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Abstract

Sequential decision making problems often require an agent to act in an envi-
ronment where data is noisy or not fully observed. The agent will have to learn
how different actions relate to different rewards, and must therefore balance the
need to explore and exploit in an effective strategy. In this report, sequential
decision making problems are considered through extensions of the multi-armed
bandit framework. Firstly, the bandit problem is extended to a Multi-Agent
System (MAS), where agents control individual arms but can communicate po-
tentially useful information with each other. This framework allows for a better
understanding of the exploration-exploitation tradeoff in scenarios where there
are multiple agents interacting in a noisy environment. To this end, we present
a novel strategy for action and communication decisions and we demonstrate
the benefits of such a strategy empirically. This motivates a theoretical analysis
of one-armed bandit problems, to develop ideas of how different strategies are
optimally tuned. Specifically, the expected rewards of ε-greedy strategies are
derived, as well as proofs governing their optimal tuning.
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Chapter 1

Introduction

Sequential decision making is the act of answering the question “what should I
do next?” when faced with a series of tasks. A classic example is chess, where
the player has to choose one of a finite set of moves. This move will then impact
on the opponent’s next move, which in turn will impact on the player’s next
move, and so on until the game ends. Another example is daily selection of a
route to work, where past experiences and the current environment (weather,
time of day) will influence the decision each day.
These problems often require the decision maker (henceforth called an agent)

to learn as it goes along. In other words, the agent needs to interpret the
information gained from past experience in such a way that benefits the present
decision. For example in the game of chess, such learning involves continuously
analysing the opponent’s strategy to find an effective counter-strategy. In the
route selection example, the learning involves interpreting the performance of
previous routes to anticipate which route is best today. Moreover, such problems
inherently suffer from the exploration-exploitation trade-off, where the agent
must choose between what it believes is the best decision (exploitation) and
trying alternative decisions for potential future benefit (exploration).
This tradeoff has been extensively studied, for example, in the multi-armed

bandit problem (see [Sutton and Barto, 1998] for an overview), where the agent
must repeatedly select one of several arms to pull. Each such arm delivers a
stochastic reward and the agent receives a reward only from the arm that is
pulled. The objective then is to find a strategy for selecting arms that max-
imises total reward over a length of play. In most cases, the agent has no prior
knowledge of what reward to expect from each arm and must learn as it plays.
A good strategy simultaneously identifies and plays the best arm as often as
possible. Many real-world decision problems, in particular those with unknown
outcomes for different decisions, can be modelled using the bandit setting (see
Chapter 2 for details). For this reason, the multi-armed bandit problem is the
framework used to study sequential decision making problems in this work.
In many real-world settings, however, such decision making has to take place

in an environment in which there are other agents operating – these are called
Multi-Agent Systems (MAS). For example, consider a number of fire brigades,
ambulances and police vehicles dealing with a disaster management scenario (see
[Ramchurn et al., 2008]). Each emergency service vehicle must make simulta-
neous decisions in a potentially unknown environment, for example sequentially
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deciding which buildings to evacuate. Furthermore, there is an interdependence
between the actions of different agents and therefore there is a need for the
agents to coordinate their actions. Such systems are often decentralised, mean-
ing the agents act without a central coordinating agent and hence any single
agent can be removed without necessarily affecting the integrity of the system
[Ferber, 1999]. The impact of sequential decisions is often unknown by each
agent, therefore the need to balance exploration and exploitation remains.
In realistic settings, however, agents are typically able to communicate with

each other, such that agents can exchange useful information that benefits future
decision making [Fatima et al., 2004]. Moreover, communication can reduce the
need for an agent to explore different actions, as the gained information can
reduce the agent’s uncertainty. Nevertheless, communication can often be costly
or time-consuming [Krause et al., 2006], hence each agent must try to assess the
value of communicating with other agents. In the disaster management scenario
for example, the fire brigades can communicate with each other to coordinate
surveying different areas in order to improve efficiency and quickly identify fires.
If the location of the fires is clear to all agents, however, then there may be little
value in communicating such information as the best decision of each agent is
clear.
Many existing sequential decision making problems in MAS, studied in

stochastic games for example (see [Condon, 1992] for a review), have rewards
that are known to each agent or easily learnt over play. Conversely, multi-
armed bandit problems study scenarios in a single-agent setting where the ex-
pected reward of each arm is unknown a priori and the reward of a pull is
then observed with noise, such that learning the true expected reward of an
arm involves repeated plays. Given this background, in this work we extend
the multi-armed bandit problem to a simple MAS, to investigate the ideas of
exploration-exploitation in a multi-agent environment where rewards are un-
certain and observed with noise. In particular, the multi-armed bandit with
covariates framework is used, where the reward of each arm is a function of
sequentially observed side information represented as a covariate (see Section
2.1.1 for details). Such side information might include for example sensor read-
ings from various smoke detectors in the aforementioned disaster management
scenario. In our framework, the covariate is only partially observed by each
agent, but missing observations can be communicated (at a cost) between the
agents. Each agent’s action decision is then to decide which arms to pull, from
the subset of arms that it controls.
For this novel framework, strategies that select communication and action

decisions are constructed and studied, where the need to balance exploration
and exploitation is specifically addressed. Furthermore the concept of an agent
exploring communication decisions is introduced, where an agent may benefit
from communicating with another agent even if this appears to have no im-
mediate value, as this helps the agent’s learning. Building on this idea, it is
shown through empirical evaluation that agents can indeed benefit from explor-
ing by communicating and not just from exploring by acting, and the amount
of exploration required from the two exploration methods are interdependent.
This novel extension of bandit problems to MAS decentralises the control

of the arms between the set of agents, such that no single agent acts on all
the arms (unlike most studies of bandit problems). Moreover, any agent can
pull as many arms as it wishes at any given time from the subset of arms it
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controls, which is analogous to an agent simultaneously playing a series of one-
armed bandits with covariates (introduced in more detail in Section 2.1.1). In
this problem, the agent has a choice of pulling between an arm with a priori
unknown expected reward and an arm with known expected reward. In such
situations, the agent must learn the relationship between the covariate and the
arm with a priori unknown expected reward in order to identify the best arm
to pull at each time-step. Exploration over exploitation refers to the agent
pulling this arm even when the expected reward is less than the arm with
known expected reward, as this improves the agent’s learning. To this end, we
introduce a novel approach of reasoning about the problem, and derive new
theoretical results and proofs about the performance of different strategies with
a 1-dimensional covariate. Specifically it is shown that the agent might benefit
from some exploration, but this depends on the chosen strategy.
The theoretical results developed for the one-armed bandit problem will be

extended, in future work, to reason about how the agents should explore in the
novel multi-agent bandit framework. In particular, for this problem the benefit
of exploration has thus far only been demonstrated empirically, but theoretical
bounds and expectations can be developed to guarantee performance of certain
strategies under expectation. Moreover, theoretical ideas can be used to develop
on-line tuning of different strategies, such that these strategies can adapt to the
environment and perform more (or less) exploration when this is required. This
is particularly important for applications to realistic scenarios, where parameters
of the model that affect the optimal tuning, are usually unknown a priori.
Taking this work together, the vision of this research is to find optimal

strategies in a variety of sequential decision making problems, for both single
and multi-agent systems, where effective strategies require balancing exploration
and exploitation. A key focus is to study frameworks with practical applications
and to provide empirical evidence of the performance of different strategies. We
also aim to theoretically reason about the impact of the exploration-exploitation
tradeoff to an agent’s reward. This allows us to find the optimal tuning of dif-
ferent exploration strategies (off-line), with the potential to use these ideas to
develop strategies that are tuned on-line and are thus adaptive to the environ-
ment and the actions of other agents.
The structure of this report is as follows. In Chapter 2, the multi-armed

bandit and one-armed bandit problems are introduced, together with a review
of existing strategies for arm selection that attempt to balance exploration with
exploitation. Existing sequential decision making problems in MAS are also
reviewed, including studies of stochastic games. In Chapter 3, the multi-agent
bandit problem is introduced. A strategy for arm selection and communication
decisions is formulated for this novel framework, together with an empirical
performance evaluation. In Chapter 4, theoretical results for strategies for one-
armed bandit problems are presented, as well as proofs governing their optimal
tuning. Conclusions and planned future work can be found in Chapter 5.
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Chapter 2

Background

The multi-armed bandit problem is the framework used to study sequential
decision making problems in this work. This problem is of particular interest as
it specifically addresses the need to balance exploration and exploitation in an
unknown environment. To this end, we review the multi-armed bandit problem
in Section 2.1, with a particular focus on the one-armed bandit problem with
covariates studied in Chapters 3 and 4. Furthermore, the multi-agent bandit
problem studied in Chapter 3 is an extension of the bandit framework in the
direction of MAS. With this in mind, we review some existing sequential decision
making problems in MAS in Section 2.2.

2.1 The Multi-Armed Bandit Problem

The multi-armed or k-armed bandit problem is a (discrete action space) se-
quential decision making framework commonly studied in the fields of statistics
[Berry and Fristedt, 1985; Gittins, 1989], machine learning [Auer et al., 1995;
Sutton and Barto, 1998] and economics [Rothschild, 1974; Azoulay-Schwartz
et al., 2004], amongst others. Originally documented in [Robbins, 1952], the
problem is based on the analogy of a slot machine or one-armed bandit. The
agent must select one of several arms to pull where a reward is only received
from the arm that is pulled. The game is played repeatedly and the objective is
to find a selection strategy that maximises total cumulative reward. The agent
is commonly assumed to have little or no prior knowledge about the reward
structure of each arm and thus should explore rewards from different arms in
an effective strategy. Ultimately, the best strategies are those that incorporate
the need to balance exploration (pulling different arms to identify the best)
and exploitation (pulling the expected best arm to maximise reward). This
trade-off has been widely studied in reinforcement learning [Kaelbling et al.,
1996], resource allocation problems [March, 1991; Benner and Tushman, 2003],
product development [Rothaermel and Deeds, 2004], as well as by economists
in analysing buyer/seller scenarios [Azoulay-Schwartz et al., 2004].
Multi-armed bandit problems have applications in areas as diverse as clinical

drug trials [Woodroofe, 1979; Hardwick et al., 1998], online auctions [Blum et al.,
2003], sensor management [Krishnamurthy and Evans, 2001; Hero et al., 2006],
pricing goods [Weitzman, 1979; Azoulay-Schwartz et al., 2004], web advertising
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[Pandey et al., 2007; Kleinberg et al., 2008] and many other decision-making
problems, see [Sutton and Barto, 1998].
Against this background, Section 2.1.1 outlines typical frameworks for study-

ing multi-armed bandit problems, including bandits with covariates and the
one-armed bandit problem studied in this work. Section 2.1.2 then describes in
more detail strategies that can be used for the one-armed bandit problem with
covariates.

