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Abstract— High-performance micro-electro-mechanical sys-
tems (MEMS) sensors can be implemented by incorporating
a micro-machined capacitive sensing element in a Sigma-Delta-
Modulators (Σ∆M ) force-feedback loop, forming an electro-
mechanical Σ∆M (EM − Σ∆M ). We propose a transfer-
function based design methodology to realize discrete- and
continuous-time low-pass electro-mechanical Σ∆M systems.
The design is performed at the level of the integrated system
consisting of the electro-mechanical sensor and of the electronic
circuit; we call this the dynamics-level. We also illustrate
a technique to perform the conversion of the discrete-time
design to a continuous-time one. The approach is demonstrated
through an electro-mechanical Σ∆M design example for a bulk
micro-machined, capacitive accelerometer.

I. INTRODUCTION

Micro-machined accelerometers are widely used in air-
bag systems in vehicles, in vibration measurement, in inertial
guidance, and many other applications. Most modern micro-
machined sensing elements consist of a proof mass which is
deflected due to the inertial force, resulting in a differential
capacitive signal which is then amplified. Since the differen-
tial changes in the capacitive signal are very small, a high-
resolution interface circuit becomes of primary importance in
design. Equally important is the incorporation of the sensing
element in a force-feedback control scheme so as to increase
the linearity, dynamic range and bandwidth of the sensor,
and to reduce sensitivity to fabrication imperfections and sus-
ceptibility to environmental parameter changes. Compared to
analogue force feedback control strategies, closed-loop force-
feedback control schemes based on Sigma-Delta modulators
(Σ∆M in the following) have many advantages [1]; in
particular, they produce a direct digital output which can
be directly processed further by a digital signal processor. In
such a scheme, the micromachined sensing element is part of
the control loop to form an electro-mechanical Σ∆M . The
design problem is to determine parameters for the control
loop that guarantee the stability of the overall system and a
good performance in terms of signal-to-noise ratio.

Initially, in order to design electro-mechanical Σ∆M stan-
dard approaches developed in the context of purely electronic
Σ∆M analog-digital convertors (ADC) were used, see [2],
[3]. However, electro-mechanical Σ∆M are fundamentally
different from purely electronic ones, since integrating the
micro-machined sensing element without losing loop stabil-
ity and performance introduces additional difficulties in the
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design. Since there is no exact theoretical analysis method
due to the non-linearity of the quantizer, and since fab-
rication tolerances and environmental conditions introduce
uncertainties, designs are often validated through system
level simulations. This approach is rather inefficient, since
a large number of different scenarios must be simulated and
analyzed before sufficient confidence can be established to
adopt a given design. Moreover, often the optimization of
the parameters is performed directly on a specific circuit
chosen for the implementation, and the resulting designs are
topology-dependent.

Recently in [4], [5], an ‘unconstrained architecture’ (also
called topology in the following) has been proposed for
the case of a MEMS gyroscope. The topology is called
“unconstrained” since it has the necessary degrees of free-
dom to accommodate an arbitrary second order dynamical
model. This approach constitutes a major inspiration for the
results presented in this paper; we briefly review its salient
features. In [4], [5], the need for system-level simulations
is significantly reduced by the adoption of a “filter-level”
design, of an elegant analytical framework, and of a set of
clear-cut design guidelines. The methodology is developed
essentially for a second-order model for the sensing element,
and for a specific system topology; this makes the mapping
between the designed QNTF to the circuit rather straightfor-
ward. However, the adoption of higher-order models (often
necessary to model the complex dynamics of the sensing
element) requires using different topologies, which are not
presented in [5]. Another aspect not discussed explicitly
in [5] is the conversion of the design from discrete- to
continuous-time.

In this paper we address both these issues. We distinguish
three phases in the design of Σ∆M , namely:

• dynamics-level design: designing the QNTF and the
signal transfer function at the system-level, i.e. with the
sensing element integrated in the loop filter;

• topology-level design: synthesizing the loop filter into a
desired circuit topology;

• circuit-level design: circuit behavior and layout design.

We concentrate on dynamics-level design, taking as start-
ing point the work illustrated in [6]; standard techniques
for design at the topology- and circuit-level for purely
electronic Σ∆M (see for example [7], [8], [9], [10], [11])
can be used for the other two phases. This approach entails
two advantages. Firstly there is the decoupling of design
(performed in the first phase) and implementation (performed
in the last two phases and aimed at solving issues specific to
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the application). Secondly, in the design phase it is easy to
accommodate higher-order models for the sensing element
given that the computations are transfer-function based.

