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Abstract: - We present a new design of a mass sensor capable of detecting mass values in the zeptogram range. The 
sensor comprises a resonant beam and two gate electrodes used to oscillate the beam at its resonance frequency. The 
detection method is based on the tunnelling current between the vibrating beam and the gate electrodes. When a small 
mass is added to the beam, the latter sees a shift in its resonant frequency. The added mass thus leads to a decrease in 
the oscillation's amplitude and hence a drop in the tunnelling current. 
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1 Introduction 
Nano-Electro-Mechanical systems (NEMS) used as 
sensors are gaining increasing interest thanks to their 
high sensitivity, small dimensions and low power 
consumption. In addition, these systems can be easily 
integrated with IC technology, for instance the CMOS 
process. This will allow the development of 
monolithic processes allowing the fabrication of 
ultrasensitive sensors. 
Mass sensors have been the subject of intense 
investigation and were developed by several research 
groups. For instance monolithic approach to mass 
detection using a nano-cantilever and an integrated 
capacitive readout (CMOS) was demonstrated by 
Davis et al [1]. Villarroya et al developed a mass 
sensor based on an array of cantilevers fabricated on 
polysilicon and integrated monolithically to a CMOS 
circuitry [2]. Their on chip MEMS sensor allowed a 
mass sensitivity higher than 28 Hz/fg and a mass 
resolution smaller than 2 fg. A CMOS based device 
was also developed by Verd and co-workers, reaching 
a sensitivity of 0.9 ag/Hz [3]. Recent work includes the 
development of a bulk acoustic resonator fabricated on 
polysilicon, with a sensitivity of about 100 Hz/fg [4] in 
air.  
In this paper we present a new concept which will 
enable ultrasensitive mass detection, exploiting the 
tunnelling current between a vibrating beam (the 
channel) and two fixed electrodes (the gate). By 
measuring the gate-channel tunnelling current we can 
theoretically reach a device responsivity to tens of 
zeptograms (1 zg = 10-21 g). This resolution is 
extremely high when compared to the most current 
mass sensors. 

2 Device concept 

 
Fig.1 3D model of the device showing the two gate 

electrodes and the oscillating channel (the beam). The 
inset shows FEM modelling of the beam's in-plane 

oscillations. 
 
In figure 1 we show a 3D model of a possible device 
structure. The inset shows FEM modelling of the 
beam's in-plane oscillations. This configuration can be 
fabricated using an SOI wafer, in which the beam and 
the electrodes are defined by patterning and etching of 
the oxide sacrificial layer. The suspended beam is then 
electrostatically actuated by the two electrodes at its 
resonance frequency. 
The sensor is functionalized by coating the beam with 
an active material able to adsorb the compound to be 
detected. By applying a DC voltage to the electrodes a 
tunnelling current between the beam and the electrodes 
is created. Since this current is exponentially 
dependent on the distance, very small mass variations 
could lead to measurable changes in the tunnelling 
current. Any small change in the mass of the beam, 
due to the adsorption of the target compound would 
shift its resonance frequency, resulting in a decrease of 
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the oscillation's amplitude which in turn leads to a 
drop of the tunnelling current. In comparison, 
capacitive or optical methods would not be capable of 
detecting such a small change in the beam's resonant 
frequency. 
A combination of both, the beam mechanics and a 
quantum mechanical description of the tunnelling 
current will be presented in the following sections. In 
the rest of the paper, we will use the geometrical 
parameters displayed in table 1 to derive all relevant 
physical quantities.  
 

Beam length 2 µm 
Beam width 75 nm 
Thickness 40 nm 

Electrodes width 50 nm 
Table 1 Geometrical parameters used in the 

modelling of the device. 
 
2 Beam mechanics 
We will first determine the resonance frequency of the 
beam, then we will derive the beam shape under 
electrostatic actuation; in the last section we will 
discuss the response of the device to the mass 
variation. 
 