2.1.1 Multi-Armed Bandit Frameworks

In the multi-armed or k-armed bandit problem, the agent pulls arm i at time
t and receives a reward r(t) = ri(t) from that arm only. The objective is to
find a strategy that maximizes the sum of the collected rewards after time T ,
R(T ) =

∑T
t=1 r(t). This problem has been studied extensively both in finite

time T [Auer et al., 2002; Vermorel and Mohri, 2005] and as T → ∞ [Lai and
Robbins, 1985; Auer et al., 1995]. Furthermore, many different frameworks
have been developed that determine how the rewards of each arm ri(t) are
generated [Berry, 1972; Ginebra and Clayton, 1995; Cesa-Bianchi and Fischer,
1998]. In this work we are concerned with maximising reward in finite time
because this is more relevant and applicable to real-world scenarios, including
those modelled by MAS. Moreover, strategies that are asymptotically optimal
can perform poorly in finite time [Vermorel and Mohri, 2005].
The stochastic multi-armed bandit considers the problem where each

arm i has reward ri(t) at time t generated from a probability distribution Ri.
The agent is typically assumed to have no prior knowledge of these distribu-
tions and the distributions are assumed to be fixed over time [Sutton and Barto,
1998]. Finite time strategies for arm selection have been widely developed in
this problem, in particular Upper Confidence Bound (UCB) methods in [Auer
et al., 1995] for rewards bounded in [0, 1] and the Price Of Knowledge Expected
Reward (POKER) strategy [Vermorel and Mohri, 2005] for normally distributed
rewards. Both strategies construct an inflated reward estimate for each arm,
which is the mean observed reward added to an additional term that is inversely
related to the number of pulls. The arm with the highest inflated reward esti-
mate is pulled. Inflating the reward estimate in this way encourages exploration
of arms that have been infrequently pulled.
The stochastic multi-armed bandit problem was also considered in [Gittins,

1989] for a formulation of the problem where the reward distribution of an arm
changed if that arm was pulled. It was shown that the optimal arm could be
selected using the Gittins indices by considering the future reward distributions
of each arm independently. Specifically, the Gittins indices are an index for
each arm, which is the expected reward of staying on an arm for an optimal
length of time. The Gittins rule is then to pull the arm with the highest index
value. This method significantly reduces the complexity of the computation
and the optimality of Gittins indices have since been proved in [Whittle, 1980;
Weber, 1992; Ishikida and Varaiya, 1994; Tsitsiklis, 1994]. In this formulation,
however, the reward distributions are assumed to be known to the agent a
priori (see [Ishikida and Varaiya, 1994] for details) and hence the problem is one
of optimization rather than balancing exploration and exploitation (see [Auer
et al., 2003, p49]). In this work we consider the multi-armed bandit problem
with unknown reward distributions a priori, therefore the Gittins indices are
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not considered in the rest of this report.
The non-stochastic or adversarial multi-armed bandit problem was

studied in [Auer et al., 1995, 2003] where the rewards of each arm were set a
priori by an adversary. The reward process requires no statistical assumptions,
however rewards generated by the adversary are bounded in [0, 1]. A novel strat-
egy, Exp3, was shown to achieve bounded optimal performance asymptotically.
Although it was shown in [Vermorel and Mohri, 2005] that Exp3 performed
badly in an empirical performance evaluation in finite time, for a version of the
stochastic bandit problem. Moreover, the objective of the adversarial frame-
work is to identify the best arm to repeatedly play for all iterations, rather than
finding the best arm at each individual iteration (as we are concerned with in
this report). This is a restrictive assumption in realistic scenarios where the op-
timal arm to pull can change between iterations. For this reason, the adversarial
framework is not considered in this report.
The one-armed bandit problem is a special case of the multi-armed ban-

dit problem. The agent must choose between an arm with unknown expected
reward and an arm with known expected reward, henceforth these arms shall
be called A and B, respectively. The problem, in this form, was first studied
in [Chernoff, 1967] for sequential clinical trials, where a treatment had to be
chosen between a drug with known probability of success and a new drug with
unknown probability of success. Subsequently, the one-armed bandit problem
has been extensively studied, for example in [Kumar and Seidman, 1981; Glaze-
brook, 1983; Rosenberg et al., 2007]. This framework is extensively studied in
Chapters 3 and 4, where the agent has additional covariate information.
The bandit problem with covariates, first introduced in [Woodroofe,

1979], considers the scenario where the agent observes side information prior to
each pull. In this problem, the expected reward of each arm is a function of this
side information represented in the form of a covariate. Parameters that relate
the covariate to the arm with unknown expected reward have to be learnt by the
agent. It was argued in [Woodroofe, 1979] that such side information is likely to
be present in many applications and incorporating this into bandit problems is
a more realistic representation of real-world problems. For example, covariate
information such as age, sex, height and weight could influence the probability
of success of a drug in sequential clinical trials (see also [Sarkar, 1991]) and
readings from sensors could affect actions in a disaster management scenario.
More recent studies of bandits with covariates have included [Clayton, 1989] for
the one-armed bandit problem, [Wang et al., 2005] for the two-armed bandit
problem and [Ginebra and Clayton, 1995; Auer, 2000; Yang and Zhu, 2002;
Pavlidis et al., 2008a,b] for multi-armed bandit problems.
In more detail, we consider the reward structure used in [Ginebra and Clay-

ton, 1995; Yang and Zhu, 2002; Pavlidis et al., 2008a,b], for the rewards of arms
A and B in the one-armed bandit problem. Specifically, the reward of each
arm is modelled as a linear function of the covariate Xt = (x1,t, . . . , xp,t)

T with
additive observation noise:

rA(t) =

p∑

j=0

αjxj,t + ηt, ηt ∼ N (0, σ
2
η),

rB(t) =

p∑

j=0

βjxj,t + ωt, ωt ∼ N (0, σ
2
ω), (2.1)
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where x0,t = 1. Here, α0 and β0 correspond to the intercepts of the two linear
equations. The coefficient vector β is known to the agent a priori, but α is
unknown and estimated from observations. A linear model was also used in
[Woodroofe, 1979] for the one-armed bandit problem and in [Sarkar, 1991] for
a more general reward structure based on the exponential family model.
Other reward structures considered were Bernoulli rewards where the co-

variate is related to the Bernoulli parameter using a link function [Clayton,
1989; Langford and Zhang, 2007] for the one-armed and multi-armed bandit
problem, respectively and also [Wang et al., 2005] considered any continuous
reward distribution with one unknown parameter for each arm in a two-armed
bandit problem. Both of these alternative reward structures, however, consider
covariates that can be related to the reward function using just one parameter
(unknown a priori). This is considered a restrictive assumption because in re-
alistic applications, covariate information can be multi-dimensional, and with
these models there is only one parameter with which to link this to the reward
function. For this reason, we use the model of (2.1) where each covariate value
xj,t impacts on the reward rA(t) (for example) with its own parameter αj . This
is hence a more flexible model to capture the effect of side information.

2.1.2 Strategies for the One-Armed Bandit Problem with
Covariates

Most advances in the one-armed bandit with covariates have been concerned
with finding strategies that maximise reward over infinite-length play. For ex-
ample, [Woodroofe, 1979; Sarkar, 1991] proved, using a Bayesian formulation,
that a myopic or greedy strategy is asymptotically optimal for a given class
of models. Specifically, the greedy strategy always selects the arm the agent
believes is best, given the covariate value and existing estimates from prior
observations.
In contrast, in this work we are concerned with maximising reward in finite

time. This is because the length of play is finite in many real applications. For
example, the number of patients in a clinical trial, or the number of times a
consumer repurchases a specific good (choosing sequentially between a set of
suppliers is another common application of bandit problems [Azoulay-Schwartz
et al., 2004]). We are therefore seldom motivated by strategies that are only
optimal asymptotically.
The greedy strategy can be optimal asymptotically but in finite time the

strategy often fails to identify the optimal arm, as insufficient exploration is
performed. For this reason, the greedy strategy has been found to perform
badly in a multi-armed bandit with covariates setting [Pavlidis et al., 2008b],
particularly as the number of arms increases. Nevertheless, if the system is very
simple to learn (the variance of the noise term is low, or one arm is clearly better
than all others) then a greedy strategy can perform well or even optimally in
finite time, as in [Macready and Wolpert, 1998] for a 2-armed bandit problem.
Nevertheless, the greedy decision strategy is often used as a benchmark strategy,
due to its simplicity and the fact that it does not require a tuning parameter.
Certain strategies, however, include choosing explorative pulls for potential

future gain. In the one-armed bandit problem this involves pulling the arm
with unknown expected reward (as the other arm requires no exploration). In
particular, we consider the ε-greedy and ε-first strategies. In an ε-greedy
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strategy (first described in [Watkins, 1989]), the agent is greedy with probability
1 − ε, but explores with probability ε. In an ε-first strategy [Even-Dar et al.,
2002], the agent performs all exploration first. In a game of finite length T , the
agent pulls the arm with unknown expected reward for the first dεT e iterations,
and then exploits by being greedy for the remaining b(1−ε)T c iterations. Setting
ε = 0 recovers greedy selection for both strategies.
An empirical performance evaluation of various strategies in [Auer et al.,

2002; Vermorel and Mohri, 2005], for a finite-time stochastic multi-armed ban-
dit problem, led to the conclusion that a well tuned ε-greedy strategy [Auer
et al., 2002, p.247] or ε-first strategy [Vermorel and Mohri, 2005, p.446], almost
always performed better than all other strategies. ε-greedy is also a popular
exploration strategy for problems in reinforcement learning [Sutton and Barto,
1998; Shani et al., 2005; Neumann et al., 2007]. For these reasons, we focus on
these strategies in the one-armed bandit problem with covariates studied in this
work.
For both strategies, larger values of ε encourage additional pulls of arm A,

helping the agent to learn the coefficient vector α in (2.1) more quickly. This
however comes at the expense of exploiting the agent’s current knowledge. The
parameter ε therefore has to be tuned to balance the benefit of learning quickly
and the cost of having to do explorative steps. Setting the ε parameter, however,
is difficult for both strategies and a badly tuned ε-first or ε-greedy strategy can
perform poorly in comparison with other arm selection strategies (as shown in
[Auer et al., 2002; Pavlidis et al., 2008b] for example) and further motivates the
detailed analysis of these strategies – in particular the development of strategies
that can be tuned on-line.
Note that for the same value of ε, an ε-first strategy will outperform the ε-

greedy strategy under expectation in finite time, as demonstrated in [Vermorel
and Mohri, 2005]. This is due to the fact that the same number of explorative
actions will have the same short-term cost to the agent, regardless of when they
are taken; however, if the explorative actions are taken earlier (as is the case
with ε-first), then the agent will perform better on the exploitive (or greedy)
actions, as they are taken later and the agent has more past observations to
learn from.
A drawback of the ε-first strategy, however, is that the parameter ε cannot

be easily set in a game of unknown length. Note also that this strategy would
not perform well in the dynamic problem considered in [Pavlidis et al., 2008a]
where the coefficients of the reward functions are changing and exploration is
required throughout the game, not just at the beginning. Nevertheless, in most
studies of bandits with covariates these coefficients are assumed to be static.
Hence for the finite time frameworks used in this report, we consider both the
ε-greedy and ε-first strategies.
Other strategies for bandits with covariates include interval estimation

(introduced in [Kaelbling, 1993]) where the agent, rather than selecting the
highest expected reward amongst arms, would instead select the highest upper
confidence bound of the arms (see [Pavlidis et al., 2008b]). This corresponds to
attributing an inflated reward estimate to each arm (similar to the Exp3 strategy
in [Auer et al., 1995] for the non-stochastic bandit problem), but this estimate
would be more optimistic for arms that have not been pulled many times, as
the confidence interval is much wider. Another strategy is softmax selection,
first proposed in [Luce, 1959], which involves randomly selecting an arm with
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a weighted probability based on the likelihood of it being the best arm. These
strategies were however generally shown to empirically perform worse than a
well tuned ε-greedy or ε-first strategy in [Vermorel and Mohri, 2005; Pavlidis
et al., 2008b]. This further motivates the use of ε-greedy and ε-first strategies
in the extensions of the bandit problem studied in this work.