At the dynamics level, we design the QNTF of a discrete-
time Σ∆M under constraints that specifically model the
integration of the sensing element in the system, as in the
approach of [5], [12]. After converting the QNTF into an
open-loop filter, the splitting of the sensing element and the
electronic part of this filter is carried out. In this phase we
only use transfer function manipulations, without restricting
ourselves to an a priori specified topology.

In this paper we also consider the problem of how to
convert a discrete-time design to an ‘equivalent’ continuous-
time one at the dynamics-level. A direct conversion does not
preserve the separation of the mechanical and the electronic
part; consequently, we introduce a mixed-feedback topology
including a signal- and a compensation path in order to
accommodate the dynamics of the sensing element, and
then convert separately the resulting transfer functions to
continuous-time through standard techniques.

This paper is organized as follows. In section II, a system-
level analysis is carried out for the discrete-time case to
establish a relationship between the quantization noise trans-
fer function and the open-loop system transfer function. We
proceed to illustrate our design procedure and to exemplify
it with a fourth-order example. In section III, the conversion
from a discrete-time electro-mechanical Σ∆M design to an
equivalent continuous-time system is discussed. In the final
section of the paper, conclusions are drawn and some current
and future research work is outlined.

II. TRANSFER-FUNCTION-BASED
DISCRETE-TIME DESIGN

In this section we present a design procedure for single-
loop EM-Σ∆M systems, which are often chosen for elec-
tromechanical applications (see [2]) due to their high toler-
ance to parameters variations.

A. System analysis of single-loop electro-mechanical Σ∆M

A simplified single-feedback electro-mechanical Σ∆M is
shown in Fig. 1, including the sensing element with transfer
function Gs(s), the electronic interface and filter circuit part
with transfer function Hc(s), the feedback-force block kfb
and the quantizer.

Fig. 1. Block diagram of electro-mechanical Σ∆M system

This simplified model neglects several factors affecting
the dynamics of a real-world electro-mechanical system, for
example nonlinearities arising from non-ideal components,

from additional electrostatic force components, and from
the feedback voltage to electro-static force conversion; and
non-constant damping and spring coefficients. However, in
the simulations used for validating the design technique
proposed in this paper we do consider several of these non-
ideal effects. It is also important to note that although the
the sensor element Gs in Fig. 1 is described by a second-
order transfer function, our methodology can be used without
modifications for higher-order models.

In the second-order case the dynamics of the sensing
element are described in continuous-time as:

Gs(s) =
1

ms2 + bs+ k
, (1)

where m is the proof mass (measured in Kg), b is the
damping coefficient (measured in N/m/s), and k is the
stiffness constant (measured in N/m). As shown in [5],
assuming a zeroth order DAC, the transfer function (1) has
a discrete-time domain equivalent

Gs(z) = ks
z − bs

(z − as)(z − a∗s)
, (2)

for suitable values of the constants as (computed from the
continuous-time poles of (1) via the usual continuous-to-
discrete-time mapping formula), ks, and bs. Of particular
relevance for the following is the presence in (2) of the zero
bs, which is absent in the continuous-time model.

Quasi-linear models have proved to be effective in dealing
with the nonlinearity of Σ∆M in many successfully Σ∆M
applications, see [13], [1], [5]. In these models the nonlinear-
ity of the one-bit quantizer is replaced with a gain kq and a
quantisation error eQ (see section III of [14]). Consequently,
a linearized model for the discrete-time QNTF, denoted with
QNTF(z), can be written as:

QNTF (z) =
1

1−Gs(z)Hc(z)kqkfb
. (3)

In the following we consider the open-loop system transfer
function GO(z) := Gs(z)Hc(z)kqkfb which we can factor-
ize as GO(z) =: BO(z)

AO(z) , with BO and AO defined by

kO
(z − bs)(z − bO,2) . . . (z − bO,nOb

)

(z − as)(z − a∗s)(z − aO,3) . . . (z − aO,nOa
)
. (4)

Analogously, QNTF (z) is factorized as

QNTF (z) =:
BN (z)

AN (z)
= kN

(z − bN,1) . . . (z − bN,nNb
)

(z − aN,1) . . . (z − aN,nNa
)
.

