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Abstract— We illustrate procedures to identify a state-space
representation of a passive or bounded-real system from noise-
free measurements. The basic idea underlying our algorithms is
to obtain a state sequence from a rank-revealing factorization
of a Gramian-like matrix constructed from the data. The
computation of state-space equations is then performed solving
a system of linear equations, similarly to what happens in
classical deterministic subspace identification methods.

I. PROBLEM STATEMENT

We consider the following problem. We are given a
discrete-time w-dimensional trajectory w consisting of inputs
u and outputs y, which we know is produced by a linear
finite-dimensional time-invariant system which is passive- or
bounded-real. Moreover, we assume that certain identifiabil-
ity conditions (described further in the paper) are satisfied.
The problem is to find a state-space description of the system.

In order to solve this problem, we could use subspace
identification methods (see [7]) to compute a state-space
sequence x from the data w, and then proceed to solve for
(A,B,C,D) in the equations[

σx
y

]
=
[
A B
C D

] [
x
u

]
, (1)

where σ is the backwards shift defined by

(σx)(k) := x(k + 1) .

In this paper, we show that a state sequence x can be
alternatively obtained from any rank-revealing factorization
of a Gramian-like matrix computed from the data w; the
matrices corresponding to a state-space representation of the
system can then be determined solving (1). Our approach
can consequently be considered as an alternative to the
classical subspace-identification methods that uses energy
considerations in order to compute a state sequence, rather
than exploiting the idea of intersecting the row-spaces of the
‘past’ and ‘future’ matrices of the data.

Different rank-revealing factorizations of the Gramian-
like matrix computed from the data produce different state
sequences, which in their turn correspond to different state
representations (A,B,C,D). In this paper we show how to
exploit this fact in order to obtain positive- and bounded-
real balanced state-space representations from data. This
aspect of our approach makes it particularly interesting for
application to the problem of model order reduction from
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data, i.e. the problem of obtaining a reduced-order model
directly from measurements of a system.

In this paper, the concepts and tools of the behavioral
approach, and of quadratic difference forms will be put to
strenuous use. The reader not familiar with them is referred
to [8], [2] for a thorough exposition. In section II we only
review the background material strictly necessary for making
this paper self-contained. In section III-A we state the main
result; we consider the lossless case first for simplicity of
exposition. We illustrate the extension of the problem to the
case of dissipative systems in section III-B. The paper ends
with some concluding remarks, contained in section IV.

Notation. We denote the ring of integers with Z, and the set
of nonnegative integers {z ∈ Z | z ≥ 0} with Z+. We denote
the field of real numbers with R, and the field of complex
numbers with C. The space of n dimensional real vectors
is denoted by Rn, and the space of m × n real matrices, by
Rm×n. The symbol Rm×• denotes the space of real matrices
with m rows, and R•×• the space of real matrices with a finite
but unspecified number of rows and columns. The symbol
Rm×∞ denotes the set of real matrices with m rows and an
infinite number of columns. If A ∈ Rm×n, then A> ∈ Rn×m

denotes its transpose. If A1, . . . , An are matrices with the
same number of columns, we denote with col(A1, . . . , An)
the matrix obtained by stacking the Ai, i = 1 . . . , n on top
of each other.

The space consisting of all sequences from Z to Rw is
denoted with (Rw)Z. On this space we define the backward
shift (σw)(t) := w(t + 1) for all t ∈ N. The symbol `w2(Z)
denotes the linear space of all square-summable sequences
on Z.

The ring of polynomials with real coefficients in the
indeterminate ξ is denoted by R[ξ]; the ring of two-variable
polynomials with real coefficients in the indeterminates ζ
and η is denoted by R[ζ, η]. We denote with Rr×w[ξ] (re-
spectively, Rr×w[ξ, ξ−1]) the space of all r×w matrices with
entries in the ring R[ξ] of polynomials in the indeterminate
ξ with real coefficients (respectively in the ring R[ξ, ξ−1]
of Laurent polynomials in the indeterminate ξ with real
coefficients). We denote with Rn×m[ζ, η] the space of n× m
polynomial matrices in the indeterminates ζ and η.