2.2 Sequential Decision Making in MAS

A multi-agent system (MAS) is a system composed of interacting agents. Exam-
ples of scenarios that can be modelled as MAS include online trading [Rogers
et al., 2007], disaster response [Ramchurn et al., 2008] and sensor networks
[Rogers et al., 2005]. Now, multi-agent learning and decision making is central
to the operation of many MAS [Littman, 1994; Schaerf et al., 1995; Shoham
et al., 2004], particularly because agents often need to make decisions whilst
learning the motivations and goals of other participating agents. In this work a
new framework for sequential decision making in MAS is proposed in Chapter
3, which is based on the multi-armed bandit problem. This framework allows
for a detailed analysis of the exploration-exploitation tradeoff in a multi-agent
context, in an environment where distributional parameters are unknown to the
agents and rewards are observed with noise.
In more detail, sequential decision making problems in MAS have been

widely studied in stochastic games [Erev and Roth, 1998; Bowling and Veloso,
2001; Chalkiadakis, 2003; Hu and Wellman, 2003; Hansen et al., 2004] and
Markov games [Littman, 1994; Kaelbling et al., 1996; Claus and Boutilier, 1998;
Wang and Sandholm, 2003; Chapman et al., 2009]. A stochastic game [Shapley,
1953] is a dynamic and competitive game between one or more agents, where
the game changes state over time. Specifically, the agent selects an action and
receives a reward that is dependent on the state of the game and the actions of
others. The state of the game subsequently changes according to some proba-
bility transition dependent on the previous state and the actions chosen by all
the agents. Stochastic games that have state changes that possess the Markov
property are called Markov games. The Markov property states that given the
state of the game at time t is known, transition probabilities to the state at time
t+ 1 are independent of all previous states and actions [Littman, 1994].
Now, a stochastic bandit problem can be seen as a single-state stochastic

game, whereas a bandit problem with covariates can be viewed as a stochastic
game where the state changes (i.e. the values of the covariate) are independent
of action choices and the current state. Nevertheless, the fundamental difference
between studies of bandit problems and stochastic games, are that in stochastic
games the expected reward received by an agent when the game is in a particular
state is known, for any joint set of actions between the agents. The learning
process in these games thus corresponds to the agent learning a good strategy
in response to the actions of other agents. In a bandit problem however, the
expected reward of any action is unknown a priori and precisely what the agent
must learn to identify the best arm – this feature is of particular interest, as
in realistic applications agents will seldom know precisely which actions yield
which rewards. This motivates the extension of the bandit problem to MAS
constructed in this work, where exploration-exploitation of sequential action
decisions can be investigated in a multi-agent environment.
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Sequential decision making in MAS has also been considered in [Teacy et al.,
2008] where a set of enquiring agents request services from a set of providing
agents. The agents must learn the trustworthiness of the service provider and
thus face the exploration-exploitation dilemma. A strategy for selecting a ser-
vice provider is formed using the Value of Perfect Information (VPI) [Dearden
et al., 1998] where each service provider has a value based on its predicted
trustworthiness plus the benefit of learning its true trustworthiness. The ser-
vice provider with the highest VPI is chosen. This is analogous to UCB and
POKER methods used for bandit problems, where an inflated reward estimate
is used for each possible action. The VPI, however, adopts a myopic approach
(for tractable calculation) and assumes that the true trustworthiness of an agent
is observed after selection. This approach has been shown to perform well in
a variety of frameworks and applications including coalition formation [Chalki-
adakis and Boutilier, 2008] (which investigates frameworks with dynamically
forming partnerships or teams of cooperating agents).
In most MAS, on the other hand, agents can communicate with each other

in order to aid their learning [Tan, 1997; Fatima et al., 2004], as this is a realistic
feature of MAS applications (for example, a number of fire brigades and ambu-
lances operating in a disaster management scenario). In fact the VPI, which is
used to value interactions or coalitions between agents, can be interpreted as the
value of communication between agents (as this is a form of interaction). With
this in mind, we allow communication between the agents in our multi-agent
bandit problem. Specifically, we use the bandit with covariates framework where
each agent observes a covariate prior to choosing which arms to pull. In our
problem, however, the agents might only partially observe this covariate and will
have to make action decisions with incomplete covariate information. Moreover,
we allow the agents to communicate unknown covariate values, although this
comes at a cost to the agent’s reward. There is hence a tradeoff to each agent
between the value and cost of communication. An agent also has to learn the
value of communicating with a particular agent in future sequential decisions,
and thus faces an additional exploration-exploitation dilemma (together with
the arm selection dilemma).
The method developed to value this communication is similar to the VPI,

in that a myopic approach is used for tractability. Furthermore, we show that
the agent will benefit from additional exploration of communication decisions
in our framework. This is because the myopic assumption, that the true value
of communication between two agents can be learnt from one play, is restrictive
in bandit problems where this will take several repeated plays to learn.
Communication between agents in sequential decision making problems has

already been considered in Bayesian games [Gerardi, 2004], where agents can
communicate information before choosing actions. A Bayesian game [Harsanyi,
1967] is a game where information about the rewards of other agent’s actions is
unknown or incomplete. The extension to games where agents can communicate
is based on the idea of cheap talk [Farrell and Rabin, 1996], where agents can
freely communicate without directly affecting the rewards of the game to each
agent. This form of communication is therefore strategic, as agents can attempt
to mislead other agents with false information for potential self-benefit [Farrell,
1987]. Communication in games has also been considered in network formation
games (see [Jackson et al., 2003] for a review). A network formation game is a
game where the agents must decide whether or not to form links with each other
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to form a network. In some studies of this problem (see [Aumann and Myerson,
1988] for example), agents have been allowed to communicate preferences to
each other, at no cost, before these links are made.
Our framework however, has communication that is costly rather than free,

as the exchange of information between agents is often costly in realistic sce-
narios (for example in sensor networks [Krause et al., 2006]). In some network
formation games [Bala and Goyal, 2000], forming links has an associated cost,
but only to the agent initiating the link – this cost is analogous to the cost
of communicating with other agents in our framework. The difference is that
these links cannot be broken in the network formation game and thus the cost is
only incurred once, whereas in our framework communication costs are incurred
repeatedly if the agent chooses to communicate prior to each decision (as in the
sensor network case [Krause et al., 2006]).
In our approach, we value the benefit of communication against the cost

at each iterative step, to determine sequential communication decisions. This
approach has been considered in [Williamson et al., 2009], where reward shaping
is used to value communications between agents. The concept behind reward
shaping is that agents have different beliefs about the interactions of differ-
ent actions and rewards. If these beliefs are highly divergent then agents may
wish to engage in communication, however if these beliefs are similar then each
agent can independently calculate the same expected reward for each joint ac-
tion without incurring any unnecessary communication costs. Communication
can hence be valued by estimating the belief divergence of other agents in the
system. Our approach considers the case where covariate information is dis-
tributed amongst agents, such that beliefs about future rewards are naturally
divergent. In addition, our system is simplified in that an agent need not con-
sider the potential actions of other agents and coordination of joint actions is
not required. Nonetheless, the concept of valuing the information that other
agent’s possess against the cost of acquiring this information is the same in
the two frameworks. In particular, if the expected rewards calculated by each
agent (and hence subsequent optimal actions) are highly divergent, then there
is greater value of communication in both frameworks.
Multi-agent approaches to bandit problems have been previously considered

in [Le Ny et al., 2006]; this study addressed bandits where the rewards of the
arms evolved to new states over time, similar to stochastic games. Although
this work, again as with stochastic games, assumes knowledge of how future
rewards are related to current actions and is therefore an optimization problem
(and uses ideas similar to the Gittins indices [Gittins, 1989]). This assumption,
as previously discussed, is not made in the bandit problem considered in this
work.

2.3 Summary

In this chapter we have reviewed the multi-armed bandit problem, a sequential
decision making problem used to study the exploration-exploitation tradeoff.
In the following chapters we use the bandit with covariates setting (reviewed in
Section 2.1.1) to study exploration-exploitation in various problems. In partic-
ular, we use the ε-greedy and ε-first strategies for the novel frameworks studied,
as these are popular and well-performing strategies for exploration (as reviewed
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in Section 2.1.2).
In the next chapter, we extend the bandit framework to study the exploration-

exploitation tradeoff in environments with multiple agents. To this end, we have
reviewed existing studies of sequential decision making problems in MAS in Sec-
tion 2.2. Most of these studies (for example those in stochastic games) assume
each agent has prior knowledge of its reward function. This motivates the ex-
tension of bandits to MAS, as no such prior knowledge is assumed in the bandit
setting. The novel extension however, is an initial step in the direction of MAS,
as the rewards to each agent are unaffected directly by the actions of other
agents (in contrast to stochastic games for example). The problem presented is
therefore not a game in the formal game theoretic sense, but does nevertheless
consider the interaction of agents through communication – a key feature of
many scenarios modelled by MAS. To this end, we use similar ideas to the VPI
techniques used for coordination and coalition formation problems. Moreover,
the framework will be extended (as part of future work) to bring in ideas from
stochastic game theory.
The multi-agent framework of the next chapter motivates a theoretical in-

vestigation of the ε-greedy and ε-first strategies, where in Chapter 4, we present
a novel approach for reasoning about these strategies when used in a one-armed
bandit problem with covariates. This study is also motivated by the fact that
we wish to find strategies that maximise reward in finite time (as opposed to
asymptotically), which is more relevant to realistic scenarios modelled by both
bandit problems and MAS.
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Chapter 3

A Multi-Agent Bandit
Problem

To date, multi-armed bandit problems have been considered in a single-agent
context, where one agent decides an appropriate action at each time-step (as re-
viewed in Section 2.1). In this chapter, however, the bandit problem with covari-
ates is extended to a multi-agent decentralised version, to study the exploration-
exploitation tradeoff in an environment with multiple agents. We use the bandit
with covariates problem (see Section 2.1) except each agent might only observe
a subset of the covariate, representing its partial view of the world. Further-
more, we allow agents to initiate communication between themselves (at a cost)
exchanging potentially useful covariate values that were previously unknown to
the agents. The communication of information between agents is an important
feature of scenarios modelled by MAS, as motivated by the literature reviewed
in Section 2.2.
The structure of this chapter is as follows. In Section 3.1 we introduce the

multi-agent bandit framework. In Section 3.2 we construct an effective strategy
for communication and arm selection decisions that addresses the exploration-
exploitation tradeoff. In particular, we propose a novel method of valuing com-
munication between agents, called VOC, which finds the best myopic commu-
nication decision and we also propose novel exploration strategies for this prob-
lem called “double ε-greedy” and “double ε-first”, which consider exploration of
communication decisions as well as action decisions.. Finally, we test the double
ε-first strategy empirically in section 3.3, and discuss the significance of these
findings. Summary remarks follows in Section 3.4.

3.1 The Multi-Agent Bandit Framework

Consider a k-armed bandit and let K denote the set of arms, where |K| = k.
Now consider a set of agents N (|N | = n), where each agent ai controls a disjoint
subset Ci of K for i = 1, . . . , n (i.e. the assignment of arms to agents forms a
partition of the set of arms):

Ci ∩ Cj = ∅ , ∀i, j, i 6= j , where Ci ⊆ K.
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Each arm is controlled by one agent only, thus avoiding potential conflicts in
decisions for any arm. In this version of the bandit problem, each agent ai can
pull any number of arms from subset Ci at each time step. Each arm c ∈ K has
a reward function rc(t) based on a p-dimensional covariate Xt = (x1,t, . . . , xp,t)

T

at time t (where xi,t is a random variable), as used in [Ginebra and Clayton,
1995; Yang and Zhu, 2002; Pavlidis et al., 2008a,b] (see Section 2.1 for a review
on bandits with covariates):

rc(t) =

p∑

j=0

αc,jxj,t + ηc,t , ηc,t ∼ N (0, σ
2
ηc
), (3.1)

for c = 1, . . . , k and for t = 1, . . . , T , where x0,t = 1 and T is the length of the
game. The covariate Xt is generated from a fixed multivariate distribution, with
parameters unknown to the agents. The coefficient vectors αc for c = 1, . . . , k
are predetermined and also unknown to the agents, and precisely what the
agents must learn.
Each agent ai only observes a subset Yi,t of Xt, as information relevant to an

agent is often distributed between agents in a multi-agent system. The agent can
however request missing covariate values from another agent at a cost (denoted
Πt(ai, aj)). This is called the “communication stage” and is an important com-
ponent of extending bandit problems to realistic MAS. Agents are assumed to
know which covariates other agents have observed (or alternatively if a covariate
value is requested from an agent that does not have this value then no cost is
incurred). Agents are also assumed to receive covariate values truthfully if they
are requested – this is feasible because there is no strategic communication in
this framework as there is no competitive game structure. Agents can request
several covariate values from several agents and the communication costs can
be dependent on any function of X or t, which agents are communicating or the
number of communications (which can also be limited by bandwidth capacity
[Rogers et al., 2005]). In the simplest case, the communication cost is a con-
stant value independent of X or t and is equal and known to each agent (this
would often be the case that the cost of communication is not dependent on the
information passed).
After the communication stage, each agent ai must then make the decision

as to which arms to pull from Ci; the agent only collects rewards from arms that
are pulled. This is called the “action stage”. Each agent therefore has a “two-
stage” decision process which happens strictly sequentially; though effective
strategies will consider the impact of one decision on the other. Algorithm 3.1
outlines the basic procedure each agent follows.
The agent’s best strategy for communication and action depends on how its

reward function Rai(t) relates to the rewards of its action selections and also
the communication cost function. The simplest form is:

