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Abstract: - We present a new design of a mass sensor capable of detecting mass values in the zeptogram range. The
sensor comprises a resonant beam and two gate electrodes used to oscillate the beam at its resonance frequency. The
detection method is based on the tunnelling current between the vibrating beam and the gate electrodes. When a small
mass is added to the beam, the latter sees a shift in its resonant frequency. The added mass thus leads to a decrease in
the oscillation's amplitude and hence a drop in the tunnelling current.
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1 Introduction

Nano-Electro-Mechanical systems (NEMS) used as
sensors are gaining increasing interest thanks to their
high sensitivity, small dimensions and low power
consumption. In addition, these systems can be easily
integrated with 1C technology, for instance the CMOS
process. This will allow the development of
monolithic processes allowing the fabrication of
ultrasensitive sensors.

Mass sensors have been the subject of intense
investigation and were developed by several research
groups. For instance monolithic approach to mass
detection using a nano-cantilever and an integrated
capacitive readout (CMOS) was demonstrated by
Davis et al [1]. Villarroya et al developed a mass
sensor based on an array of cantilevers fabricated on
polysilicon and integrated monolithically to a CMQOS
circuitry [2]. Their on chip MEMS sensor allowed a
mass sensitivity higher than 28 Hz/fg and a mass
resolution smaller than 2 fg. A CMOS based device
was also developed by Verd and co-workers, reaching
a sensitivity of 0.9 ag/Hz [3]. Recent work includes the
development of a bulk acoustic resonator fabricated on
polysilicon, with a sensitivity of about 100 Hz/fg [4] in
air.

In this paper we present a new concept which will
enable ultrasensitive mass detection, exploiting the
tunnelling current between a vibrating beam (the
channel) and two fixed electrodes (the gate). By
measuring the gate-channel tunnelling current we can
theoretically reach a device responsivity to tens of
zeptograms (1 zg = 10%' g). This resolution is
extremely high when compared to the most current
mass Sensors.
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2 Device concept

_

4

Fig.1 3D model of the device showing the two gate
electrodes and the oscillating channel (the beam). The
inset shows FEM modelling of the beam'’s in-plane
oscillations.

In figure 1 we show a 3D model of a possible device
structure. The inset shows FEM modelling of the
beam's in-plane oscillations. This configuration can be
fabricated using an SOI wafer, in which the beam and
the electrodes are defined by patterning and etching of
the oxide sacrificial layer. The suspended beam is then
electrostatically actuated by the two electrodes at its
resonance frequency.

The sensor is functionalized by coating the beam with
an active material able to adsorb the compound to be
detected. By applying a DC voltage to the electrodes a
tunnelling current between the beam and the electrodes
is created. Since this current is exponentially
dependent on the distance, very small mass variations
could lead to measurable changes in the tunnelling
current. Any small change in the mass of the beam,
due to the adsorption of the target compound would
shift its resonance frequency, resulting in a decrease of
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the oscillation's amplitude which in turn leads to a
drop of the tunnelling current. In comparison,
capacitive or optical methods would not be capable of
detecting such a small change in the beam's resonant
frequency.

A combination of both, the beam mechanics and a
guantum mechanical description of the tunnelling
current will be presented in the following sections. In
the rest of the paper, we will use the geometrical
parameters displayed in table 1 to derive all relevant
physical quantities.

Beam length 2 um
Beam width 75 nm
Thickness 40 nm
Electrodes width 50 nm

Table 1 Geometrical parameters used in the
modelling of the device.

2 Beam mechanics

We will first determine the resonance frequency of the
beam, then we will derive the beam shape under
electrostatic actuation; in the last section we will
discuss the response of the device to the mass
variation.