2.1 Modal analysis 
To obtain the resonant frequency of the oscillation we 
will use both an analytical model and FEM 
simulations. The analytical solution is obtained solving 
the Euler-Bernoulli beam equation, equation (1) [5], 
while the FEM solution is derived using COMSOL 
Multiphysics and CoventorWare software [6]. An 
undamped Euler-Bernoulli beam is described by the 
following equation: 
 

E I  
∂ସ

ସݔ߲
 ܷሺݔ, ሻݐ ൅  ܣߩ

߲ଶ

ଶݐ߲
 ܷሺݔ, ሻݐ ൌ  0 (1)

 
Where E is the silicon’s Young modulus, I is the 
second moment of inertia of the cross section, ܷሺݔ,  ሻݐ
is the beam deflection, ߩ is the material density and ܣ 
is the beam cross section area. In equation (1) we 
neglect the shear deformation in the principal axe of 
the beam. Assuming harmonic oscillations the function 
ܷሺݔ, ,ݔሻ can be written as: ܷሺݐ ሻݐ ൌ ܷሺݔሻ ݁௝ఠ௧. The 
general solution of (1) is given by:  
 

ܷሺݔሻ ൌ ܣ ሻݔߚሺݏ݋ܿ ൅ ܤ ሻݔߚሺ݊݅ݏ ൅ ఉ௫݁ܥ
൅  ఉ௫ି݁ܦ

(2)

 
Where A, B, C and D are constants and β is given by: 
 

ସߚ ൌ
ଶ߱ܣߩ

ܫܧ
 (3)

The normal modes are determined by introducing the 
clamped-clamped beam boundary conditions i.e. 
ܷሺ0ሻ ൌ 0, ܷᇱሺ0ሻ ൌ 0,  ܷሺܮሻ ൌ 0, ܷᇱሺܮሻ ൌ 0. This 
leads the following implicit equation for the normal 
modes: 
 

coshሺܮߚሻ cosሺܮߚሻ ൌ 1 (4)
 
This equation is solved numerically to drive ܮߚ 
satisfying (4). The normal modes are then determined 
by plugging the values of β into equation (3). In table 
2 we show the frequency of the first mode alongside 
the values found using commercial software.  
 

COMSOL 143.5 MHz 
CoventorWare 147.0 MHz 

Math model 144.5 MHz 
Average 145.0 MHz 

Table 2 First in-plane oscillation eigenfrequencies 
derived using different methods. 

 
As can be seen the three frequencies are very close, 
with a mismatch of less than 1.5 % in the worst case. 
In the subsequent calculations we will use the average 
frequency value which is 145 MHz. 
 
2.2 Beam deflection under applied load 
Under an applied load, the equation of motion of the 
beam is similar to equation (1) except that a source 
term representing the electrostatic load is introduced in 
the right hand side of the equation i.e. : 
 

E I
∂ସ

ସݔ߲
ܷሺݔ, ሻݐ ൅ ܣߩ

߲ଶ

ଶݐ߲
 ܷሺݔ, ሻݐ ൌ  ܲሺݔ, ሻ (5)ݐ

 
Here ܲሺݔ,  ሻ is the electrostatic force per unit length ofݐ
the beam . 
Assuming harmonic oscillations and a harmonic load 
we can write: 
 

ܷሺݔ, ሻݐ ൌ ܷሺݔሻ ݁௜ఠ௧ (6)
 
and 

ܲሺݔ, ሻݐ ൌ ଴ܲ ݁௜ఠ௧ (7)
 
With these assumptions, the general solution for the 
spatial component of the deflection  ܷሺݔሻ is given by: 
 
ܷሺݔሻ ൌ ܣ ሻݔߚሺݏ݋ܿ ൅  ܤ  ሻݔߚሺ݊݅ݏ ൅ ܥ  ݁ఉ௫

൅ ܦ ݁ିఉ௫ െ  ଴ܲ

ସߚ ܫ ܧ
 (8)

 
Where ߚ is defined by equation (3). To obtain the 
coefficients A, B, C and D we will apply the boundary 
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conditions of zero deflection and zero slope at each 
beam end (clamped-clamped boundary condition) and 
solve the resulting linear system of equations. 
 