Rai(T ) =

T∑

t=1

rai(t) , rai(t) =
∑

c∈Si,t

rc(t)−
∑

j 6=i

Πt(ai, aj), (3.2)

where Si,t is the subset of arms pulled by agent ai at time t. This reward
function is simply the sum of all observed rewards over the game minus any
communication costs. With this reward function, an agent will want to pull an
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Algorithm 3.1 Two-stage decision process for agent ai
for t = 1 to T do
Observe Yi,t ⊆ Xt
for d = 1 to p do
if xd,t 6∈ Yi,t then
Choose whether or not to request xd,t from aj where xd,t ∈ Yj,t
If yes, incur communication cost Πt(ai, aj).

end if
end for
Choose arms to pull Si,t ⊆ Ci
Receive reward rai(t)

end for

arm if the expected reward is positive. This creates a series of interdependent
one-armed bandit problems with covariates (as introduced in Section 2.1), with
the reward structure given in (2.1) where the reward of arm B is always zero
(i.e. the reward coefficient of the arm with known expected reward is β = 0
and the added noise term has a degenerate distribution). The interdependence
between the one-armed bandit problems occurs because the rewards are based
on the same covariate Xt and the benefit of receiving one additional covariate
value is shared between the arms, but the communication cost is only incurred
once by the agent. Therefore, the strategies for one-armed bandit problems
with covariates introduced in Section 2.1.2, are applicable to this framework,
in particular the ε-greedy and ε-first strategies used to construct the double ε-
greedy and double ε-first strategies introduced in the next section, respectively.
There are thus two learning problems for the agents: estimation of parame-

ters subject to noisy data and a missing value problem. These have to be handled
concurrently with reward seeking behaviour. The more arms that are pulled,
the faster the learning; however rewards can be negative, so the exploration-
exploitation tradeoff exists such that pulling an arm can still benefit the agent’s
overall reward even if the observed reward for that arm is negative. Moreover,
the additional communication decision makes the problem of finding a good
strategy more subtle (in that communication and action decisions have to be
jointly considered), and hence a novel strategy is needed – in particular because
exploration-exploitation of both action and communication decisions have not
previously been considered in the same framework. This is discussed in more
detail in the next section.

3.2 A Novel Strategy for Action and Communi-
cation Decisions

This extension to the multi-agent scenario introduces a two-stage decision pro-
cess for each agent, as outlined in the previous section. In the communication
stage, agents choose which missing covariates they would like to gain, and then
request these values at a corresponding cost. There are essentially two reasons
for an agent to communicate: the myopic gain to an agent’s subsequent ac-
tion decision and the improved learning of unknown parameters. The myopic
gain can be valued using the Value Of Communication (VOC) constructed in
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Section 3.2.1. There is an exploration-exploitation tradeoff however with the
agent’s communication decision, specifically the agent can now explore via com-
munication and not only by action, because communication removes missing
information and speeds up the agent’s learning, which in turn benefits the ex-
pected reward of future decisions. To this end, we construct a double ε-greedy
strategy and double ε-first strategy in Section 3.2.2, which both encourage ex-
ploration by communication, where the greedy decision is to pick the optimal
myopic action using the VOC. Similarly, in the action stage, agents have the
same two reasons to pull arms: the myopic gain to the reward function and the
improved learning of unknown parameters. The optimal myopic action can be
found as part of the VOC and the need for exploration forms part of the double
ε-greedy/ε-first strategy.
Finally, whether or not an agent has communicated or acted, estimated

parameters must be updated from what has been observed. In a bandit problem
with fully observed covariates this could be done using regression (as in [Pavlidis
et al., 2008b]), however in this framework an agent must handle missing data
during parameter estimation. The agent has two basic choices of how to deal
with missing data [Scheffer, 2002]. The first is case deletion, which in standard
inference problems can be either listwise (deleting an entire case if it contains
missing data) or pairwise (cases are only deleted if they contain missing data
in the analysis being carried out). The second method is imputation, which
involves estimating the missing values dependent on other values that have been
observed. In the context of our problem, the agent estimates all the reward
coefficients using linear regression, so the deletion would have to be listwise and
hence this method throws away a lot of data when the agent does not observe
the full covariate. For this reason, we use imputation. Specifically, we adopt
a maximum likelihood approach and use the Expectation-Maximisation (EM)
algorithm (outlined in Section 3.2.3). We can combine the EM algorithm with
linear regression to update estimated reward coefficients in an effective way, in
the presence of missing data.

3.2.1 The Value Of Communication (VOC)

Agent ai observes a subset of covariates Yi,t at time t. After the communication
stage the agent will observe a subset of covariates Zi,t ⊇ Yi,t. Agent ai controls
a subset of arms Ci ⊆ K and must decide which arms c ∈ Ci to pull. If agent
ai has a reward function given by (3.2) then the agent would pull arm c ∈ Ci if
E(rc(t)|Zi,t) > 0 where:

E(rc(t)|Zi,t) = A+
∑

xd,t 6∈Zi,t

αc,d

∫
xd,t p(xd,t|Zi,t)dxd,t

A = αc,0 +
∑

xd,t∈Zi,t

αc,dxd,t, (3.3)

where rc(t) is given by (3.1). Equation (3.3) is the myopic reward to agent ai
for pulling arm c at time t. Agent ai can then find the optimal subset of arms
Si,t ⊆ Ci to pull at time t using Algorithm 3.2.
Before agent ai communicates, its expected reward at time t is the Value Of
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Algorithm 3.2 Optimal myopic action for agent ai at time t

Observe Zi,t ⊆ Xt
for c = 1 to k do
if c ∈ Ci and E(rc(t)|Zi,t) > 0 then
c ∈ Si,t
end if
end for
Pull arms Si,t ⊆ Ci
Receive reward rai(t)

Silence (VOS) given by:

VOSai =
∑

c∈Ci

max (0,E(rc(t)|Yi,t)) , (3.4)

note that the VOS is bounded below by zero, corresponding to the agent pulling
no arms at time t.
Agent ai can gain a subset of covariates Di,t ⊆ Y Ci,t by communication. If

agent ai knows the joint distribution of Xt then it can find the VOC for the
subset Di,t. This is given by:

VOCai,Di,t =
∑

c∈Ci

VOCc,Di,t −
∑

j 6=i

Πt(ai, aj), (3.5)

where,

VOCc,Di,t

=

∫
max



0, B +
∑

xd,t∈Di,t

αc,dxd,t



 p(xDi,t |Yi,t)dxDi,t

B = αc,0 +
∑

xd,t∈Yi,t

αc,dxd,t

+
∑

xd,t 6∈Di,t∩Yi,t

αc,d

∫
xd,t p(xd,t|Yi,t)dxd,t,

The VOC reflects the probability that the expected reward of an arm after
communicating Di,t is negative or positive. In the instances where this is nega-
tive the agent would not pull that arm and thus receive no reward, and still incur
all costs of communication. The VOC is thus the expectation of the reward to
agent ai at time t if it requests covariates Di,t. Agent ai can maximise this value
over all possible subsets Di,t ⊆ Y Ci,t (not including the empty set, Di,t = ∅), to
find the maximum VOC value; however, the agent also requires this value to be
bigger than the VOS, otherwise the agent should not communicate at all. If the
communication cost was zero then trivially the maximum VOC would always
correspond to choosing the full subset Di,t = Y

C
i,t.

Algorithm 3.3 outlines how agent ai finds the optimal subset of covariates to
request by communication using the VOC. It must be stressed, however, that
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this solution is myopic as the benefits of exploration are not factored in, this
method simply maximises the agent’s expected reward in the forthcoming ac-
tion stage. As a result, the VOC is a similar calculation to the VPI (see Section
2.2) used to value the interaction between agents in coalition formation or ser-
vice provider problems. The VPI assumes that unknown features of another
agent are learnt immediately after interaction, thereby reducing the computa-
tional complexity of calculating the benefit of exploration. This is effectively
the same concept used in the VOC where the optimal myopic action is taken –
which would be optimal over the horizon of play if that action provided perfect
information about the joint densities of the covariate values.
Furthermore, the VOC can only be found exactly with perfect knowledge of

the conditional densities of the covariates, and of the coefficients of the reward
function. These have to be learnt by the agents, and hence the approximation
of the VOC improves over time. Exploration of communication therefore can
have a positive effect on the cumulative reward, by improving communication
decisions, which in turn will improve action decisions. Exploration of actions
can benefit an agent’s reward also, in the same way as with the bandit problems
described in Section 2.1. The next section outlines an effective strategy that
combines exploration by communication and action.

Algorithm 3.3 Optimal myopic communication decision for agent ai at time t
using the VOC

Observe Yi,t ⊆ Xt
for all Di,t ∈ Y Ci,t do
for all c ∈ Ci do
Find VOCc,Di,t
end for
VOCai,Di,t =

∑
c∈Ci

VOCc,Di,t −
∑
j 6=iΠt(ai, aj)

end for
if maxDi,t VOCai,Di,t > VOSai then
Request covariates Di,t by communication

else
Do not communicate
end if

3.2.2 The Double ε-greedy and Double ε-first Strategies

The decisions made following the approach developed in the previous section can
be seen as exploitive (or myopic) decisions; however for these communication
and action decisions to be made more accurately over the length of play, agents
have to perform exploration to aid their learning. It must be noted however
that actions by the agents can be explorative as well as exploitive, particularly
if the VOC encourages a high volume of communication, or if expected reward
calculations encourage a high proportion of arms to be pulled. Nonetheless,
in a noisy environment with unknown parameters it is likely that additional
exploration may benefit the agent. Exploration by communication can be easily
increased by requesting extra covariate values even if the VOC does not suggest
this. Exploration by action, similarly, can be increased by pulling additional
arms even if their expected reward is negative.
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To encourage exploration by both communication and action, a double ε-
greedy strategy is proposed, which uses the ε-greedy algorithm (described in
Section 2.1.2) separately for both exploration methods. We use this strategy
as the ε-greedy strategy has been widely found to perform well for a variety
of multi-armed bandit problems [Auer et al., 2002; Vermorel and Mohri, 2005;
Pavlidis et al., 2008b]. In the context of this framework, we can construct a
double ε-greedy strategy, where the agents are exploitive in their communica-
tion decision with probability 1 − ε1 (using the VOC) and are explorative and
force additional communication with probability ε1. Similarly, with the action
decision, the agents can be exploitive with probability 1 − ε2 (using estimated
expected rewards) and extra actions (pulling of arms) can be forced with proba-
bility ε2. This strategy is formalised in Algorithm 3.4. The optimal parameters,
ε1 and ε2, will depend on factors such as the communication cost, the degree of
noise in the data, and the unknown coefficients of the reward function.

Algorithm 3.4 Double ε-greedy strategy

Set ε1 and ε2
for t = 1 to T do
Observe Yi,t ⊆ Xt
Find optimal subset of covariates Di,t ⊆ Y Ci,t using VOC
Request addition covariates in Y Ci,t with probability ε1
Find optimal subset of arms to pull Si,t ⊆ Ci
Pull additional arms in Ci with probability ε2

end for

A similar strategy can be devised using the ε-first strategy as opposed to
ε-greedy. The ε-first strategy (see Section 2.1.2) requires all exploration to be
performed at the beginning rather than randomly throughout the game and
has been shown to perform best in an empirical analysis of various strategies
for multi-armed bandit problems [Vermorel and Mohri, 2005]. In this frame-
work we can construct a double ε-first strategy, where all covariate values are
requested and all arms are pulled for the first εT iterations; the agent is greedy
afterwards and uses the VOC exclusively for communication decisions and max-
imises expected reward for action decisions. In the bandit problems reviewed
in Section 2.1, we stated that ε-first would perform better than ε-greedy as the
agent has more future decisions that benefit from past exploration. This would
not necessarily be the case in the multi-agent bandit problem however, as the
agent gains less myopic value in receiving all covariates for the first εT itera-
tions, rather than having these additional covariate values spread throughout
the game. Nonetheless, the benefit of using the double ε-first strategy is shown
in a simulation study in Section 3.3; moreover the optimal balance between the
two types of exploration (set through ε1 and ε2) is interdependent and shown
to vary as the communication cost is changed.