(5)
It is a matter of straightforward verification to check that
from (3) and from GO(z) = Gs(z)Hc(z)kqkfb it follows
that

GO(z) =
1−QNTF (z)

QNTF (z)
=

BO(z)

AO(z)
=

AN (z)−BN (z)

BN (z)
.

(6)
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B. Constraints for QNTF design in EM-Σ∆M

It is a matter of straightforward calculations to show that
since the open loop dynamics (4) contains the zero bs of
the sensing element, then Go(bs) = 0 and QNTF (bs) =
1. Consequently, the QNTF in a n-th order force-feedback
electro-mechanical Σ∆M system has the following form:

QNTF (z) =
(z − as)(z − a∗s)(z − bN,3) . . . (z − bN,n)

(z − aN,1) . . . (z − aN,n)
(7)

A third constraint arises from an empirical criterion (see
[13]) used to ensure the stability of the closed-loop transfer
function, namely ∥QNTF∥∞ < 2.0. (When the system
order is higher than 5, it is suggested that ∥QNTF∥∞ < 1.5
(see [1]).) The fourth constraint is the stability of the QNTF.

Summarizing, the following constraints must be satisfied:

1) QNTF (bs) = 1;
2) QNTF (z) is of the form as eq. (7);
3) |QNTF (z)|∞ < gmax, where gmax = 2.0 or 1.5;
4) All poles of QNTF (z) are in {z ∈ C | |z| < 1}.

C. Simplify QNTF design through open loop manipulation

In a single-feedback scheme the signal transfer function
is completely determined by the QNTF; consequently a
standard design heuristic is that a ‘good’ QNTF also leads
to a ‘good’ QSNR, see [1]. The first stage in our procedure
is to design a realizable high-pass QNTF filter to achieve
the desired noise shaping performance, while satisfying the
constraints 1)− 4) stated at the end of subsection II-B. This
step involves solving a mathematical optimization problem in
the 2n−2 decision variables bN,3, . . . , bN,n, aN,1, . . . , aN,n

appearing in 7, under the constraints 1)− 4) of section II-B.
This is a non-convex problem, difficult to solve analytically
and computationally intensive to tackle using numerical
methods (see [15], [7] for an exploration algorithm); in this
article we concentrate on achieving a sub-optimal solution.

The problem of designing the QNTF can be simplified by
releasing the equality constraint 1). In [5], this is done with
the ‘unconstrained architecture’, through the introduction
of a mixed-feedback scheme. In our design method, we
use the following equivalent conversion with the open loop
dynamics. Considering a QNTF of the form (7), we obtain

Go(z) = kO
(z − bO,1) . . . (z − bO,nOb

)

(z − as)(z − a∗s)(z − bN,3) . . . (z − bN,n)
,

(8)
where nOb < n. We then introduce a fictitious zero-pole pair
(bs, bs) in 8 as follows:

G′
O(z) = ks

z − bs
(z − as1)(z − as2)

· kO
kskqkfb

· (z − bO,1) . . . (z − bO,nOb
)

(z − bs)(z − bN,3) . . . (z − bN,n)
· kqkfb

=: Gs(z) · k′O (9)

· (z − bO,1) . . . (z − bO,nOb
)

(z − bs)(z − bN,3) . . . (z − bN,n)
· kqkfb

where kq can be considered as 1 at the dynamics-level
design stage, since an arbitrary open loop gain can be cas-
caded before quantizer without affecting QSNR performance,
see [1], [16]. This open loop dynamics is of the form
Gs(z)H

′
c(z)kfb, with

H ′
c(z) := k′O

(z − bO,1) . . . (z − bO,n−1)

(z − bs)(z − bN,3) . . . (z − bN,n)
(10)

being the nominal circuit filter. We now proceed to design
the QNTF under the constraints 2)− 4) of sect. II-B.
D. Design methodology for discrete-time EM − Σ∆M

We formalise our procedure in the flow-chart in Fig. 2.
Major steps in the procedure are represented by solid boxes;
their execution is split up in the series of actions described
in the dashed-border boxes. These detailed steps can be
performed in several ways, which may involve iterations and
trade-offs achieved by rule-of-thumb; these will be described
in the design example in section II-E.