2.3 Resonant frequency shift 
When a small amount of mass δm is added to the 
beam, a shift in its resonance frequency is observed. 
To obtain this frequency shift we will use Rayleigh 
approximation i.e. the beam is treated as a harmonic 
oscillator with a mass m and a stiffness k. The 
equivalent mass and the stiffness are given by the 
following two relations [7]: 
 

݉ ൌ න ݔሻଶ݀ݔሺ׎ܣߩ
௅

଴
 (9)

݇ ൌ න ݔሻᇱᇱሻଶ݀ݔሺ׎ሺܫܧ
௅

଴
 (10)

 
where ׎ሺݔሻ is a suitable dimensionless shape function, 
which satisfies the same boundary condition as the 
general solution ܷሺݔሻ [8]. In our calculations we 
neglect the electrostatic spring softening which is 
introduced during electrostatic actuation. We will also 
assume that the added mass does not change the spring 
constant of the beams. The approximate resonant 
frequency is then: 
 

଴݂ ൌ  
√݇
ߨ2

1
√݉

ן  
1
√݉

 (11)

 
In this way we are able to calculate the resonance 
frequency shift ݂ߜ for a small variation of mass ݉ߜ: 
 

݂ߜ ൌ ଴݂ െ ݂ᇱ ൌ   ଴݂  

ۉ

1ۇ െ 
1

ට1 ൅ ݉݉ߜ ی

 ۊ

ൎ ଴݂
ఋ௠
ଶ௠

   since ݉ߜ ا ݉ 
 

(12)

 
Fig.2 Frequency shift as a function of the added mass 

 .variation ݉ߜ

In figure 2 the dependence of frequency shift on ݉ߜ is 
shown. 
 
2.4 Near resonance beam excitation 
The addition of a small mass to the beam will shift the 
resonance frequency from ଴݂ resulting in a decrease of 
the beam's response to the excitation. This response to 
a forced harmonic oscillation with a frequency ߱௘௫௧  
can be characterised by the transfer function ்ܨ which 
is given by: 
 

்ܨ ൌ ߩ ሺ߱଴
ଶ െ ߱௘௫ଶ െ ݅ ߱଴ ߱௘௫ ܳ⁄ ሻିଵ (13)

 
here ߱଴ is the beam resonance angular frequency is the 
excitation and ܳ is the quality factor. This function 
(normalised to its maximum value) is shown in  
figure 3, for Q=100. 
 

 
Fig.3 System transfer function for Q ൌ 100. 

 
Using the results above, we can estimate the value of 
the tunnelling current as a function of the beam 
deflection. It is expected that when a small entity is 
added to the resonant beam, a drop of the tunnelling 
current will be observed since the added mass drives 
the beam off-resonance, which results in an increase in 
the distance between the beam centre and the gate 
electrodes. These considerations will be the subject of 
the following sections. 
 
3 Beam-gate tunnelling current 
Here we will examine the expression of the tunnelling 
current between the gate electrodes and the oscillating 
beam. For this purpose, we will adopt the Tsu-Esaki 
model [9]. 
 
3.1 Transmission coefficient 
When the gate electrode and the oscillating beam are 
few nanometres apart, tunnelling of the electrons takes 
place between the two media. This effect is modelled 
by a trapezoidal potential barrier whose height is equal 
to the silicon affinity ߯ and is tilted due to the action of 
the applied DC voltage across the beam and the gate 
electrode. Figure 4 shows  a sketched energy diagram 
and the electronic wave function in different regions. 
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Fig.4 Sketch of the energy diagram and the tunnelling 
effect for the beam-electrodes system in consideration. 
 
This phenomenon is characterised by the so called 
transmission coefficient, which quantifies the 
transmitted to incident probability flux density. 
This coefficient is obtained by solving the Schrödinger 
equation which allows the determination of the 
amplitude of the transmitted wave as a function of the 
barrier parameters and electron energy [10]. The 
transmission coefficient Tc is given by the relation: 
 

௖ܶ ൌ   ଶ (14)|ܦ|

ܦ  ൌ  
݇ ଴ݍ ݅ 2
∆ ܽ ߨ

௜௞௔ (15)ି݁ ߟ 

 
Where 
 

݇ ൌ  ඥ2 ݉ ܧ ћଶ⁄  (16)