3.2.3 Dealing with Missing Data

Agents have to iteratively update estimated parameters of the reward functions
and covariates. As the reward functions are linear, with constant coefficients,
the coefficients can be learnt using least squares estimation [Lawson and Han-
son, 1995]. The agents, however, do not always observe all the covariates, even
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after communication. This induces a missing value problem and the agent has
the choice of imputing these missing values or deleting observations if they con-
tain missing data (as discussed earlier). Due to the potential high occurrence of
missing data, deletion methods are not practical for this framework. Given
this background, we impute the data using a likelihood approach. To this
end, an Expectation-Maximisation (EM) algorithm in conjunction with least
squares estimation can be used, to iteratively update each agent’s parameters.
The EM algorithm is a computationally efficient and robust method for dealing
with missing data, that can be practically implemented even if the number of
agents/variables are high – which is important for the application of MAS to
realistic scenarios.
In more detail, the EM algorithm [Dempster et al., 1977] is a procedure for

maximum likelihood inference in the presence of missing data. Starting from an
initial guess of the values for the parameter vector, θ(0), it employs an iterative
update step, each time choosing θ(i+1) to maximise the expected log-likelihood
of the observed data, where the expectation is taken over the missing data with
respect to the current estimate θ(i). Once the change in expected log-likelihood
is smaller than some pre-defined threshold then the algorithm terminates and
missing values have been imputed.

3.3 Performance of the Strategy

In this section, the framework and suggested novel strategy is tested in a 2-
agent version of the problem. Specifically, a 2-armed bandit problem with a
2-dimensional covariate is considered, where each agent controls one arm and
always observes one covariate at each iteration, but never the other. This is
the simplest possible formulation of our framework and is considered firstly to
illustrate the selection behaviour of the strategies and secondly to show that
exploration is needed even though the number of decisions faced by each agent
is small.
In more detail, the reward function of agent ai (i = 1, 2) is:

ri(t) = αi,1x1,t + αi,2x2,t + ηi,t. (3.6)

The coefficients, αi,1 and αi,2, are predetermined and unknown to the agents.
The covariate values Xt are i.i.d. draws from a bivariate normal distribution
(in keeping with other studies of bandits with covariates [Yang and Zhu, 2002;
Pavlidis et al., 2008b]):

X ∼ N (μ,Σ) μ = 0,Σ =

(
1 ρ
ρ 1

)

,

where the parameters are unknown to the agents. Agent ai only observes xi,t
at each iteration. The noise ηi,t is also normally distributed and i.i.d., with zero
mean and variance 0.5. The length of play considered is 100 iterations, long
enough for the agents to start exploiting, but short enough so that the agents
must learn quickly and effectively.

3.3.1 Application of the VOC

The VOC could be found exactly, if agent ai knew αi,1, αi,2, μ and Σ; however
the agent must learn these over time. In this 2-agents scenario, the VOC from
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(3.5) becomes (see Appendix I):

VOCai,xj,t = Φ



−sign(αi,j)
xi,t

(
αi,i
αi,j
− ρ
)

1− ρ2



xi,t (αi,i + αi,jρ)

+
αi,j

(
1− ρ2

)

√
2π

exp





−
(
xi,t

(
αi,i
αi,j
− ρ
))2

2(1− ρ2)2




−Πt(ai, aj). (3.7)

for i = 1, 2 (where j = 2, 1). Φ(x) is the cdf of the standard normal distribution.
It is therefore only dependent on the parameters that agent ai needs to learn,
the observed covariate xi,t and the communication cost (assumed constant).
The VOS from (3.4) simply becomes (see Appendix I):

VOSai = max(0, xi,t (αi,i + αi,jρ)) (3.8)

Agent ai communicates if the VOC is greater than the VOS. To this end, Fig
3.1(a) shows how the VOCai and VOSai can change for different values of xi,t.
In particular, there is a region where the VOC is higher and the agent should
communicate; the agent can find this “region of communication” over time, by
learning the parameters correctly. In this region the unknown covariate value
will be informative as to whether the expected reward is positive or negative.
Conversely, for covariate values outside the region of communication, the action
decision is clear as the agent knows whether the reward is likely to be positive
or negative and it is not worth incurring the communication cost to verify this.
Figure 3.1(b) shows how the agent, using the double ε-first strategy, has

learnt the region of communication and made the correct decision for most
observed covariate values. The points highlighted by squares show the points
where exploration by communication has occurred (i.e. the agent has commu-
nicated outside of the region of communication to aid its learning). For other
parameter values the region of communication may not exist (if the covariance
between the known and unknown covariate is high for example) or be infinite
(if the communication cost is zero for example). Nevertheless, this region does
not have to be explicitly found as the VOC needs only to be calculated at the
covariate values observed at each iteration.

3.3.2 Performance of the Double ε-first Strategy

In the previous section, we outlined how the agents can approximate the VOC
explicitly and demonstrated that this approximation can be made accurately
with some degree of exploration. In this section, the effect of the double ε-first
strategy on the agent’s cumulative reward is explored. We use the double ε-first
strategy for this problem as opposed to the double ε-greedy strategy. For the
2-dimensional case considered in this section, the double ε-first strategy will
perform better as there is only one explorative choice for both communication
and action and it is beneficial to do these explorative steps early in the game (as
discussed in Section 2.1.2). Specifically, Fig 3.2 shows the average cumulative
reward to agent ai, for various communication costs, using the double ε-first
strategy over a grid of values for ε1 and ε2 ranging between 0 and 50%. For this
setting, the agent benefits from exploring by both communication and action,
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Figure 3.1: (a) VOCai and VOSai over different values of xi,t and (b) decisions
by agent ai over 100 iterations with ε1 and ε2 set at 10%. In both figures,
αi,i = 0.5, αi,j = 1, ρ = 0.1 and Πt(ai, aj) = 0.2
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as there appears to be a global maximum over the space of the two parameters
occurring at ε1 > 0 and ε2 > 0 for all communication costs considered. Addi-
tionally, there appears to be a correlation between ε1 and ε2 that is dependent
on the communication cost. As expected, the amount of optimal exploration
by communication (ε1), is inversely related to the communication cost. To a
lesser extent, the amount of optimal exploration by action (ε2) is positively
correlated with the communication cost; this is due to the fact that a total
amount of global exploration is required, and as exploration by communication
becomes more costly, the agent requires more exploration by action to perform
a reasonable amount of learning (and vice-versa).

3.4 Summary

In this chapter we have proposed a new framework for modelling sequential
decision making problems in MAS. We extended the multi-armed bandit prob-
lem to investigate the exploration-exploitation tradeoff in a multi-agent context.
Specifically, we investigated sequential decision making of communication deci-
sions between agents, which is relevant and applicable to many other MAS. This
framework is novel in that exploration-exploitation of joint action and commu-
nication decisions is considered in the same problem, however the framework
is restricted in that the interaction of agents is constrained to communicating
information – there is no interaction of rewards between agents. This is an
extension to be considered in future work (see Chapter 5 for more details).
In more detail, we have constructed a novel strategy for selecting commu-

nication and action decisions. The exploitive element of the strategy involves
using the VOC to myopically value communication and action decisions. The
explorative element involves using a double ε-greedy or double ε-first strategy
to communicate with agents and pull arms to benefit the agent’s learning. In an
empirical evaluation of a 2-agent problem, the strategy was shown to outperform
the greedy strategy. Moreover, we have shown that our strategy, which combines
exploration by both communication and action, performs better than doing ex-
ploration by one method and not the other. In particular, we have shown that
agents can benefit from exploring by communication – agents should hence not
communicate with other agents for myopic gain only. This novel framework
has therefore developed new ideas about balancing exploration-exploitation in a
multi-agent setting where rewards of actions are unknown a priori. The frame-
work also includes the possibility of agent’s communicating, which is central to
many real world scenarios modelled by MAS.
The benefit of our strategy has only been demonstrated empirically thus far.

For this reason, in the next chapter we develop a novel approach to reasoning
about the one-armed bandit problem with covariates theoretically. This ap-
proach is initially considered in a single-agent context, with no communication
of information, although the ideas will be extended to reason theoretically about
the multi-agent context considered in this chapter, as part of future work (see
Chapter 5 for details).
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Figure 3.2: The average cumulative reward to agent ai, for various communi-
cation costs: a) 0.05, (b) 0.1, (c) 0.2 and (d) 0.3, using a double ε-first strategy
where αi,i = 0.5, αi,j = 1 and ρ = 0.1.
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Chapter 4

One-Armed Bandits with
Covariates

In the previous chapter we presented an extension of the standard bandit prob-
lem with covariates to MAS, where each agent controlled a subset of the arms.
The agent thus faced a series of one-armed bandit problems with covariates and
we constructed a strategy (based on either the ε-greedy or ε-first strategies)
that selected arms to pull from this subset but also selected which agents to
communicate with. We presented empirical evidence to suggest that our explo-
rative strategy can benefit the agent’s expected reward. For this reason, in this
chapter, we reason about the one-armed bandit problem theoretically to develop
ideas of optimal tuning for the ε-greedy and ε-first strategies. We consider the
single-agent problem defined in Section 2.1.1 and extend this to the multi-agent
problem as part of future work (see Chapter 5 for details). Specifically, the
agent must select between an arm with unknown expected reward (arm A) and
an arm with known expected reward (arm B).
Existing studies of one-armed bandit problems with covariates have been

largely concerned with maximising reward over infinite-length play (see Section
2.1.2 for a review). In this work, however, we are concerned with maximis-
ing reward in finite time, which is more relevant in real applications. Given
this perspective, we present a novel approach for reasoning about the expected
reward of arm selection strategies, by modelling the distribution of estimated
parameters in the reward function. This helps us find the probability of error ;
that is, the probability that the agent pulls the arm with lower expected reward
when trying to pull the best arm, given an arm selection strategy. This measure
is important because it helps us find the expected reward when the agent is se-
lecting greedily between the arms. The probability of error is therefore crucial
to finding the expected reward (in finite time) of any strategy that exploits the
covariate values to select between the arms.
Explorative strategies will pull arm A more often as this helps the agent to

learn parameters of the reward function more quickly, reducing the probability
of error – this is the benefit of exploration. Conversely, such selections have
an attributed cost of exploration, as the agent might be selecting the arm with
lower expected reward. In our setting, we can explicitly calculate this benefit
and cost of exploration and hence capture the exploration-exploitation tradeoff
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in the same currency. We can then find the expected cumulative reward of
certain strategies in finite time, and hence reason about their optimal tuning.
We derive the expected reward of both the ε-greedy and ε-first strategy

in finite time for a reward function based on a 1-dimensional covariate. This
simplified model assumes that all side information is represented in one vari-
able. Nevertheless, this assumption allows for a clear demonstration of the novel
method used to find expected rewards. Furthermore, this approach will be ex-
tended to p-dimensional covariates, as used in Chapter 3, as part of future work
(see Chapter 5 for details).
In more detail, we prove that, in the 1-dimensional setting, the expected

reward of the ε-greedy strategy is maximised by ε = 0 irrespective of the length
of play and all other parameters. This means that, on average, a greedy strat-
egy will outperform any ε-greedy strategy in finite time. This result is in line
with the infinite-time statements proved in [Woodroofe, 1979; Sarkar, 1991].
Moreover, contrary to the findings of finite-time analyses of multi-armed ban-
dits [Auer et al., 2002; Vermorel and Mohri, 2005; Pavlidis et al., 2008b], we
have proved that ε-greedy is a suboptimal strategy for the one-armed bandit
problem considered here.
For the ε-first strategy, however, we show that the optimal value of ε will

be non-zero for certain lengths of play. In particular, we find the optimal value
of ε numerically and present results to show its dependence on the length of
play. The significance of this result, is that a well-tuned explorative strategy
will, on average, outperform the greedy strategy (a purely exploitive strategy).
The novel approach presented in this chapter has consequently allowed for the
optimal balance of exploration and exploitation to be found theoretically, for
this strategy.
This chapter is structured as follows. In Section 4.1 we introduce the one-

armed bandit with covariates framework. In Section 4.2 we model the distri-
bution of estimated parameters in the reward function and use this to find the
probability of error over time. In Section 4.3 we derive the expected reward of
the ε-greedy strategy and prove that this is maximised with ε = 0. In Section
4.4 we derive the expected reward of the ε-first strategy and show numerically
that non-zero values of ε can be optimal. Summary remarks follow in Section
4.5.