Fig. 2. Design procedure for discrete-time low-pass EM − Σ∆M

(I) Obtain CT and DT dynamics model from the sensor’s
parameters, including its poles and zeros.

(II) This is a constrained linear filter design that can be
solved in many ways. In [5] the authors propose an
effective solution to arrange QNTF’s poles and zeros
based on some results of [12], [1]. We use a technique
developed for purely electrical Σ∆M , see Appendix V
and the design example below.

(III) Use eq. (6) to compute the open-loop dynamics Go(z)
from the designed QNTF. At this stage we are only
concerned with the location of the poles and the zeroes,
and only with the sign of the gains of the transfer
functions. The value of the gains are not important,
although of course they affect stability greatly and need
to be chosen carefully later on. In the following we call
a representation of a transfer function with gain ±1 a
normalized zpk (zero-pole-gain) representation.
The DT Σ∆M ’s open-loop dynamics comprises the
Go(z) computed above and the quantizer; its stability

Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems – MTNS 2010 •  5–9 July, 2010 • Budapest, Hungary

737



can be verified in simulations by inserting small signal
input after quantizer.

(IV) Various choices can be effected. In [5] an unconstrained
topology (‘architecture’) based on a mixed-feedback
is proposed at the topology level. We integrate the
sensing element through transfer function manipulation
at the dynamics-level, by integrating the constraint
regarding the sensing element’s poles in QNTF design
and introducing a fictitious zero-pole pair (bs, bs) in the
conversion to open loop dynamics, see (5) and (9).
The second important issue to address in this step
is to decide the value of feedback gain kfb. For a
single-feedback scheme, it is important to ensure that
Kmax∥input∥ < ∥feedback∥ is satisfied (see [13]),
where input is the input force, feedback is the feedback
force, and Kmax is an empirical threshold.

(V) The problem of realizing a nominal circuit filter H ′
c(z)

with an optimized topology has been well studied in
purely electrical Σ∆M design, see [8], [10]. In this
step practical issues, e.g. circuit complexity, coefficient
sensitivity and power consumption can addressed.

E. Design example: fourth-order low-pass Σ∆M for a
MEMS accelerometer

Fig. 3. Schematic diagram of a capacitive accelerometer [16]

We use the high-performance capacitive accelerometer
schematically shown in Fig. 3, considered also in [17], [18],
[16]. The lumped parameters of the bulk-micro-machined
accelerometer sensing element are summarized in Table I.
We follow the procedure schematised in Fig. 2:

Mass of proof mass m (kg) 1.2× 10−6

Damping coefficients b (N/m · s) 6.0× 10−3

Spring stiffness k (N/m) 5.0
Resonant frequency (Hz) 325
Quality factor 0.41
Static sensitivity (pF/g) 16.5
Static sensing capacitance (pF ) 21.03
Sensing gap distance (µm) 3
Maximal acceleration Gmax (G) ± 1

TABLE I
LUMPED PARAMETERS OF THE ACCELEROMETER [16], [17]

(I): We assume that the sampling frequency
fs = 131072Hz, and that the bandwidth
fbw = 1024Hz. Consequently Gs(z) =

2.397 × 10−5 (z+0.988)
(z−0.992)(z−0.971) with one

zero as bs = −0.987, and two poles as
{as, a∗s} = {0.992, 0.970} .

(II): The poles of the sensing element {as, a∗s} =
{0.992, 0.970}; using the heuristic described in Ap-
pendix V, we choose the remaining zeroes through
the optimal arrangement of zeros for a second order
purely electrical Σ∆M as e±j0.5774ϕ1 = {0.9996±
0.02834j}, ϕ1 = fbw

fs · 2π. Finally, the poles
of QNTF are determined with inverse Chebyshev
functions as described in Appendix V: four poles
are selected as in a fourth order ‘E1’ scheme from
Table 4.4 in [13], i.e., {0.78391±0.3333j, 0.6570±
0.1157j}. The Bode plot of the designed QNTF

10
1

10
2

10
3

10
4

10
5

System: Zntf
Frequency (Hz): 2.15e+004
Magnitude (dB): 5.68

Frequency  (Hz)

Fig. 4. Bode plot of QNTF

in Fig. 4 shows that ∥QNTF (z)∥∞ = 4.76dB =
1.730 < gmax= 2.