II. BACKGROUND MATERIAL

In this paper we consider linear, shift-invariant and ‘com-
plete’ (see Definition II.4 p. 262 of [9]) subspaces B of
(Rw)Z. We call such subspaces behaviors and denote the
set consisting of all behaviors with w variables with Lw. If
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B ∈ Lw, then there exists a polynomial matrix R ∈ R•×w[ξ]
such that

B = {w ∈ (Rw)Z | R(σ)w = 0}. (2)

Equation (2) is called a kernel representation of the behavior.
Another representation of importance is the hybrid one, in
which besides the external variable w also the latent variable
` is present:

R(σ)w = M(σ)` (3)

Equation (3) has associated a full behavior Bf := {(w, `) |
(w, `) satisfy (3)} and an external behavior B := {w |
∃ ` s.t. (w, `) satisfy (3)}.

A state representation is a special hybrid representation
with a latent variable x satisfying the state property (see
Definition VII.1 p. 268 of [9]). It can be shown that any
behavior allows a state representation Eσx + Fx + Gw =
0, or a input-state-output representation (1) with the state
variable x.

The notion of controllability is illustrated thoroughly in
section V of [9]; we do not give a formal definition here,
since it is not essential for the rest of the paper. However,
it is important to remark that if a behavior is controllable,
then it contains nonzero `w2(Z)-trajectories, and in particular
finite support ones. In the following we denote the subset of
Lw consisting of all controllable behaviors with Lw

cont.
We now review some basic concepts regarding bilinear-

and quadratic difference forms relevant for the material
presented in this paper; see [2] for a thorough introduction.
Let Φ ∈ Rw1×w2 [ζ, η]; then Φ(ζ, η) =

∑N
h,k=0 Φh,kζ

hηk,
where Φh,k ∈ Rw1×w2 and N is a nonnegative integer.
Φ(ζ, η) induces the bilinear difference form (BdF)

LΦ : (Rw1)Z × (Rw2)Z −→ RZ

LΦ(w1, w2)(t) :=
N∑

h,k=0

w1(t+ h)>Φh,kw2(t+ k) .

If w1 = w2, then Φ ∈ Rw×w[ζ, η] also induces a quadratic
difference form (in the following abbreviated with QdF)

QΦ : (Rw)Z −→ RZ

QΦ(w)(t) :=
N∑

h,k=0

w(t+ h)>Φh,kw(t+ k) .

When considering QdFs, without loss of generality we
assume the two-variable polynomial matrix Φ(ζ, η) to be
symmetric, i.e. Φ(ζ, η) = Φ(η, ζ)>.

The rate of change of a QdF QΦ, denoted ∇QΦ, is

∇QΦ(w)(k) := QΦ(w)(k + 1)−QΦ(w)(k) .

In the following we often use the concept of positivity of a
QdF. We call QΦ nonnegative (denoted QΦ ≥ 0) if QΦ(w) ≥
0 for all w ∈ (Rw)Z. We call QΦ positive (denoted QΦ > 0)
if QΦ(w) > 0 for all w ∈ (Rw)Z, w 6= 0. If B ∈ Lw and QΦ

is nonnegative for all trajectories w ∈ B, then we say that

QΦ is nonnegative along B, denoted QΦ

B
≥ 0. The notion

of positivity along B is defined and denoted analogously.

We now introduce the concepts of dissipativity, lossless-
ness, and storage functions. B ∈ Lw

cont is dissipative with
respect to the supply rate QΦ if there exists a QdF QΨ,
called a storage function, such that

∇QΨ(w) ≤ QΦ(w) for all w ∈ B . (4)

Equation (4) can be shown to be equivalent (see Proposition
3.3 of [2]) to the existence of a dissipation function, i.e. a
QdF Q∆ ≥ 0 such that

+∞∑
k=−∞

Q∆(w)(k) =
+∞∑

k=−∞

QΦ(w)(k) for all w ∈ B∩`w2(Z) .

(5)
Moreover, there is a one-one correspondence between storage
functions and dissipation rates, in the sense that for every dis-
sipation function Q∆ there exists a unique storage function
QΨ, and for every storage function QΨ there exists a unique
dissipation function Q∆, such that for all w ∈ B

∇QΨ(w) +Q∆(w) = QΦ(w) . (6)

If (4) is an equality, equivalently if Q∆ = 0 in (6), then B is
called lossless with respect to QΦ. If

∑0
k=−∞QΦ(w)(k) ≥

0 for all w ∈ B|(−∞,0] ∩ `w2(Z−), then B is called half-line
dissipative; and if a system is lossless and every storage func-
tion is positive-definite, then B is called half-line lossless.
Evidently, half-line dissipativity (respectively losslessness)
implies dissipativity (respectively losslessness).