4.1 The One-Armed Bandit with Covariates Frame-
work

An agent plays a one-armed bandit problem and must choose at time t =
0, . . . , T between arm A with unknown expected reward and arm B with known
expected reward. The agent only receives a reward from the arm that is pulled,
which is a function of an observed covariate (Xt). We consider the reward struc-
ture used in [Ginebra and Clayton, 1995; Yang and Zhu, 2002; Pavlidis et al.,
2008a,b] (see (2.1) in Section 2.1.1), simplified to a 1-dimensional covariate,
where:

rA(t) = αxt + ηt,

rB(t) = βxt + ωt, (4.1)
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where rA(t) and rB(t) are the rewards of arm A and B, respectively; ηt and
ωt are i.i.d. noise terms drawn from N (0, σ2η) and N (0, σ

2
ω), respectively. The

coefficient β is known to the agent a priori, but α is unknown and estimated
from observations. The covariate xt is an i.i.d. draw from N (0, σ2x) and the
agent must then either pull arm A and receive reward r(t) = rA(t) or pull arm
B and receive reward r(t) = rB(t). The objective is for the agent to maximise

the cumulative reward R(T ) =
∑T
t=0 r(t).

4.2 The Probability of Error

The agent must learn the value of α in (4.1) as it plays. Suppose the agent has
pulled the arm k times prior to time t, where 1 ≤ k ≤ t. The estimate of α is
updated using α̂k, the solution of the linear least squares equation:

α̂k =

∑k
j=1 xjrA(j)
∑k
j=1 x

2
j

. (4.2)

The parameter estimate α̂k has a distribution that is centred at α and dependent
on the number of pulls k and the distribution of xt and ηt. As ηt is i.i.d. and
normally distributed then it follows that (see p.407 [Daly et al., 1995]):

α̂ ∼ N

(

α,
σ2η

∑k
j=1 x

2
j

)

⇒ (α̂k − α)

√
kσ2x
σ2η

∼
N (0, 1)

√
∑k
j=1

(
x2j/
√
σ2x

)
/k

.

If the agent uses an ε-greedy or ε-first strategy, then the collection of covariates
xt used for estimation are not drawn i.i.d. from N (0, σ2x) (unless ε = 1 and arm
A is pulled each time). When the agent is greedy, however, arm A is pulled based

on whether xt is positive or negative and hence
∑k
j=1 x

2
j/
√
σ2x ∼ χ

2
k (chi-square

distribution with k degrees of freedom). Then it follows from the definition of
the t-distribution that:

(α̂k − α)

√
kσ2x
σ2η
∼ tk, (4.3)

where tk is the t-distribution with k degrees of freedom. From (4.3) we can
find the probability of error after k pulls, that is the probability that the agent
pulls the wrong arm when being greedy. Specifically this occurs if α̂k > β when
α < β and vice-versa. We therefore define this probability as:

F (k) = Pr(α̂k < β|α > β)Pr(α > β) + Pr(α̂k > β|α < β)Pr(α < β). (4.4)

First consider Pr(α̂k < β|α > β). It follows from (4.3) that:

Pr(α̂k < β|α > β) = Pr

(√
kσ2x
σ2η
(α̂k − α) <

√
kσ2x
σ2η
(β − α)

)

= T

(

(β − α)

√
kσ2x
σ2η
, k

)

, (4.5)
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where T (x, k) is the t-distribution cumulative density function at ordinate x,
with k degrees of freedom. By considering Pr(α̂k > β|α < β) in the same way,
it follows from (4.4) and (4.5) that:

F (k) = Pr(α > β)T

(

−|α− β|

√
kσ2x
σ2η
, k

)

+ Pr(α < β)T

(

−|α− β|

√
kσ2x
σ2η
, k

)

= T

(

−|α− β|

√
kσ2x
σ2η
, k

)

. (4.6)

The probability of error F (k) has the following four properties:

1. F (k) is (strictly) bounded above by 0.5.

2. F (k) decreases as k increases, as both the ordinate becomes more negative
and the degrees of freedom increase (reducing the weight in the tails). F (k)
is also a convex sequence in k (proved later).

3. Increasing the difference between α and β reduces the value of F (k).

4. The ratio σ2x/σ
2
η can be interpreted as a ‘signal to noise ratio’ – larger

values of this ratio reduce F (k).

Property 1 ensures that the agent can do no worse than guessing between the
arms. Notice however, that as σ2η → ∞, F (k) → 0.5. Figure 4.1(a) shows the
probability of error over k for several values of σ2x/σ

2
η, where properties 1, 2 and

4 are demonstrated.

4.3 The ε-greedy Strategy

The ε-greedy strategy dictates that the agent pulls arm A with probability ε
but picks the arm with highest expected reward with probability 1 − ε. In the
previous section, we found the probability of error given k pulls of arm A by
time t. In fact, we can find the distribution of k given t by the symmetry of the
problem, as xt is centrally distributed and therefore arm A is pulled 50% of the
time when the agent is greedy. One pull of arm A is guaranteed at time t = 0,
so the probability of having pulled the arm k times by time t, B(k, t, ε), follows
a binomial distribution:

B(k, t, ε) =

(
t− 1
k − 1

)(
1

2
(1 + ε)

)k−1(
1

2
(1− ε)

)t−k
. (4.7)

The distribution of α̂ after k pulls of arm A using the ε-greedy strategy is
as given in (4.3). The distribution of k can then be used to find the probability
of error at time t of the ε-greedy strategy:

Fεg(t, ε) =
t∑

k=1

B(k, t, ε)F (k). (4.8)

As F (k) < 0.5 and
∑t
k=1B(k, t, ε) = 1 it follows that Fεg(t, ε) < 0.5 (and all

other properties of the probability of error mentioned in Section 3 still hold).
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Figure 4.1: (a) The sequence F (k) from (4.6) for k = 1, . . . , 50 for various values
of σ2x/σ

2
η and (b) The sequence Fεg(t, ε) from (4.8) for t = 1, . . . , 50 for various

ε, where σ2x/σ
2
η = 1. In both figures, α = 0.5 and β = 0.3.

Fεg(t, ε) has the additional property that it decreases as ε increases, for a fixed
t. Figure 4.1(b) shows the sequence Fεg(t, ε) for a selection of ε values from
t = 1, . . . , 50, where this property is demonstrated. The expected instantaneous
reward of the ε-greedy strategy at time t, E(rεg(t, ε)), can now be found by
considering the cases when the agent explores and exploits separately.

E(rεg(t, ε)) = εE(rA(t)) + (1− ε)E(rg(t, ε)), (4.9)

where rg(t, ε) is the instantaneous reward when the agent is greedy. It follows
that as xt ∼ N (0, σ2x):

E(rA(t)) =

∫ ∞

−∞
αxt

1
√
2πσ2x

exp

(

−
x2t
2σ2x

)

dxt = 0. (4.10)

From the probability of error Fεg(t, ε) we can find the expected instantaneous
reward when the agent is greedy, by separately considering the expected in-
stantaneous reward when the correct/incorrect arm is pulled, dependent on the
probability of error (see Appendix II). It follows that:

E(rg(t, ε)) = |α− β|

√
σ2x
2π
(1− 2Fεg(t, ε)) , (4.11)
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which yields the expected instantaneous reward of the ε-greedy strategy:

E(rεg(t, ε)) = (1− ε) |α− β|

√
σ2x
2π
(1− 2Fεg(t, ε)) . (4.12)

This expected reward is greater than zero as Fεg(t, ε) < 0.5, so the strategy
performs better than guessing between the arms for all values of ε (except ε =
1). Larger values of ε reduce the probability of error Fεg(t, ε), which increases
the expected reward – this is the benefit of exploration. Conversely, larger
values of ε reduce the (1 − ε) term in the expected reward and this is the
cost of exploration. Despite this exploration-exploitation tradeoff, the expected
instantaneous reward in (4.12) is maximised by ε = 0 for all values of t > 0, α,
β and σ2x/σ

2
η, which we prove in Theorem 4.1 below.

Theorem 4.1 E(rεg(t, 0)) > E(rεg(t, ε)) for all 0 < ε ≤ 1 and for all t ∈ Z+,
α, β ∈ R and σ2x, σ

2
η ∈ R

+.

Proof We prove Theorem 4.1 by contradiction. First consider the case t ≥ 2.
Suppose there exists 0 < ε ≤ 1 such that:

E(rεg(t, ε)) ≥ E(rεg(t, 0)) for some t ∈ Z
+, α, β ∈ R, σ2x, σ

2
η ∈ R

+. (4.13)

Substituting from (4.12) and (4.8), the inequality in (4.13) becomes:

t∑

k=1

F (k)G(k) ≥
ε

2
, (4.14)

where G(k) = B(k, t, 0) − (1 − ε)B(k, t, ε). Notice that F (k) < 1/2 and∑t
k=1G(k) = ε, however it does not follow from this alone that

∑t
k=1 F (k)G(k) <

ε/2 (by Cauchy-Schwarz for example), as G(k) can be negative for certain values
of k. To proceed, the following three lemmas allow for a useful upper bound to
be constructed on the left-hand side of (4.14). The proofs of the three lemmas
can be found in Appendix III.

Lemma 4.2 F (k) is a convex sequence in k.

Lemma 4.3 There exists an integer q where 2 ≤ q ≤ t such that:

G(k) ≥ 0 for k = 1, . . . , q

G(k) < 0 otherwise.

Lemma 4.4

t∑

k=1

F (k)G(k) ≤
t∑

k=1

F ′(k)G(k) , where F ′(k) =
q − k
q − 1

F (1) +
k − 1
q − 1

F (q).

After expanding the binomial coefficients and rearranging (see Appendix IV):

t∑

k=1

F ′(k)G(k) =
1

2
(2ε− ε2)F (1) +

1

2
ε2F (q) +

1

2

t− q
q − 1

ε2(F (q)− F (1)). (4.15)
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As 12
t−q
q−1ε

2 > 0, F (q) < F (1) and F (k) < 0.5, then the third term is negative
and hence from Lemma 4.4:

n∑

k=1

F (k)G(k) ≤
1

2
(2ε− ε2)F (1) +

1

2
ε2F (q) <

1

2
(2ε− ε2)

1

2
+
1

2
ε2
1

2
=
ε

2
.

A contradiction has been made and
∑t
k=1 F (k)G(k) < ε/2, therefore Theorem

4.1 has been proved for t ≥ 2. It remains to show that the theorem holds for
t = 1. Using (4.12) and (4.8):

E(rεg(1, 0)) = |α− β|

√
σ2x
2π
(1− 2F (1))

> (1− ε) |α− β|

√
σ2x
2π
(1− 2F (1)) = E(rεg(1, ε)),

as 0 < ε ≤ 1 and F (1) < 0.5. This completes the proof of Theorem 4.1. �

Theorem 4.1 states that the expected instantaneous reward at time t is max-
imised by ε = 0. It is then immediate that the cumulative reward R(T ) =
∑T
t=0 r(t), which is what we wish to maximise, is also maximised by ε = 0. This

implies that the greedy strategy, on average, outperforms any ε-greedy strategy
for this one-armed bandit problem. Given these findings, Figure 4.2 shows the
averaged instantaneous and cumulative reward at time t from repeated simu-
lations of the same problem, with the theoretical expectations overlayed. The
empirical evidence verifies the theoretical findings that the instantaneous re-
ward (and hence cumulative reward also) is maximised by ε = 0. We have thus
shown, for the first time, that the ε-greedy strategy is a suboptimal strategy for
this one-armed bandit problem with covariates.
In contrast, finite time analyses of multi-armed bandit problems [Auer et al.,

2002; Vermorel and Mohri, 2005; Pavlidis et al., 2008b] have concluded, through
empirical evidence, that the optimally tuned ε-greedy strategy can have ε > 0.
The difference between this evidence and our findings, is due to the exploration
requirements of the two problems. In our one-armed bandit problem only one
arm requires any exploration, and since this arm is already selected 50% of
the time with a greedy strategy, no further exploration is required with an ε-
greedy strategy. Conversely, in a multi-armed bandit problem, each arm requires
exploration. Moreover there are no such guarantees on exploring each arm
sufficiently with a greedy strategy and consequently optimal arms are often
overlooked. As a result, an ε-greedy strategy with ε > 0, can outperform the
greedy strategy.