(III): The open-loop transfer function Go(z) is com-
puted according to (6):

− (z − 0.7623)(z2 − 1.697z + 0.7772)

(z − 0.992)(z − 0.9704)(z2 − 1.999z + 1)
.

(11)
(IV): The decomposition of Gs(z) as in 9 and 10 yields

H ′
c(z) = − (z − 0.762)(z2 − 1.697z + 0.777)

(z + 0.987)(z2 − 1.999z + 1)

We now need to set the feedback force gain kfb
and the circuit gain kc. Considering the electronic
noise from front-end amplifier, kfb is set as kfb =
1.22× 10−5 in system-level simulations.

(V): We use the classical cascaded scheme based on
biquad configuration [11] to map the designed
transfer function to a circuit.

We now validate the design obtained with the Matlab
Simulink model depicted in Fig. 6. There are some differ-
ences with respect to Fig. 1: firstly, the feedback force gain is
implemented through a force-feedback linearization scheme
with feedback voltage Vfb = 6.5 V , as discussed in [18].
Moreover, H ′

c(z) is implemented in a biquad configuration
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Fig. 5. Realization of 4th order discrete-time electro-mechanical Σ∆M

Fig. 6. Simulink model of fourth order discrete-time electro-mechanical Σ∆M

10
1

10
2

10
3

10
4

PSD of bit stream of 4th order DT electro−mechnical Σ∆ M

Frequency [Hz]

SNR = 82.7dB @ OSR=128

Signal Bandwidth =1024 Hz

Fig. 7. PSD of output bitstream of the 4th order DT electro-mechanical
Σ∆M

(see Chapter 9 of [19]) with Hd1(z) and Hd2(z) as in Fig.
5. The circuit topology diagram is shown in Fig. 5.

In simulations we chose the acceleration input signal
x(t) = 0.5 G · sin(2πfint) to avoid overloading, where
fin = 128 Hz. The oversampling ratio is ORS = 128, and
the signal bandwidth is fbw = 1024Hz, so that the sampling
frequency is fs = 131072 Hz. We placed an input-referred
white-noise source (the ‘Enoise’ module in Fig. 6) with a
realistic power spectral density (PSD) equal to 6 nV√

Hz
at the

input of the pick-off amplifier (see [20]).
In simulations, the system in Fig. 6 achieves an 82.7dB

SQNR, as shown in Fig. 7. Comparing this result to the
82 dB value obtained for the same MEMS accelerometer
in [17], shows that our design method directly produces a
fourth-order electro-mechanical Σ∆M system with compet-
itive performance without the need for any time-consuming
system-level simulation.

Remark 1: It has been confirmed in simulations that our

design performs well also when the parameters of the second-
order model in 1 are changed considerably, even up to
unrealistic values.

III. DISCRETE- TO CONTINUOUS-TIME Σ∆M
CONVERSION

EM-Σ∆M are often based on discrete-time circuits;
however, discrete implementations also have disadvantages
which may suggest considering a continuous implementa-
tion. However, design for continuous-time EM-Σ∆M is not
straightforward: while the quasi-linear model is a reasonable
approximation in the discrete-time case, this assumption is
not applicable in the continuous-time case. It is because
of this that the need for the conversion of discrete- to
continuous-time designs arises.

A. Discrete- to continuous-time conversion via the equiva-
lent closed-loop impulse response

In the purely electronic Σ∆M domain, a widely used
method for the conversion of discrete-time systems to
continuous-time is the equivalent impulse response (see [21],
[22] ); this technique has also been partially used in the
context of electro-mechanical Σ∆M in [17], [18]. The basic
idea of this method is illustrated in Figure 8: the discrete-
time system transfer function Go(z) is substituted by an
“equivalent” continuous-time transfer function Go(s) pre-
ceded by a digital-to-analog converter (DAC) and followed
by a sampler with sampling frequency fs. Go(s) is chosen
so that the values of the discrete-time signal xd(·) on the
left-hand side of Figure 8 and of the sampled version x′

d(·)
of the continuous-time signal xc(·) on the right-hand side of
the figure are equal at the sampling instants. In the following
discussion we consider a None-Return (Zero-Order-Hold)
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Fig. 8. Conversion from discrete- to continuous-time Σ∆M

DAC scheme, since it is the most widely used in various
applications.