In this paper we give special attention to the case of
passive systems, with u = y and the supply rate induced
by

Φ =
[

0 Iu
Iu 0

]
; (7)

and to the case of bounded-real systems, with

Φ =
[
Iu 0
0 −Iy

]
. (8)

In this paper an essential role is played by the fact
that under suitable conditions storage functions for discrete-
time systems are quadratic functions of the state; we now
discuss this issue in detail. We say that a storage function
QΨ is a quadratic function of the state if, given a state
representation for B with state variable x, there exists K =
K> ∈ Rn×n such that for every trajectory (x,w) ∈ Bf it
holds QΨ(w) = x>Kx. While every storage function is a
quadratic function of the state for continuous-time systems
(see Theorem 5.5 of [11]), it is not in discrete-time, see
[3]: additional assumptions are needed. It can be shown that
this is the case when the system is lossless (see Theorem
5.3 of [3]) or when every storage function is nonnegative
(see Theorem 5.1 of [3]). Another sufficient condition is
given in Theorem 5.2 of [3], and a necessary and sufficient
condition is given in Proposition 2 of [4]. In particular,
storage functions for passive and for bounded-real systems
are always a quadratic function of the state.
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III. DETERMINISTIC IDENTIFICATION

In this section and in the rest of the paper we deal with
trajectories w defined on Z+. Given B ∈ Lw, we denote
with B+ := {w|Z+ | w ∈ B}, and with `w2(Z+) the set of
w-dimensional square summable trajectories on Z+.

The notion of persistency of excitation is the only identi-
fiability condition we need for our identification algorithms;
we now illustrate it. A sequence u : Z+ → Rm is said to be
persistently exciting of order L (abbreviated p.e. of order L
in the following) if

rank


u(0) u(1) · · ·
u(1) u(2) · · ·

...
... · · ·

u(L− 1) u(L) · · ·

 = Lm .

In Corollary 2 of [10] it has been shown that for every
trajectory (u, x) of a state-space system σx = Ax + Bu
with n-dimensional state vector x and m-dimensional input
u, if T is “sufficiently large”, i.e. T ≥ nm, it holds that

u p.e. of order n =⇒ rank
[
u(0) · · · u(T )
x(0) · · · x(T )

]
= n + m (9)

It follows that if u is p.e. of order n, then
rank

[
x(0) · · · x(T )

]
= n.

A. The lossless case

State sequences are computed from the data by performing
a rank-revealing factorization of the S-matrix, which we now
introduce.

Definition 1: Let B ∈ Lw
cont , w ∈ B+ ∩ `w2(Z+) and

Φ = Φ> ∈ Rw×w. The S-matrix associated with w and Φ is
the infinite matrix

[S(w)]i,j=0,... :=
∞∑

k=0

LΦ(σiw, σjw)(k) (10)

Since w ∈ `w2(Z+) the S-matrix is well-defined, and each of
its entries is a real number.

The following result is the foundation for the deterministic
identification procedures we illustrate in this paper.

Proposition 2: Let B ∈ Lw
cont, and let Bf be a state

representation of B with state variable x. Assume that B
is half-line lossless with respect to the supply rate induced
by Φ = Φ> ∈ Rw×w. Then there exists a nonsingular
K = K> ∈ R•×• such that for every w = col(u, y) ∈ B+∩
`w2(Z+) with associated state trajectory x, i.e. (x, u, y) ∈ Bf

the following equality holds:

S(w) =

x(0)>

x(1)>
...

K [x(0) x(1) · · ·
]
. (11)

Proof: Since w ∈ `w2(Z+), it follows that
limk→∞ w(k) = 0. From the losslessness of B and Theorem
5.3 of [3] it follows that every storage function is a quadratic
function of the state. Consequently, there exists a real sym-
metric matrix K ′ such that for every pair of trajectories

(xi, wi), i = 1, 2 in the full behavior Bf it holds
+∞∑
k=0

w1(k)>Φw2(k) = −x1(0)>K ′x2(0)

+x1(1)>K ′x2(1)− x1(1)>K ′x2(1) + . . .