଴ݍ ൌ   ሺ݇଴ ܽ ⁄ߟ ሻଶ ଷ⁄  (17)

݇଴ ൌ  ඥ2 ݉ ߯ ћଶ⁄  (18)

ߟ ൌ 1 െ 
߯ െ  ஽ܸ஼

߯
 (19)

∆ ൌ ௔ሻߦሺכܨ଴ሻߦሺܩ െ ௔ሻ (20)ߦሺכܩ଴ሻߦሺܨ 

଴ߦ ൌ ଴ݍ  ൬
௞మ

௞బమ
െ 1൰ (21)

௔ߦ ൌ ଴ݍ  ൬
௞మ

௞బమ
൅ ߟ െ 1൰ (22)

ሻߦሺܨ ൌ ሻߦሺെ݅ܣ ݇ ݅ െ ௤బߟ
௔
ሻ (23)ߦԢሺെ݅ܣ

ሻߦሺܩ ൌ ሻߦሺെ݅ܤ ݇ ݅ െ ௤బߟ
௔
ሻ (24)ߦԢሺെ݅ܤ

 
Here ܽ is the width of the potential barrier, ݅ܣ ݅ܤ ,݅ܣԢ 
and ݅ܤԢ are Airy functions and their respective 
derivatives. The transmission coefficient ௖ܶ can then 
be evaluated numerically and used in the calculation of 
the tunnelling current. 
 
3.2 Tunnelling current 
To evaluate the tunnelling current will use the Tsu-
Esaki model [9]. This model allows us to calculate the 
tunnelling current between two electrodes if we know 
the transmission coefficient of the barrier, and the 

material’s parametersi. The tunnelling current density 
is then given by the following expression: 
 

ܬ ൌ
4 ܶ݇כ݉ߨ ݁

݄ଷ
ඳ ௖ܶሺܧሻ lnቌ

1 ൅ ݁
ா೑ିா
௞்  

1 ൅ ݁
ா೑ିாି௘௏ವ಴

௞்

ቍ݀ܧ

ஶ

଴

 (25)

 
This expression is used to evaluate the current during 
the beam's oscillation period.  
 

 
Fig.5 Tunneling current during half period of 

oscillation. 
 
For our analysis we assume static tunnelling in regard 
to the beam's dynamics i.e. during tunnelling, electrons 
"see" a stationary beam. 
This hypothesis is correct only if the tunnelling time is 
negligible with respect to the beam dynamics time 
scale. It is possible to calculate the expectation value 
of the tunnelling time for a square barrier. We will use 
the result from reference [11]: 
 

௨௡௡்ݐ ൌ 2 ݉
݇ ሺ݌ଶ െ ݇ଶሻ ௠௔௫ݔ ൅

ሺ݌ଶ ൅ ݇ଶሻଶ
݌ ݇ 2 sinhሺ2 ݌ ௠௔௫ሻݔ

ሺ݌ଶ ൅ ݇ଶሻଶ coshଶሺݔ ݌௠௔௫ሻ െ ሺ݌ଶ െ ݇ଶሻଶ
 (26)

 
Where ݌ ൌ  ඥ2 ݉ ሺ߯ െ ݇ ሻ andܧ ൌ  in this ;ܧ ݉ 2√
calculations Planck unitsii were used. Note that this 
expression is derived for a square barrier and is used 
only to give us an order of magnitude of the tunnelling 
time for a tilted potentialiii. For example, for electron 
energy of 0.1 eV, the tunnelling time is roughly 
5.55  ൈ 10ିଵଶ s. This value is three orders of 
magnitude smaller than the oscillation period (which is 
about 6.9  ൈ 10ିଽ s in our case), for this reason we can 
assume the mechanical system static with respect to 

                                                      
i We considered the bottom of the conduction band as the 
zero energy reference and we calculated the Fermi energy 
for the desired doping using Fermi integrals. 
ii  In  this unit system some  fundamental physical constants 
like ћ, G and KB are put equal to 1. 
iiiDespite  the  significant  amount of  literature  published  in 
the  subject,  no  general  consensus  has  yet  been  reached 
and the topic remains debatable. 
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the tunnelling time scale. Note also that ்ݐ௨௡௡ decreases 
with increasing energy.  
As figure 5 shows, a significant value of the tunnelling 
current is achieved during a small time interval i.e. 
when the beam is the closest to the electrode. 
Having determined the expression of the tunnelling 
current, we will now investigate the change in its value 
when the mass of the beam is changed by a small 
amount.  
 
