation scores are not
a problem therefore the Barlett method is used. The factor
scores will be added to the original data were we will have
15 new columns for the 15 new factors and now we can
apply different types of analysis on the new factors (Field
2005).

IV. CORRELATIONS BETWEEN THE EXTRACTED FACTORS

In order to study any existing relationship between the
different variables, correlation was used to analyze the data.
Correlation is a measure of the relationship between

variables, however, in order to know what type of correlation
is more appropriate; we need to explore the data. Screening
the data showed that that our data are not normally
distributed. Therefore Spearman’s correlation coefficient (rs)
will be used, this correlation is nonparametric and it can be
used when the data is not normally distributed. The
correlation coefficient has to lie between -1 and +1, where a
coefficient of +1 indicates a perfect positive relationship and
a coefficient of -1 indicates a perfect negative relationship. A
correlation coefficient value of +.1 represents a small effect,
+.3 is a medium effect and +.5 is a large effect. We have to
be careful about correlation coefficients interpretation
because they give no indication of the direction of causality
(Field 2005).

When applying correlation between the extracted factors
and success rate which was collected in the survey, we got
the correlation matrix (Table V in Appendix), below we
present the significant correlations for the extracted factors:

Success rate has a positive relationship with the followings
other factors:

¢ agile quality assurance practices, rs =.16, (p <0.01)
e ijterative and incremental development, rs =.25, (p <0.01)

Success rate has a negative relationship with the followings
other factors:

e traditional analysis practices, rs = -.12, (p <0.05)

e communication within the team (whiteboard practices),
rs=-.16, (p <0.01)

¢ coding standards practices rs = -.16, (p <0.01)

Governance practices have a positive relationship with the
followings other factors:

e architecture modeling, rs =.12, (p <0.05)

¢ agile quality assurance, rs =.20, (p <0.01)

e ijterative and incremental development, rs =.21, (p <0.01)
e Communication with the team, rs =.17, (p <0.01)

Governance practices have a negative relationship with the
followings other factors:

¢ Traditional quality assurance, rs = -.13, (p <0.05)
e communication with the customers, rs = -.19, (p <0.01)

Agile quality assurance has a positive relationship with the
followings other factors:

e architecture modeling, rs =.14, (p <0.05)
e ijterative and incremental development, rs =.32, (p <0.01)
e Communication with the team, rs =.16, (p <0.01)

Agile quality assurance has a negative relationship with the
followings other factors:

e communication with the customers, rs = -.11, (p <0.05)

e communication within the team (whiteboard practices),
rs =-.20, (p <0.01)

Iterative and incremental development has a positive
relationship with architecture modeling, rs =.26, (p <0.01)

Iterative and incremental development has a negative
relationship with communication with customers,
rs=-.11, (p<0.01)

Communication with customers has a positive relationship
with communication within the team (whiteboard practices),
rs =.19, (p <0.01)

According to the previous results, we can argue that
people who applied iterative and incremental development
and agile quality assurance practices had a high success rate.
In addition, people who applied governance practices also
applied agile quality assurance practices but there was not
much emphasis on high communication with the customers.
We have to be careful here as only two practices; co-location
and active stakeholder participation contributed to the
communication with the customer factor. Communication
with the team factor had a positive relation with governance
and agile quality assurance practices. A negative but not
significant relation was found between traditional quality
assurance and agile quality assurance. This maybe because
agile projects have tended to abandon more traditional
quality assurance practices as they move more towards agile
quality assurance. Interestingly, success rate related
negatively with traditional analysis methods such as Gantt
chart and detailed requirements specification.

V. VALIDITY ISSUES

In this paper, we re-analyzed data from existing surveys.
Although the authors did not collect the data, this survey was
conducted by a well-known and respected researcher within
the agile community. However, the data still has the same
limitations as any survey, mainly, the collected data is self-
reported, and poor memory or misunderstanding of the
questions can all contribute to inaccuracies in the data (Nardi
2002). One important issue to discuss is that as the data is
based on the respondent’s opinions; one threat to the factor
analysis results could be that people may have rated agile
practices based on how effective they think they are rather
than reporting their real experience. Finally, when using
correlation we have to keep in mind that it gives no
indication about the direction of causality. Also, none of the
correlation coefficients is very close to 1 (or -1) so the
correlations, though statistically significant, are relatively
week.

VI. RELATED WORK

This section will look at the related work conducted by
other researchers. The 2006 survey was reanalyzed by
Parsons and Lal (Parsons et al. 2007). The analysis compared
the impact on outcomes when using no agile methods with
the outcomes when using at least one agile method. The
analysis findings suggested that the adoption of at least one
agile method improves the outcomes of quality, satisfaction,
and productivity over the use of non-agile methods, without
a statistically significant increase in cost. We analyzed the
data differently as we can argue that when a company is not
using any named agile method, this does not mean that they
are not using agile software development. The survey results

support our claim as the number of responses who said that
they are not using any agile method (59%) is larger than the
number of respondents who did not use any agile technique
(34%).