= −x1(0)>K ′x2(0) ,

where we have used the fact that since limk→∞ w(k) = 0,
also limk→∞ x(k) = 0. It is easy to see that this implies∑+∞

k=0(σiw)(k)>Φ(σjw)(k) = −x(i)>K ′x(j) for i, j =
0, . . .. This proves equation (11), with K := −K ′. In order to
prove nonsingularity of K, recall that B is half-line lossless,
and consequently every storage function is positive-definite.

The following result is a direct consequence of Proposition
2.

Corollary 3: Let B ∈ Lw
cont be half-line lossless with

respect to the supply rate induced by Φ = Φ> ∈ Rw×w, and
let Bf be a minimal state representation of B with state
variable x. Let w = col(u, y) ∈ B+ ∩ lw2(Z+), and assume
that u is p.e. of order n(B). Then the S-matrix has rank
n(B).

Proof: Recall that the storage function matrix
K ′ ∈ Rn(B)×n(B) is positive definite. Now use the per-
sistency of excitation of u in order to conclude that
rank

[
x(0) x(1) · · ·

]
= n(B). Finally, use (11).

It follows from Proposition 2 and Corollary 3 that in order
to compute a minimal state sequence corresponding to the
data w, one can proceed as follows. Define a rank-revealing
factorization of S(w) to be any factorization S(w) = U∆U>

with U ∈ R∞×n(B) and ∆ ∈ Rn(B)×n(B) both having full
rank, equal to n(B) = rank S(w). It follows from (11) that
a state sequence x(0), x(1), . . . can be obtained from such
a rank-revealing factorization as[

x(0) x(1) . . .
]

:= U>

Moreover, the matrices A,B, C, D corresponding to a min-
imal input-state-output representation of B can be obtained
solving the set of linear equations[

x(1) x(2) x(3) · · ·
y(0) y(1) y(2) · · ·

]
=
[
A B
C D

] [
x(0) x(1) x(2) · · ·
u(0) u(1) u(2) · · ·

]
. (12)

In order to obtain a state representation Eσx+Fx+Gw = 0,
the system of linear equations in the matrices E, F , and G
needs to be solved:

[
E F G

] x(1) x(2) x(3) · · ·
x(0) x(1) x(2) · · ·
w(0) w(1) w(2) · · ·

 = 0 . (13)

Note that solutions (A,B,C,D) and (E,F,G) to equations
(12) and (13) always exists since x is a state variable, see
for example Prop. VII.3 of [9].

Remark 4: When considering the application of the results
of Proposition 2 and Corollary 3 to real data in order to
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compute a state representation of B, we need to consider
that only a finite number of measurements of w is available,
and that consequently only an approximation of the entries
of the S-matrix can be computed. It follows that a rank-
revealing factorization of this approximate S-matrix only
corresponds to an approximation of an actual state sequence
of the data-producing system. An expedient solution is to
assume that a “sufficiently large” time window of the data
is given; since w ∈ `w2(Z+), w(T ) ' 0 for “large enough” T
and the approximation error becomes negligible if the data is
known from 0 to T . The assumption of “sufficiently large”
TT is made also in [5]. This stratagem however cannot be
considered entirely satisfactory, and a thorough investigation
on the finite-measurements issues is required; we will pursue
this elsewhere.

Different rank-revealing factorizations of the Gramian-
like matrix produce different state sequences, which in their
turn correspond to different state representations. We next
show how one can exploit this in order to obtain balanced
state space representations from data. We first explain in
what sense “balanced state space representation” must be
understood. Assume that every storage function is positive
definite; we say that a minimal state space representation of
B is balanced if the matrices K− and K+ corresponding
to the minimal and the maximal storage functions x>K−x
and x>K+x are diagonal and inverse of each other, i.e.
K− = K−1

+ = Λ for some diagonal matrix Λ. In the case of
Φ given by (7), respectively (8), this definition of balanced
state representation coincides with the classical passive,
respectively bounded-real, balanced realization. Note that in
the lossless case, the maximal- and minimal storage functions
coincide, and consequently a realization is balanced if the
matrix K corresponding to this unique storage function is
the identity.