2.1 Modal analysis

To obtain the resonant frequency of the oscillation we
will use both an analytical model and FEM
simulations. The analytical solution is obtained solving
the Euler-Bernoulli beam equation, equation (1) [5],
while the FEM solution is derived using COMSOL
Multiphysics and CoventorWare software [6]. An
undamped Euler-Bernoulli beam is described by the
following equation:

o* 02

EIl mU(x,t)+pAmU(x,t)= 0 1)
Where E is the silicon’s Young modulus, | is the
second moment of inertia of the cross section, U(x,t)
is the beam deflection, p is the material density and A
is the beam cross section area. In equation (1) we
neglect the shear deformation in the principal axe of
the beam. Assuming harmonic oscillations the function
U(x,t) can be written as: U(x,t) = U(x) e/®t. The
general solution of (1) is given by:

U(x) = Acos(Bx) + B sin(Bx) + CeP* )
+ De=F* )

Where A, B, C and D are constants and 3 is given by:

_ pAw?

o (3)

,84
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The normal modes are determined by introducing the
clamped-clamped beam boundary conditions i.e.
Uu)=0, U'(0)=0, UL)=0, U'(L)=0. This
leads the following implicit equation for the normal
modes:

cosh(BL) cos(BL) =1 4

This equation is solved numerically to drive BL
satisfying (4). The normal modes are then determined
by plugging the values of f into equation (3). In table
2 we show the frequency of the first mode alongside
the values found using commercial software.

COMSOL 143.5 MHz
CoventorWare 147.0 MHz
Math model 144.5 MHz
Average 145.0 MHz

Table 2 First in-plane oscillation eigenfrequencies
derived using different methods.

As can be seen the three frequencies are very close,
with a mismatch of less than 1.5 % in the worst case.
In the subsequent calculations we will use the average
frequency value which is 145 MHz.

2.2 Beam deflection under applied load

Under an applied load, the equation of motion of the
beam is similar to equation (1) except that a source
term representing the electrostatic load is introduced in
the right hand side of the equation i.e. :

4 2

EIaUt+A U(x,t) = P(x,t (5)
ax4 (‘xl ) p atz (x, )_ (xl )

Here P(x, t) is the electrostatic force per unit length of
the beam .

Assuming harmonic oscillations and a harmonic load
we can write:

U(x,t) = U(x) 't (6)

and
P(x,t) = P, et (1)

With these assumptions, the general solution for the
spatial component of the deflection U(x) is given by:

U(x) = A cos(Bx) + B sin(Bx) + C eP*
-Bx _ Po (8)
+ Dek R

Where g is defined by equation (3). To obtain the
coefficients A, B, C and D we will apply the boundary
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conditions of zero deflection and zero slope at each
beam end (clamped-clamped boundary condition) and
solve the resulting linear system of equations.

2.3 Resonant frequency shift

When a small amount of mass dm is added to the
beam, a shift in its resonance frequency is observed.
To obtain this frequency shift we will use Rayleigh
approximation i.e. the beam is treated as a harmonic
oscillator with a mass m and a stiffness k. The
equivalent mass and the stiffness are given by the
following two relations [7]:

L
m=f pADB(x)*dx )]
0

L
k= f EI(@(x)")2dx (10)
0

where @(x) is a suitable dimensionless shape function,
which satisfies the same boundary condition as the
general solution U(x) [8]. In our calculations we
neglect the electrostatic spring softening which is
introduced during electrostatic actuation. We will also
assume that the added mass does not change the spring
constant of the beams. The approximate resonant
frequency is then:

_ k1 1
fO_ZTL_m \/ﬁ

In this way we are able to calculate the resonance
frequency shift §f for a small variation of mass dm:

(11)

1

om
N

om .
= foﬁ since dm K m

Sf=fo—f'=fo|1-

(12)

Frequency shift (Hz)

Al
10° 10

S,
Mass variation (kg)
Fig.2 Frequency shift as a function of the added mass

om variation.
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In figure 2 the dependence of frequency shift on ém is
shown.

2.4 Near resonance beam excitation

The addition of a small mass to the beam will shift the
resonance frequency from f, resulting in a decrease of
the beam's response to the excitation. This response to
a forced harmonic oscillation with a frequency wey;
can be characterised by the transfer function F; which
is given by:

Fr=p ((‘)(2) - (‘)gx —lwg (“)ex/Q)_1 (13)

here w, is the beam resonance angular frequency is the
excitation and @ is the quality factor. This function

(normalised to its maximum value) is shown in
figure 3, for Q=100.