Factor analysis was used in a study conducted by So and
Scholl (So et al. 2009). The paper presented a measurement
instrument to study the social-psychological effect of eight
agile practices. The practices were chosen by the researchers,
and then qualitative methods were used to produce a set of
items for each practice which formed a questionnaire. The
factor analysis, namely principal component analysis, was
used to test the validity of the existed factors structure. In
other words, the analysis was used to check whether the
extracted factors will be the same factors (practices)
introduced by the researcher. In our case, the analysis as used
for a different purpose, as we did not have an initial list of
factors, instead the analysis extracted 15 new factors that
were identified and named by us. This restructured a large set
of practices into a smaller set of factors, which made
applying further analysis much easier.

VII. CONCLUSIONS

Applying the factor analysis on agile practices
effectiveness data from a survey conducted in 2007 (Ambler
2007) resulted in reducing 58 practices to 15 factors
presented below. Each factor is associated with a list of agile
practices that can be used as a checklist when improving the
related factor.

Factorl: architecture modeling

Factor2: traditional analysis

Factor3: process/governance

Factor4: database practices

Factor5: communication (team) — whiteboard practices
Factor6: agile quality assurance

Factor7: communication (team)

Factor8: code analysis and inspection

Factor9: lightweight testing and review
Factor10: architecture and configuration
Factorl11: traditional quality assurance

Factor12: coding standards

Factor 13: lightweight requirements

Factor14: incremental and iterative development
Factor15: communication (customers)

The relationships between the extracted factors were
studied using correlations. The results suggested that people
who applied iterative and incremental development and agile
quality assurance practices had a high success rate. Also,
people who applied governance practices also applied agile
quality assurance practices but there was not much emphasis
on high communication with the customers. We have to be
careful here as only two practices; co-location and active
stakeholder participation contributed to the communication
with the customer factor. Communication with the team
factor had a positive relation with governance and agile
quality assurance practices. Interestingly, success rate related
negatively with traditional analysis methods such as Gantt
chart and detailed requirements specification.

One way of a practical application of the previous results
could be as a guide to be used by agile teams, this guide
suggests that:

a) In order to improve success rate, the team can use the
positively correlated factors and their associated practices.
These factors are : Factor 6: agile quality assurance practices
which is associated with continuous code integration, test
driven development, code refactoring, developer tests,
flexible architecture, evolutionary design, simple design and
collective ownership. The second factor was Factor 14.
Iterative and incremental development, which is associated
with incremental delivery, small releases, iterative
development, sustainable pace, active stakeholder
participation, and working demoable software

b) The team can consider avoiding factors which are
negatively correlated with success including Factor 2
Traditional analysis practices which is associated with Gantt
chart details, Gantt chart high-level, case tool modeling,
architecture specification detailed, and requirements
specification details. Also, success correlated negatively with
Factor 5 Communication within the team (whiteboard
practices) including whiteboard sketches and whiteboard
sketching modeling. The final factor that is correlated
negatively with success is Factor 12. coding standards
practices including two practices coding standard and data
naming conventions.

ACKNOWLEDGMENT

We would like to acknowledge Scott Ambler for making
the raw data of his surveys available for reuse by other
researchers.

REFERENCES

Ambler, S. (2007). "Results from Scott Ambler’s 2007 Agile Adoption
Rate Survey " Retrieved 28/07/2009, from www.ambysoft.com.

Field, A. (2005). Discovering Statistics Using SPSS, Sage.

Kaiser, H. F. (1974). "An Index of Factorial Simplicity." Psychometrika 39:
31-36.

Kass, R. A. and H. E. A. Tinsley (1979). "Factor Analysis." Journal of
Leisure Research 11(120-138).

Nardi, P. M. (2002). Doing Survey Research: A Guide to Quantitative
Research Methods Allyn & Bacon.

Parsons, D., H. Ryu and R. Lal (2007). The Impact of Methods and
Techniques on Outcomes from Agile Software Development Projects. IFIP

International Federation for Information Processing, Springer Boston: 235-
249.

So, C. and W. Scholl (2009). Perceptive Agile Measurement: New
Instruments for Quantitative Studies in Pursuit of the Social-Psychological

Effect of Agile Practices. Agile Processes in Software Engineering and
Extreme Programming: 83-93.

Stevens, J. P. (1992). "Applied Multivariable Analysis of Variance Tests."
Psychological Bulletin 88: 728-737.

Tabachnick, B. G. and L. S. Fidell (2001). Using Multivariate Statistics,
Bosten:Allyn and Bacon.