We now show that by choosing appropriately the rank-
revealing factorization (11) and solving the corresponding
equations (12), a balanced realization of the data-producing
system B can be obtained. In order to do this, the following
result is instrumental.

Proposition 5: Let B ∈ Lw
cont, and let Bf be a minimal

input/state/output representation of B with state variable x,
associated with the matrices A, B, C, D. Assume that B is
half-line lossless with respect to the supply rate induced by
Φ = Φ> ∈ Rw×w. Then the matrix K = K> ∈ Rn(B)×n(B)

satisfying equation (11) is equal to the unique real symmetric
solution of the equations

B(−K)B> − Φuu −D>Φ>uy − ΦuyD −D>ΦyyD = 0

A>(−K)B − ΦuyC −D>ΦyyC = 0
A>(−K)A− (−K)− C>ΦyyC = 0

Proof: Follows in a straightforward manner from the
Kalman-Yakubovich-Popov lemma.

It follows from Proposition 5 that under the assumption
that u is p.e. of order n(B), if the matrix K satisfying (11)
equals −In(B), i.e. if the factorization of the S-matrix is of
the form S(w) = −UU>, then the realization obtained by

solving (12) is balanced. This is interesting in view of the
application of our ideas to the problem of model reduction
from data: given a sequence w produced by an unknown,
high-order system, compute from it a reduced-order model
for the system. These refinements will be pursued elsewhere.

We conclude this subsection with the statement of an
algorithm for the identification of a state-space representation
of a lossless system from noise-free data; note that we gloss
over the issue of finite measurements (see Remark 4). We
use Matlab c© notation: if U is a matrix, then U(1 : j, :) is
its submatrix consisting of the first j rows of U .

Algorithm 1
Input: w = col(u, y) ∈ B+ ∩ `w2(Z+), with B ∈ Lw

cont

half-line lossless with respect to the supply rate
induced by Φ = Φ> ∈ Rw×w.

Output: A minimal input-state-output representation of B.

Step 1: Compute the S-matrix (10).
Step 2: Compute n := rank S(w).
Step 3: Factorize S(w) = U∆U>

with U ∈ R∞×n, ∆ ∈ Rn×n.
(For a balanced realization do Step 3
with ∆ = −In.)

Step 4: Define X := U(1 :∞, :)>,
σX := U(2 :∞, :)>.

Step 5: Solve (12) in the unknowns A,B,C,D.
Step 6: Return A,B,C,D.

B. The dissipative case

In some areas of application, e.g. when dealing with
mechanical systems, a dissipation function is often either
known or can be computed on the basis of physical consid-
erations. In other situations the given data w is of a special
nature; for example, w is known to be a trajectory of zero
dissipation, i.e. Q∆(w) is identically zero. In situations like
these it makes sense to consider the extension of the approach
illustrated in section III-A to the case of dissipative systems.
This extension is rather straightforward, and it is based on the
following intuition: if a system is dissipative with respect to
a supply rate QΦ, then it is lossless with respect to the supply
rate QΦ−Q∆, with Q∆ a dissipation function. Consequently,
if Q∆ is known (or if the data consists of a zero-dissipation
function), and if some additional assumptions guaranteeing
that storage functions are a quadratic function of the state
are satisfied, then the procedure illustrated in the previous
section can be easily adapted to the dissipative case. We
now formalize this intuition.

Let B ∈ Lw
cont be Φ-half-line dissipative with Φ =

Φ> ∈ Rw×w, and assume that a dissipation function induced
by a two-variable polynomial ∆ ∈ Rw×w[ζ, η] is known.
Moreover, assume that the storage function QΨ associated
with the dissipation function Q∆ is a quadratic function of
the state. As explained already in section II, note that while
this is always true in continuous-time, it is not in discrete-
time; see section II for the statement of several sufficient
conditions for this purpose.
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From the dissipation equality (6) it follows in a straight-
forward manner that for every w1, w2 ∈ B

LΦ(w1, w2) = L∆(w1, w2) +∇LΨ(w1, w2) ,

where LΦ, L∆, and LΨ are the bilinear difference forms
associated with Φ, and with the two-variable polynomial
matrices Ψ(ζ, η) and ∆(ζ, η) corresponding to the storage
function and the dissipation function respectively. Now let
Bf be a state representation of B with state variable x;
if w1, w2 ∈ B+ ∩ `w2(Z+), with associated full trajectories
(wi, xi) ∈ Bf , i = 1, 2, then