4 Mass dependent current variation 
Here we will investigate the relationship between the 
mass variation of the beam and the tunnelling current. 
 
4.1 Excitation frequency correction 
It is worth mentioning that the damping of the beam 
introduces a shift of the resonance frequency ଴݂ 
corresponding to the undamped beam. This shift in 
frequency will depend on the damping coefficient and 
the quality factor Q. For example using our beam data 
and setting Q = 100, this shift is evaluated at 3.61 kHz. 
The shift in resonance frequency resulting from 
damping is given by the following expression:  
 

ߜ ௠݂௔௫ ൌ   ଴݂ ൭1 െ 
ඥ4 ܳଶ െ 2

2 ܳ
൱ (27)

 
This correction is very small, but it is fundamental if 
we consider the frequency shift due to mass detection 
because it corresponds to a mass variation of about 0.7 
ag which is in the range of the system responsivity. 
 
4.2 DC polarization 
We will consider the device configuration displayed in 
figure 6. This configuration is called the quantum 
shuttle [12], in which single electron behaviour and 
resonant tunnelling can be seen at low temperature. 
The aim here is to determine the tunnelling current 
passing through the two gaps between the beam and 
the two electrodes. To be able to collect a maximum 
current, we adopt the following set-up: the system is 
polarised in order to allow tunnelling only from the 
electrodes to the beam, and not the opposite. The 
current tunnelling into the beam from the two 
electrodes will be collected at one of the beam ends 
and then amplified for measurement. Figure 6 shows 
this concept. 
With this symmetric configuration the total current per 
period is twice the single tunnelling current between a 
single gate and the beam. 
 

 
Fig.6 Quantum shuttle configuration used in this 

study, showing a DC polarization of the gate 
electrodes. 

 
4.3 Current vs. mass relationship 
We can now combine all aforementioned results to 
obtain the tunnelling current as a function of the 
sensed amount of added mass. In figure 7 we show the 
tunnelling current as a function of the added mass, 
setting Q = 100. 
 

 
Fig.7 Added mass dependence of the tunnelling peak 

current. 
 
As we can see the current has a rapid decrease from its 
highest value to zero within a decade of the added 
mass (in this example 10-18 – 10-17). It must also be 
noticed that the highest responsivity is achieved within 
a well defined region of values of the added mass. This 
responsivity region can be shifted by changing the 
beam parameters and/or the quality factor Q. In  
figure 8 are reported the results for different values of 
the quality factor and fixed beam dimensions. 
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Fig 8 Mass dependence of the responsivity region as a 

function of the quality factor Q for fixed beam 
dimensions. 

 
It is not uncommon to reach high values of the quality 
factors in nano-resonators. The results above show that 
higher values Q improve the responsivity which, in 
theory, can reach values up to tens of zeptograms. 
Beam dimensions also affect the responsivity as well 
as the dynamic range. In figure 9 we show the 
tunnelling peak current as a function of mass variation 
for different beam dimensions. 
 

 
Fig.9 Tunneling peak current for different  

beam’s dimensions 
 
This result shows that changing the beam's dimensions 
leads to a shift of the dynamic range of the device. 
This effect can be exploited by building an array of 
beams, each with a different dynamic range. This will 
result in the increase of the responsivity to a wider 
range of added mass. 
 
5 Conclusions 
In conclusion, we have developed a concept of a mass 
sensor with responsivity in the zeptogram range. The 
sensing method is based on tunnelling current between 
a resonant channel (silicon nano-beam) and a fixed 
gate electrode. When a small amount of mass is 
attached to the beam, the latter goes off resonance, 
leading to a drop of the tunnelling current. Our 

calculations showed that the dynamic range of the 
sensor can be tuned by changing the beam's 
dimensions. 
Also the responsivity of the device increases with 
increasing quality factor. 
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