4.4 The ε-first Strategy

The ε-first strategy dictates that all the agent’s exploration is at the beginning
(for the first εT iterations) followed by greedy selection for the remaining iter-
ations. When the agent explores, arm A is always pulled and it follows from
(4.10) that the expected reward of ε-first E(rεf (t)) = E(rA(t) = 0) for t ≤ εT .
To find the expected reward for t > εT , consider the probability of error Fεf (t, ε)

33



0 10 20 30 40 50
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

t
 

 

ε = 0
ε = 0.2
ε = 0.5
ε = 1

(a)

0 10 20 30 40 50

0

0.01

0.02

0.03

0.04

T
 

 

ε = 0
ε = 0.2
ε = 0.5
ε = 1

(b)

Figure 4.2: (a) Instantaneous reward and (b) cumulative reward (averaged over
time) for a range of ε-greedy strategies averaged over 200,000 simulations, where
α = 0.5, β = 0.3 and σ2x/σ

2
η = 1. Theoretical expectations are overlayed (in

grey).

with this strategy. Using the same reasoning as before, we find:

Fεf (t, ε) =

t−Tε∑

k=1

B(k, t− Tε, 0)F (k + ε), (4.16)

with F (k) as given in (4.6) and B(k, t, ε) as given in (4.7). Therefore, Fεf (t, ε) <
0.5 as with the ε-greedy strategy. In the same way that (4.11) was derived (see
Appendix II), it follows that:

E(rεf (t, ε)) = |α− β|

√
σ2x
2π
(1− 2Fεf (t, ε)) for t > εT. (4.17)

Again this expected reward is positive as Fεf (t, ε) < 0.5. Larger values of ε
reduce the probability of error for t > εT and thus have a higher expected
reward in this region – this is the benefit of exploration. Conversely, larger
values of ε correspond to a longer period of exploration where the expected
reward is zero – this is the cost of exploration. The expected cumulative reward
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is E(Rεf (T, ε)) =
∑T
t=0 E(rεf (t, ε)) and we can maximise this numerically using

(4.17) to find the optimal ε.
This optimal value will not necessarily be zero as the following numerical

results show. In particular, Fig. 4.3(a) displays the expected reward at time t,
for the game of length T = 50 shown in Fig. 4.2, for various values of εT , where
the benefit and cost of exploration can be clearly seen. Summing the rewards
from Fig. 4.3(a) generates Fig. 4.3(b) which is the expected cumulative reward
at time T = 1, . . . , 50 for the fixed values of εT . Fixing εT in this way has
shown that the greedy strategy can be beaten and there are regions of T where
εT = 0, 1, 2, . . . are optimal in terms of maximising the expected cumulative
reward.
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Figure 4.3: (a) Expected reward of the ε-first strategy at time t for T = 50 and
(b) expected cumulative reward (averaged over time) for T = 1, . . . , 50, for a
range of εT values, where α = 0.5, β = 0.3 and σ2x/σ

2
η = 1.

Figure 4.4(a) displays how the optimal value of εT grows with T for various
values of σ2x/σ

2
η. The range of values of T where a specific value of εT is opti-

mal become larger as εT increases, indicating that εT grows more slowly than
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T . This idea can also be seen in Fig. 4.4(b), which shows a plot of optimal ε
for values of T . The non-smooth shape of this plot is due to the fact that εT
is represented as a step-function taking integer values only. The key observa-
tion, however, is that the optimal ε decreases and approaches zero as T → ∞
(although for σ2x/σ

2
η = 0.2 this happens very slowly), which concurs with the

studies of [Woodroofe, 1979; Sarkar, 1991] which proved the greedy strategy was
asymptotically optimal. Nevertheless, in finite time, a well chosen ε in the ε-first
strategy will outperform the greedy strategy, signifying the benefit of balancing
exploration and exploitation in an arm selection strategy.
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Figure 4.4: Optimal values of (a) εT and (b) ε, for T = 1, . . . , 300, where
α = 0.5, β = 0.3

4.5 Summary

We have presented a novel approach for considering one-armed bandit problems
in finite time, by modelling the exact distributions of estimated parameters
over time. In particular, for a reward based on a 1-dimensional covariate, we
have derived the expected reward of the ε-greedy and ε-first strategies, which
are popular exploration strategies in sequential decision making problems. Fur-
thermore, we have proved that the expected reward of the ε-greedy strategy
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is always maximised by ε = 0. In other words, the greedy strategy outper-
forms any ε-greedy strategy in finite time. Despite this, we have shown by
numerical optimisation that non-zero values of ε can be optimal for the ε-first
strategy, although this optimal value decreases as the length of the game in-
creases. The theoretical analysis of both these strategies agree with the findings
of [Woodroofe, 1979; Sarkar, 1991] that a greedy strategy is optimal for a game
of infinite length. Nonetheless, we have demonstrated the benefit of exploration
through a well tuned ε-first strategy.
In particular it was noted in Section 2.1.2 that the ε-greedy and ε-first strate-

gies can perform extremely well empirically for a variety of bandit problems,
but conversely perform poorly when badly tuned – the findings in this chapter
determine how these strategies should be tuned off-line for this problem. Fur-
thermore, the results can be extended to construct strategies where ε can be
tuned on-line (see Chapter 5 for more details). This theoretical approach will
also be extended to reason about the multi-agent bandit problem of Chapter 3,
as part of future work (see Chapter 5), in particular the benefit of exploration in
this framework can be proven theoretically as well as demonstrated empirically.
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Chapter 5

Conclusions and Future
Work

5.1 Conclusions

We have investigated sequential decision making problems through extensions
of the multi-armed bandit problem. In particular, we have extended bandit
problems with covariates to a multi-agent setting, to investigate exploration-
exploitation in scenarios with multiple agents that can communicate covariate
values with each other. We showed, in our setting, how to calculate the myopic
Value Of Communication (VOC) between agents, such that an agent can iden-
tify which agents have the most informative covariate values. Furthermore, we
showed empirically that agents benefit from strategies that incorporate explo-
rative decisions. In particular, we constructed strategies called double ε-greedy,
or double ε-first, that explored communication as well as action decisions. It was
shown empirically that agents benefit from such a strategy, as opposed to explor-
ing only one or neither of the communication or action decisions. Moreover, we
demonstrated the need to balance the amount of exploration by communication
and action. Specifically, it was shown that the optimal parameters of the double
ε-first strategy are dependent on the communication cost. This is particularly
significant, as agents seems to require a total global amount of exploration, but
must look at the cost of information before deciding how to explore.
We also investigated the performance of the ε-greedy and ε-first strategies

in the single-agent one-armed bandit problem with covariates. We introduced
a novel approach of reasoning about the problem theoretically to find expected
rewards of these strategies. We proved, for a 1-dimensional covariate that the
ε-greedy strategy performs worse than a greedy strategy, but a well tuned ε-first
strategy will perform better. The derivations of expected rewards can be used
to reason about the performance of these strategies in the multi-agent bandit
problem, where each agent simultaneously plays a series of one-armed bandits.
These advances are the first-steps in finding strategies that balance exploration-

exploitation in various sequential decision making problems. In particular, we
are interested in finding optimally tuned strategies for both single-agent and
multi-agent settings. The frameworks considered in Chapter 3 and 4 have
yielded both empirical and theoretical evidence for how such strategies should
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be tuned. It is of interest, however, to bring these ideas together, and also to
extend these frameworks to more generalisable models that are applicable to a
variety of single-agent and multi-agent applications. This is discussed in more
detail in the next section.

5.2 Future Work

A key focus of immediate future work is to find further theoretical reasoning for
how the ε-greedy and ε-first strategies should be tuned, particularly for larger
classes of models. These strategies have been shown in this report to be robust
and well-performing for a variety of sequential decision making problems – but
little justification has been made of how they should be tuned in practice. With
this in mind, we intend to consider more complicated reward structures than
considered in Chapter 4, with first the introduction of an intercept and then by
considering a p-dimensional covariate. We will do this by expanding the theory
to model the joint distribution of estimated parameters, and then use this to
find the probability of error. This extension will in turn allow for a theoretical
analysis of the ε-greedy strategies used in the multi-agent bandit problem of
Chapter 3 – where in order to do this we will have to theoretically reason about
the impact of missing data, and its potential acquisition by communication using
the VOC method. We can then attempt to find the optimal values of ε1 and ε2,
as a function of other parameters in the model.
It is of interest in many applications to develop on-line algorithms that do not

require parameter values to be preselected. This is because in realistic scenarios
we are unlikely to know parameters of the model that are needed to find the
optimally tuned parameter. For example, in the one-armed bandit problem
considered in Chapter 4, the optimal ε depended on the signal to noise ratio,
the value of the reward coefficient and the length of play – these are commonly
unknown to an agent a priori. With this in mind, we can construct on-line
strategies where the value of ε can be tuned over subsequent plays. Specifically,
in order to do this the agent will have to learn the unknown parameters that
affect the optimal ε and then subsequently adjust ε on the basis of how the
agent’s estimates of these parameters change. Moreover, we can model the
distribution of these estimated parameters over time using the theoretical results
developed in Chapter 4, which in turn can then be used to tune ε. We will
compare such a strategy empirically against a variety of strategies that are
tuned off-line, and also attempt to construct a theoretical performance bound
of such a strategy.
Another focus of future work is to extend our decision making frameworks

to more generalisable cases. For example, we can extend the multi-agent bandit
framework to encompass more realistic types of MAS. Specifically, the reward
function of each agent is currently dependent on only the covariates observed
and is therefore not affected by past actions or the actions of other agents. This
is not a realistic component of most MAS, where rewards are affected by the
decisions of other agents as well as the environment – such that agents often
attempt to coordinate their joint actions for mutual benefit. As the agents exist
in an environment where information is jointly observed, agents can learn the
behaviour of other agents and can attempt to infer their future actions. As such,
agents are commonly assumed to be self-interested and competitive, therefore
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such interactions of rewards will introduce aspects of stochastic game theory,
particularly in the way agents communicate. This extension will then bring the
work closer to existing sequential decision making problems in MAS.
We also plan to investigate the exploration-exploitation tradeoff in repeated

games. For example, we will start by considering a 2-agent, 2-strategy game
where the rewards are unknown by both agents. Much research, throughout
game theory [Osborne and Rubinstein, 1994], has investigated the solution to
such games where the rewards are known a priori. Conversely, little research has
gone into how an agent should play this repeated game with unknown rewards
a priori. This framework can hence capture many realistic scenarios where the
agents may be starting a game and have no prior knowledge or experience of
various rewards. We will investigate this problem by considering the exploration
of different actions alongside selecting strategies in a game theoretic way. In fact,
the problem is analogous to two interdependent two-armed bandit problems,
being played by separate agents. To this end, we will consider incorporating
an ε-greedy type decision rule to an agent’s strategy. We can, for example,
investigate the benefit of using strategies that are explorative against traditional
game theoretic strategies in repeated games. We can then extend these findings
to n-agent, m-strategy games to find more generalisable results. We will also
consider rewards based on side information, or covariates, again as this is a
realistic feature of many real world decision problems.
Immediate application of our work has so far not been developed, however

potential applications of the bandit framework, in general, have been motivated
in the literature. We intend to consider applications of current and future frame-
works in sensor networks and online auctions, amongst others. For example, in
the sensor network problem, we can apply the multi-agent bandit framework
to decentralised problems where agents (i.e. the sensors) have to sequentially
decide how much information to gather in response to an action decision that
has to be made (for example, whether a fire is likely to spread to a certain
location). The information is often partially and noisily observed, though the
agent can communicate with other agents to find alternative sensor readings.
There is hence an exploration-exploitation tradeoff in terms of both the agent’s
communication and action decision.
Ultimately, we aim to develop strategies for balancing exploration-exploitation

in a variety of sequential decision making problems. In particular, we are inter-
ested in both single-agent and multi-agent problems that have flexible frame-
works and practical applications. Most MAS assume known reward distributions
a priori – removing this assumption is of particular interest and we therefore
aim to demonstrate the benefits of balancing exploration-exploitation in deci-
sion making strategies. Furthermore, we are interested in strategies that can be
tuned on-line, which is again of interest in realistic applications. Specifically, we
investigate the impact of using ε-greedy and ε-first strategies, which have been
shown to perform strongly in a variety of decision making problems, but only
for a well-tuned ε. Therefore, deriving theoretically optimal values of ε off-line
and estimating this optimum on-line are key objectives of future work.
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Appendix I