∞∑
k=0

w1(k)>Φw2(k)

=
∞∑

k=0

L∆(w1, w2)(k)− x1(0)>K ′x2(0)

where K ′ = K ′> ∈ R•×• is the matrix corresponding to the
storage function QΨ and the state variable x. Now define the
generalized S-matrix as

[S(w)]i,j=0,... :=
∞∑

k=0

LΦ(σiw, σjw)(k)

−
∞∑

k=0

L∆(σiw, σjw)(k) (14)

and note that

S(w) =

x(0)>

x(1)>
...

K [x(0) x(1) · · ·
]
, (15)

where K := −K ′.
This argument proves the following result, analogous to

Proposition 2 of section III-A.
Proposition 6: Let B ∈ Lw

cont, and let Bf be a state
representation of B with state variable x. Assume that B
is half-line dissipative with respect to Φ = Φ> ∈ Rw×w,
and let ∆ ∈ Rw×w

s [ζ, η] induce a dissipation function for
B. Assume that the storage function associated with Q∆

is a quadratic function of the state. Then there exists K =
K> ∈ R•×• such that for all w = col(u, y) ∈ B+∩ `w2(Z+),
with associated state trajectory x, i.e. (x, u, y) ∈ Bf , the
generalized S-matrix (14) satisfies (15).

From the factorization (15) of the generalized S-matrix
(14) and from the persistency of excitation of u it follows
that if Bf is a minimal state representation of B and if
K is sign-definite, then S(w) has rank n(B). In order to
ensure that any storage function is sign-definite, we assume
that the system is half-line dissipative, and that the number
m(B) of input variables equals the number σ+(Φ) of positive
eigenvalues of the supply rate matrix Φ. Indeed in this case,
using Theorem 5.3 of [3] and the same argument of the proof
of Theorem 6.4 of [11] for the continuous-time case, it can be
shown that all storage functions are positive, in the sense that
if a storage function is given by x>Kx, then K > 0. Note

that the assumption m(B) = σ+(Φ) holds for passive and for
bounded-real systems, see equations (7) and (8) respectively.

These considerations lead to the following result.
Proposition 7: Let B ∈ Lw

cont, and let Bf be a minimal
state representation of B with state variable x. Assume that
B is Φ-half-line dissipative with Φ = Φ> ∈ Rw×w, and
let ∆ ∈ Rw×w

s [ζ, η] induce a dissipation function for B.
Assume that the storage function associated with Q∆ is a
quadratic function of the state, and moreover assume that
m(B) = σ+(Φ). Then the matrix K = K> ∈ Rn(B)×n(B)

corresponding to the storage function is positive-definite.
Moreover, let w = col(u, y) ∈ B+ ∩ `w2(Z+), and assume
that u is p.e. of order n(B). Then rank S(w) = n(B).

Proof: Proven analogously to Proposition 3.
Remark 8: Propositions 6 and 7, allow to formulate a

procedure for deterministic identification of a state-space rep-
resentation of a dissipative systems completely analogous to
Algorithm 1; indeed, the only modification to be performed
is in Step 1, where the generalized S-matrix (14) is used in
place of the S-matrix (10).

Remark 9: The problem of identifying a dissipation func-
tion arises in many areas of application, for example in vibra-
tion theory for mechanical systems, where the identification
of the damping coefficient is a standard problem usually
solved using physical insight, see [1]. We are currently
investigating whether the framework illustrated in this paper
offers an alternative approach to this problem. A possible
way to restrict the search for suitable candidate dissipation
functions could be to use the dissipation equality (6) in
order to conclude that a dissipation function, besides being
nonnegative, should also make the generalized S-matrix
corresponding to it to have rank equal to n(B) if this is
known, or “as low as possible” if this additional information
on the McMillan degree of the system is unavailable. An
open research question is to find and if possible to charac-
terize such functionals, given as few as possible arbitrary
assumptions on the form of the functional. This will be
pursued elsewhere.

Finally, we conclude this section discussing the computa-
tion of balanced realizations from data. We begin with the
following result.