TABLE IL

APPENDEX

PATTERN MATRIX

Factor

8

10

11

12

13

14

15

initial agile architectural modeling

758

initial agile requirements modeling

756

evolutionary design

501

proved architecture early

467

flexible architecture

Gantt chart details

.883

Gantt chart high-level

.845

case tool modeling

571

architecture specification detailed

502

-.449

requirements specification details

485

burn down chart

134

velocity

718

planning game

.629

daily stand up meeting

528

iteration task list

514

defect trend metrics

regular status report

continuous database integration

-.826

database testing

=171

database refactoring

=771

data naming conventions

-.480

-445

whiteboard sketches

=752

whiteboard sketching modeling

- 741

working demoable software

continuous code integration

.654

test driven development

.587

code refactoring

581

developer tests

465

simple design

collective ownership

paper based modeling

701

paper models

.624

pair programming

427

static code analysis

710

code inspection

.664

independent confirmatory exploratory
testing

.585

customer acceptance tests

.555

model document reviews

454

architecture specification high-level

-.569

configuration management

.566

test plan

-.678

source code

-.541

defect reports

-.506

use cases details

coding standard

-.702

Ul refactoring

requirements specification high-level

535

use cases light

460

architectural spikes

Ul testing

incremental delivery 796
small releases 786
iterative development 718
sustainable pace 554

self organizing teams

co located team

-794

active stakeholder participation

-476

Rotation converged in 74 iterations.

TABLE IIL

STRUCTURE MATRIX

Factor

10

11

12

13

14

15

initial agile architectural modeling

.831

initial agile requirements modeling

.817

evolutionary design

.600

464

proved architecture early

.583

404

flexible architecture

527

-430

446

Gantt chart details

.875

Gantt chart high-level

.827

case tool modeling

.657

architecture specification detailed

.634

-511

requirements specification details

.606

burn down chart

.532

-.495

425

velocity

.763

planning game

746

daily stand up meeting

.696

iteration task list

641

defect trend metrics

.580

-401

regular status report

512

-463

continuous database integration

405

database testing

-.834

database refactoring

-.819

data naming conventions

-.817

whiteboard sketches

-577

-527

whiteboard sketching modeling

-.520

-478

working demoable software

-.800

continuous code integration

-799

test driven development

.689

code refactoring

.675

developer tests

.649

simple design

.557

collective ownership

.533

461

paper based modeling

.508

411

464

paper models

757

pair programming

-407

675

static code analysis

449

534

code inspection

.748

independent confirmatory exploratory
testing

714

customer acceptance tests

.639

model document reviews

.614

architecture specification high-level

414

.558

configuration management

497

-.648

test plan

481

source code

-731

defect reports

-.607

use cases details -.566

coding standard 454 -535

Ul refactoring -.730

requirements specification high-level .596

use cases light .529

architectural spikes -.408 440

Ul testing .852

incremental delivery 403 .814

small releases .805

iterative development .670

sustainable pace 424 457

self organizing teams -.786

co located team .528 |-.592

active stakeholder participation -496 484 |-.523

TABLE IV. CORRELATION COEFFICIENT BETWEEN THE EXTRACTED FACTORS AND SUCCESS RATE
SR F1 F2 F3 F4 F5 Fé F7 F8 F9 F10 F11 F12 F13 F14 F15
SR 1.000 | .069 | -.125% | .064 | -.046 |-.164%**| .169** | -020 | -.013 .021 -035 | -.072 |-.163**| .062 |.257** [-.053
F1 1.000 | .235%* | .120% |[-273%* [171%*%| [149% | 153%* | 134% | 208** [-.175%*|-.169**| -.123* | .096 | .265%* | -.105
F2 1.000 | .059 | -.138* | -.016 .002 103 | 214%F | 176%*F | - 118% [-232%*| -.042 | .138* | -.038 .046
F3 1.000 |-.173%% [-231%* [205%* | [179%* | 150%* | .172%* | -.049 | -.135% | -.043 | -.023 | .216%* |-.192%%*
F4 1.000 | .091 [-.197**[-186**| -.130* |-.166**| .105 | .147* | .125% | -.023 [-.208**| .053
F5 1.000 |-.207**| -085 | -.091 | -.102 112 | J126% | .124% | -.063 |-.205%*| .192%*
F6 1.000 | .164** | .141* | .062 002 | -.063 | -.129% | .025 | .320%* | -.117*
F7 1.000 | .158** | .098 | -.118* | -.080 | -.066 013 | .128* | -.080
F8 1.000 | .151%** | -.066 |[-.153**| -.060 .094 .067 -.042
F9 1.000 | -.060 |-.236%*| -.042 103 | .130* | -.118%*
F10 1.000 | .078 -018 | -.030 | -.030 .037
F11 1.000 | .121* | -.128* | -.095 .021
F12 1.000 | -.061 | -.028 .031
F13 1.000 | .104 -.042
F14 1.000 |-.245%%*
F15 1.000
* Correlation is significant at the 0.05 level (2-tailed).

** Correlation is significant at the 0.01 level (2-tailed).

SR: Success Rate
Fi#: Factor#