Derivation of (3.7): Assume αi,j > 0:

VOCai,xj,t =

∫
max (0, αi,ixi,t + αi,jxj,t) p(xj,t|xi,t)dxj,t

=
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−
αi,ixi
αi,j

(αi,ixi,t + αi,jxj,t) p(xj,t|xi,t)dxj,t

The conditional distribution p(xj,t|xi,t)dxj,t ∼ N (ρxi,t, (1− ρ2)2), therefore:
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as x
σ2
exp
(
− x

2

2σ2

)
is the pdf of a Rayleigh distribution which has a cdf given by:

1− exp
(
− x

2

2σ2

)
. By symmetry the result holds for αi,j < 0 also.

Derivation of (3.8):

VOSai = max (0,E(αi,ixi,t + αi,jxj,t|xi,t))

= max (0, αi,ixi,t + αi,jE(xj,t|xi,t)) = max (0, xi,t(αi,i + αi,jρ))

due to the conditional distribution of xj,t|xi,t given above in the derivation of
(3.7).
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Appendix II

Derivation of (4.11): Consider the case α > β:

E(rg(t)) = Fεg(t, ε)

(∫ 0

−∞

αxt√
2πσ2x

e

(
−
x2t
2σ2x

)

dxt +

∫ ∞

0

βxt√
2πσ2x

e

(
−
x2t
2σ2x

)

dxt

)

+(1− Fεg(t, ε))

(∫ 0

−∞

βxt√
2πσ2x

e

(
−
x2t
2σ2x

)

dxt +

∫ ∞

0

αxt√
2πσ2x

e

(
−
x2t
2σ2x

)

dxt

)

= Fεg(t, ε)

√
σ2x
2π

(

−α
∫ ∞

0

xt

σ2x
e

(
−
x2t
2σ2x

)

dxt + β

∫ ∞

0

xt

σ2x
e

(
−
x2t
2σ2x

)

dxt

)

+(1− Fεg(t, ε))

√
σ2x
2π

(

−β
∫ ∞

0

xt

σ2x
e

(
−
x2t
2σ2x

)

dxt + α

∫ ∞

0

xt

σ2x
e

(
−
x2t
2σ2x

)

dxt

)

= |α− β|

√
σ2x
2π
(1− 2Fεg(t, ε)).

Note that
∫∞
0
xt
σ2x
exp
(
− x2t
2σ2x

)
dxt = 1, as

xt
σ2x
exp
(
− x2t
2σ2x

)
is the pdf of a Rayleigh

distribution (defined on xt ∈ [0,∞)). By symmetry the result holds for β > α
also.

Appendix III

Proof of Lemma 4.2: From (4.6) and [Abramowitz and Stegun, 1965],

F (k) = T
(
−c
√
k, k
)
=
1

2
Ix

(
k

2
,
1

2

)

, where x =
k

k + (−c
√
k)2
=

1

1 + c2
,

x is a constant where 0 < x < 1 as c ∈ R+. Ix(a, b) is the regularized incomplete
beta function (a, b > 0 and 0 ≤ Ix ≤ 1) defined by:

Ix(a, b) =
Γ(a+ b)

Γ(a)Γ(b)

∫ x

0

ta−1(1− t)b−1dt.

It therefore suffices to prove that for all a > 0,

Ix(a, 1/2) + Ix(a+ 1, 1/2)

2
≥ Ix(a+ 1/2, 1/2).

To prove this we use the following 4 relations found in [Abramowitz and Stegun,
1965]:

Property 1 Bx(a, b) =
1

a
xa 2F1(a, 1− b, a+ 1;x)

Property 2 2F1(a, b, c, x) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− xt)−adt

Property 3 2F1(a, b, c, x) =
1

(1− x)b 2
F1(b, c− a, c,

x

x− 1
)

Property 4 2F1(a, b, c, x) = 2F1(b, a, c, x)
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where 2F1(a, b, c, x) is the Gauss hypergeometric series and Bx(a, b) is the non-
regularized incomplete beta function where:

Ix(a, b) =
Bx(a, b)

B(a, b)
=
Γ(a+ b)

Γ(a)Γ(b)
Bx(a, b), (A-1)

and B(a, b) is the beta function. From Properties 1 and 3:

Bx(a+ 1/2, 1/2) =
xa+1/2

a+ 1/2
2F1(a+ 1/2, 1/2, a+ 3/2;x)

=
xa+1/2

(a+ 1/2)
√
1− x

2F1

(

1/2, 1, a+ 3/2;
x

x− 1

)

,

similarly,

Bx(a, 1/2) =
xa

a
√
1− x

2F1

(

1/2, 1, a+ 1;
x

x− 1

)

, (A-2)

Bx(a+ 1, 1/2) =
xa+1

(a+ 1)
√
1− x

2F1

(

1/2, 1, a+ 2;
x

x− 1

)

.

Therefore from (A-1)), (A-2)) and Properties 2 and 4:

Ix(a, 1/2) =
Γ(a+ 1/2)

Γ(a)Γ(1/2)
Bx(a, 1/2)

=
Γ(a+ 1/2)

Γ(a)Γ(1/2)

xa

a
√
1− x

2F1

(

1/2, 1, a+ 1;
x

x− 1

)

=
Γ(a+ 1/2)

Γ(a)Γ(1/2)

xa

a
√
1− x

2F1

(

1, 1/2, a+ 1;
x

x− 1

)

=
Γ(a+ 1/2)

Γ(a)Γ(1/2)

xa

a
√
1− x

Γ(a+ 1)

Γ(1/2)Γ(a+ 1/2)

∫ 1

0

t−1/2(1− t)a−1/2(1− zt)−1dt

=
xa

π
√
1− x

∫ 1

0

t−1/2(1− t)a−1/2(1− zt)−1dt,

z = x
x−1 and Γ(1/2) =

√
π. Notice that z < 0 as 0 < x < 1. It follows that:

Ix(a+ 1/2, 1/2) =
xa+1/2

π
√
1− x

∫ 1

0

t−1/2(1− t)a(1− zt)−1dt,

Ix(a+ 1, 1/2) =
xa+1

π
√
1− x

∫ 1

0

t−1/2(1− t)a+1/2(1− zt)−1dt.

Therefore,

Ix(a, 1/2) + Ix(a+ 1, 1/2)

=
xa

π
√
1− x

∫ 1

0

t−1/2(1− t)a−1/2(1− zt)−1[1 + x(1− t)]dt

≥
xa

π
√
1− x

∫ 1

0

t−1/2(1− t)a−1/2(1− zt)−1[2
√
x(1− t)]dt = 2Ix(a+ 1/2, 1/2).
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This holds as 1+x(1− t) ≥ 2
√
x(1− t), for 0 < x < 1 and 0 ≤ t ≤ 1. To verify,

set u = x(1− t) and square both sides:

(1 + u)2 = 1 + 2u+ u2 = (1− u)2 + 4u > 4u.

The relation holds as 0 < u < 1 and the proof of convexity is complete. �

Proof of Lemma 4.3:

G(k) = bin

(

k − 1, t− 1,
1

2

)

− (1− ε)bin

(

k − 1, t− 1,
1

2
(1 + ε)

)

=

(
1

2

)t−1(
t− 1
k − 1

)
(
1− (1 + ε)k−1(1− ε)t−k+1

)
.

Notice that:

G(1) =

(
1

2

)t−1 (
1− (1− ε)t

)
> 0, (A-3)

G(2) =

(
1

2

)t−1
t
(
1− (1− ε2)(1− ε)t−2

)
> 0,

(
1

2

)t−1(
t− 1
k − 1

)

> 0, (A-4)

for 0 < ε ≤ 1 and k = 1, . . . , t. From (A-3) and (A-4) it suffices to show that the
sequenceH(k) =

(
1− (1 + ε)k−1(1− ε)t−k+1

)
is decreasing in k for k = 1, . . . , t.

H(k + 1)−H(k) =
(
1− (1 + ε)k(1− ε)t−k

)
−
(
1− (1 + ε)k−1(1− ε)t−k+1

)

=
(
(1 + ε)k−1(1− ε)t−k

)
(−2ε) < 0,

for k = 1, ..., t− 1 and 0 < ε ≤ 1. Therefore, the sequence G(k) has all negative
terms preceded by non-negative terms. The integer q in the lemma is set to be
the last non-negative term in the sequence G(k), where 2 ≤ q ≤ t. �

Proof of Lemma 4.4: It follows from Lemmas 4.2 and 4.3 that F (k) ≤ F ′(k)
and G(k) ≥ 0 for k = 1, . . . , q, therefore:

q∑

k=1

F (k)G(k) ≤
q∑

k=1

F ′(k)G(k).

It also follows from Lemmas 4.2 and 4.3 that F (k) > F ′(k) and G(k) < 0 for
k = q + 1, . . . , t, therefore:

t∑

k=q+1

F (k)G(k) ≤
t∑

k=q+1

F ′(k)G(k).

�

50



Appendix IV

Derivation of (4.15):
∑t
k=1 F

′(k)G(k) =

=

t∑

k=1

(
1

2

)t−1(
t− 1
k − 1

)(
q − k
q − 1

)
(
1− (1 + ε)k−1(1− ε)t−k+1

)
F (1)

+

t∑

k=1

(
1

2

)t−1(
t− 1
k − 1

)(
k − 1
q − 1

)
(
1− (1 + ε)k−1(1− ε)t−k+1

)
F (q)

=

t∑

k=1

(
1

2

)t−1(
t− 2
k − 1

)
(
1− (1 + ε)k−1(1− ε)t−k+1

)
F (1)

+

t∑

k=2

(
1

2

)t−1(
t− 2
k − 2

)
(
1− (1 + ε)k−1(1− ε)t−k+1

)
F (q)

+
t− q
q − 1

t∑

k=2

(
1

2

)t−1(
t− 2
k − 2

)
(
1− (1 + ε)k−1(1− ε)t−k+1

)
(F (q)− F (1))

=
1

2

t∑

k=1

(

bin

(

k − 1, t− 2,
1

2

)

− (1− ε)2bin

(

k − 1, t− 2,
1

2
(1 + ε)

))

F (1)

+
1

2

t∑

k=2

(

bin

(

k − 2, t− 2,
1

2

)

− (1− ε2)bin

(

k − 2, t− 2,
1

2
(1 + ε)

))

F (q)

+
1

2

t− q
q − 1

(F (q)− F (1))×

×
t∑

k=2

(

bin

(

k − 2, t− 2,
1

2

)

− (1− ε2)bin

(

k − 2, t− 2,
1

2
(1 + ε)

))

=
1

2
(1− (1− ε)2)F (1) +

1

2
(1− (1− ε2))F (q)

+
1

2

t− q
q − 1

(1− (1− ε2))(F (q)− F (1)).
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