Proposition 10: Let B ∈ Lw
cont, and let Bf be a minimal

input/state/output representation of B with state variable x
associated with the matrices (A,B,C,D). Assume that B
is Φ-half-line dissipative, and let ∆ ∈ Rw×w

s [ζ, η] induce a
dissipation function for B. Assume that the storage function
associated with Q∆ is a quadratic function of the state, and
moreover that m(B) = σ+(Φ). Let w = col(u, y) ∈ B ∩
`w2(Z+), and let S(w) be defined as in (14). Define

R := Φuu +D>Φ>uy + ΦuyD +D>ΦyyD

S> := ΦuyC +D>ΦyyC

Q := C>ΦyyC . (16)

Let K be such that (15) holds, and assume that R −
B>KB > 0; then the matrix K ′ := −K satisfies the
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algebraic Riccati equation

0 = A>K ′A−K ′ +Q

−
(
A>K ′B + S

) (
B>K ′B +R

)−1 (
B>K ′A+ S>

)
Proof: The result follows from the well-known relation-

ship between storage functions and solutions of the algebraic
Riccati equation.

Now assume that the dissipation functions ∆+ and ∆−
corresponding to the maximal and the minimal storage
functions Ψ+ and Ψ− (see section 4 of [2] and section 3 of
[4] for details) are known, and that the corresponding storage
functions are quadratic functions of the state. Assume also
that m(B) = σ+(Φ), so that if x>Kx is a storage function,
then K > 0. Assume also that u is persistently exciting
of order n(B). Then we can obtain a balanced realization
directly from the data w = (u, y), as we now show.

We first compute two generalized S-matrices:

[S−(w)] :=
[
LΦ(σiw, σjw)− L∆−(σiw, σjw)

]
i,j=0,...

[S+(w)] :=
[
LΦ(σiw, σjw)− L∆+(σiw, σjw)

]
i,j=0,...

.(17)

We then compute a rank-revealing factorization of S−(w)
as S−(w) = −V >V . Recall that the columns of the
matrix V form a minimal state sequence x(0), x(1), . . .;
consequently, there exists K+ = K>+ ∈ Rn(B)×n(B),
K+ > 0, such that S+(w) = V >(−K+)V . It is
immediate to verify that K+ can be computed from
the data as K+ = −

(
V V >

)−1
V S+(w)V >

(
V V >

)−1
.

Now compute a singular value decomposition of
−
(
V V >

)−1
V S+(w)V >

(
V V >

)−1
:

−
(
V V >

)−1
V S+(w)V >

(
V V >

)−1
=: UΣU> , (18)

and observe that both U and Σ are square and nonsingular.
Now define T := UΣ−

1
4 ; then it is a matter of straightfor-

ward verification to check that S−(w) = V >Σ−
1
2V and that

S+(w) = V >Σ
1
2V , where V ′ := T−1V = Σ

1
4U> V . Since

T is nonsingular and the columns of V form a (minimal) state
sequence, also the columns of V ′ form a (minimal) state se-
quence; moreover, the matrices (A,B,C,D) corresponding
to this state sequence are such that the matrices associated
with the minimal and the maximal storage functions are
respectively −Σ−

1
2 and −Σ

1
2 . It follows that (A,B,C,D)

is a balanced input/state/output representation of B.

IV. CONCLUSIONS

We have illustrated a novel approach to identify lossless-
and dissipative systems; the basic idea is to compute first
a state trajectory from a rank-revealing factorization of a
“Gramian” matrix associated with the measured data, and
then compute the matrices (A,B,C,D) corresponding to
this state sequence solving (12). The cases of bounded-real
and positive-real systems are important special cases for the
application of the algorithms presented in this paper.

If the data-producing system is lossless, this identification
technique does not require any additional knowledge about
the data-generating system except the supply rate; in the
dissipative case, in order for the technique to be applied also

the dissipation function must be known. Our identification
procedure has been shown to yield in a straightforward
manner balanced state representations.

Current research is aimed in several directions. Firstly, we
want to consider the application of this procedure to the prob-
lem of model reduction from data. Secondly, it is necessary
to carry out a detailed analysis of the computational costs
involved in the identification, and to investigate efficient and
numerically accurate algorithms for the implementation of
the procedure. Thirdly, we aim at investigating the case of
noisy measurements. Fourthly, the important generalization
of our approach to the case of finite measurements must be
pursued. Finally, we want to address some of the research
questions described in Remark 9.
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