Transfer function
2
=)

10 5 ; 6 : ¥ 3 8 :
10 10 10 10 10 10
Frequency (Hz)

Fig.3 System transfer function for Q = 100.

Using the results above, we can estimate the value of
the tunnelling current as a function of the beam
deflection. It is expected that when a small entity is
added to the resonant beam, a drop of the tunnelling
current will be observed since the added mass drives
the beam off-resonance, which results in an increase in
the distance between the beam centre and the gate
electrodes. These considerations will be the subject of
the following sections.

3 Beam-gate tunnelling current

Here we will examine the expression of the tunnelling
current between the gate electrodes and the oscillating
beam. For this purpose, we will adopt the Tsu-Esaki
model [9].

3.1 Transmission coefficient

When the gate electrode and the oscillating beam are
few nanometres apart, tunnelling of the electrons takes
place between the two media. This effect is modelled
by a trapezoidal potential barrier whose height is equal
to the silicon affinity y and is tilted due to the action of
the applied DC voltage across the beam and the gate
electrode. Figure 4 shows a sketched energy diagram
and the electronic wave function in different regions.
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—— Wavefunction
— Potential

Fig.4 Sketch of the energy diagram and the tunnelling
effect for the beam-electrodes system in consideration.

This phenomenon is characterised by the so called
transmission  coefficient, which quantifies the
transmitted to incident probability flux density.

This coefficient is obtained by solving the Schrédinger
equation which allows the determination of the
amplitude of the transmitted wave as a function of the
barrier parameters and electron energy [10]. The
transmission coefficient T, is given by the relation:

T. = |D|? (14)
p=200L, mira (15)
Where
k= \2mE/h2 (16)
qo = (ko a/n)?/? (7)
ko = \/2my/h? (18)
_4,_ X~ Vbc
n=1 — (19)
A=GEF () — F(§0)G"(§a) (20)
fo= o1z 1) @
fa= a0 (x+n—1) @2)
F(§) = ik Ai(=§) —n2AI (=) (23)
G(§) = i k Bi(=§) — n%Bi'(=§) (24)

Here a is the width of the potential barrier, Ai, Bi Ai’
and Bi' are Airy functions and their respective
derivatives. The transmission coefficient T, can then
be evaluated numerically and used in the calculation of
the tunnelling current.

3.2 Tunnelling current

To evaluate the tunnelling current will use the Tsu-
Esaki model [9]. This model allows us to calculate the
tunnelling current between two electrodes if we know
the transmission coefficient of the barrier, and the

ISSN: 1790-5117

100

material’s parameters'. The tunnelling current density
is then given by the following expression:

3}

E;~E
4mTm*kT e 1+ e kT

= — T.(E)In —F,Fevpe dE (25)
1+e kT

0

This expression is used to evaluate the current during
the beam’s oscillation period.

11
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Fig.5 Tunneling current during half period of
oscillation.

For our analysis we assume static tunnelling in regard
to the beam's dynamics i.e. during tunnelling, electrons
"see" a stationary beam.
This hypothesis is correct only if the tunnelling time is
negligible with respect to the beam dynamics time
scale. It is possible to calculate the expectation value
of the tunnelling time for a square barrier. We will use
the result from reference [11]:

@7 =) e+ P Sinh 2 p )
(p? + k2)? cosh?(p xpmax) — (2 — k?)?

Where p = J2m (y —E) andk =v2mE; in this
calculations Planck units" were used. Note that this
expression is derived for a square barrier and is used
only to give us an order of magnitude of the tunnelling
time for a tilted potential". For example, for electron
energy of 0.1 eV, the tunnelling time is roughly
5.55 x 1072 s. This value is three orders of
magnitude smaller than the oscillation period (which is
about 6.9 x 10~° s in our case), for this reason we can
assume the mechanical system static with respect to

(26)

2m

trunn =

' We considered the bottom of the conduction band as the
zero energy reference and we calculated the Fermi energy
for the desired doping using Fermi integrals.

" In this unit system some fundamental physical constants
like h, G and Kg are put equal to 1.

iiiDespite the significant amount of literature published in
the subject, no general consensus has yet been reached
and the topic remains debatable.
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the tunnelling time scale. Note also that ¢,,, decreases
with increasing energy.

As figure 5 shows, a significant value of the tunnelling
current is achieved during a small time interval i.e.
when the beam is the closest to the electrode.

Having determined the expression of the tunnelling
current, we will now investigate the change in its value
when the mass of the beam is changed by a small
amount.

4 Mass dependent current variation
Here we will investigate the relationship between the
mass variation of the beam and the tunnelling current.

4.1 Excitation frequency correction

It is worth mentioning that the damping of the beam
introduces a shift of the resonance frequency f
corresponding to the undamped beam. This shift in
frequency will depend on the damping coefficient and
the quality factor Q. For example using our beam data
and setting Q = 100, this shift is evaluated at 3.61 kHz.
The shift in resonance frequency resulting from
damping is given by the following expression:

Gy

>0 @)

O fmax = f0<

This correction is very small, but it is fundamental if
we consider the frequency shift due to mass detection
because it corresponds to a mass variation of about 0.7
ag which is in the range of the system responsivity.

4.2 DC polarization

We will consider the device configuration displayed in
figure 6. This configuration is called the gquantum
shuttle [12], in which single electron behaviour and
resonant tunnelling can be seen at low temperature.
The aim here is to determine the tunnelling current
passing through the two gaps between the beam and
the two electrodes. To be able to collect a maximum
current, we adopt the following set-up: the system is
polarised in order to allow tunnelling only from the
electrodes to the beam, and not the opposite. The
current tunnelling into the beam from the two
electrodes will be collected at one of the beam ends
and then amplified for measurement. Figure 6 shows
this concept.

With this symmetric configuration the total current per
period is twice the single tunnelling current between a
single gate and the beam.
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Fig.6 Quantum shuttle configuration used in this
study, showing a DC polarization of the gate
electrodes.

4.3 Current vs. mass relationship

We can now combine all aforementioned results to
obtain the tunnelling current as a function of the
sensed amount of added mass. In figure 7 we show the
tunnelling current as a function of the added mass,
setting Q = 100.

x10"

Peak current (&)

107 107 107" 107 10 10
Mass variation (g)

Fig.7 Added mass dependence of the tunnelling peak
current.

As we can see the current has a rapid decrease from its
highest value to zero within a decade of the added
mass (in this example 10™® — 10"). It must also be
noticed that the highest responsivity is achieved within
a well defined region of values of the added mass. This
responsivity region can be shifted by changing the
beam parameters and/or the quality factor Q. In
figure 8 are reported the results for different values of
the quality factor and fixed beam dimensions.
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x 10

Peak current (A)
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Fig 8 Mass dependence of the responsivity region as a
function of the quality factor Q for fixed beam
dimensions.

It is not uncommon to reach high values of the quality
factors in nano-resonators. The results above show that
higher values Q improve the responsivity which, in
theory, can reach values up to tens of zeptograms.
Beam dimensions also affect the responsivity as well
as the dynamic range. In figure 9 we show the
tunnelling peak current as a function of mass variation
for different beam dimensions.
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Fig.9 Tunneling peak current for different
beam’s dimensions

This result shows that changing the beam's dimensions
leads to a shift of the dynamic range of the device.
This effect can be exploited by building an array of
beams, each with a different dynamic range. This will
result in the increase of the responsivity to a wider
range of added mass.

5 Conclusions

In conclusion, we have developed a concept of a mass
sensor with responsivity in the zeptogram range. The
sensing method is based on tunnelling current between
a resonant channel (silicon nano-beam) and a fixed
gate electrode. When a small amount of mass is
attached to the beam, the latter goes off resonance,
leading to a drop of the tunnelling current. Our
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calculations showed that the dynamic range of the
sensor can be tuned by changing the beam's
dimensions.

Also the responsivity of the device increases with
increasing quality factor.
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