B. Decomposition of sensing element and circuit filter in
dynamics-level

Following the assumption and discussion in section II,
without losing generality, we can assume that the result of
the conversion from the DT open loop dynamics in 4 is

Go(s) =
Bo(s)

Ao(s)
(12)

=
kcO(s− bcO,1) . . . (s− bcO,nOa−1)

(s− acs1)(s− acs2)(s− acO,3) . . . (s− acO,nOa
)
,

where {acs1, acs2} represent two poles of the second order
model sensing element, kcO is the nominal gain, nOa is the
order of open loop dynamics, {acO,i, i = 3, . . . , nOa − 1}
are poles of open loop dynamics except {acs1, acs2}, and
{bcO,i, i = 1, . . . , nOa−1} the zeros of open loop dynamics.

In general it is not guaranteed that deg(Bo(s)) <
deg(Ao(s)) − 1; moreover, the presence of the sensing
element Gs(s) =

kc
s

(s−ac
s1)(s−ac

s2)
requires that the numerator

has degree equal to (deg(Ao(s)) − 2). Therefore, direct
decomposition by cascading the sensing element with the
circuit filter leads to an unrealisable filter.

In order to decompose the open loop dynamics Go(s),
we preserve the separation of mechanical and electronic
dynamics based on the mixed-feedback scheme shown in
Fig. 9. Two paths are present: the signal path integrating the
sensing element Gs(s) and cascading part of the electronic
circuit transfer function Hc1(s); and the compensation path
containing another part of circuit filter Hc2(s) to compensate
the difference of the impulse response between after CT
signal path and before the quantizer in DT Σ∆M . In transfer
functions terms, given Gs(s) as in (1) and Go(s) as in
(12), there always exist proper rational functions Hc1(s) and
Hc2(s) such that

Go(s) = Gs(s)Hc1(s) +Hc2(s) . (13)

It should be noted that the decomposition (13) is not unique.
We propose the following decomposition approach.

1) Divide Bo(s) by (s − acs1)(s − acs2), obtaining
Bo(s) = (s − acs1)(s − acs2)B

∗
O(s) + Br

O(s), where
deg(B∗

O(s)) = (nOa−3), and Br
O(s) is the remainder,

deg(B1rO(s)) ≤ 1.

2) Choose a polynomial B1∗O(s) with deg(B1∗O(s)) ≤
(nOa − 4);

3) Decompose Go(s) =
Bo(s)
Ao(s)

as:

Gs(s)
1
kc
s
((s−ac

s1)(s−ac
s2)B1∗O(s)+Br

O(s))

(s−ac
O,3)...(s−ac

O,nOa
)

+
B∗

O(s)−B1∗O(s)
(s−ac

O,3)...(s−ac
O,nOa

) ;
(14)

Now define the two transfer functions Hc1(s) :=
Bc1(s)
Ac1(s)

=
1
kc
s
((s−ac

s1)(s−ac
s2)B1∗O(s)+Br

O(s))

(s−ac
O,3)...(s−ac

O,nOa
) and Hc2(s) := Bc2(s)

Ac2(s)
=

B∗
O(s)−B1∗O(s)

(s−ac
O,3)...(s−ac

O,nOa
) . Observe that deg(Bc1(s)) ≤ (nOa −

2) = deg(Ac1(s)) and deg(Bc2(s)) ≤ (nOa − 2) =
deg(Ac2(s)), and consequently Hc1(s) and Hc2(s) are
proper rational functions which can be realized by circuits.

According to eq. (13), the choice of different B1∗O(s)
does not affect equivalence between DT and CT open-loop
dynamics, i.e., SQNR performance of Σ∆M . Theoretically,
an arbitrary B1∗O(s) can be selected by designers to make a
successful decomposition to complete dynamics-level design
aiming at SQNR performance. In design practise, iterative
searching of a suitable B1∗O(s) may be required to produce
specific Signal Transfer Function (STF) when considering
other requirements, such as, input noise along signal path.

Remark 2: In single-loop Σ∆M the nominal circuit trans-
fer function can have an arbitrary gain placed before the
quantizer, whose value does not alter the performance of the
system. When using a signal- and a compensation-path, their
gains can be arbitrary, but they must be proportional to each
other according to a fixed ratio.

C. Design methodology for continuous time EM-Σ∆M

Using the decomposition approach sketched above, the
following design methodology for CT EM − Σ∆M is
obtained:

(I) Design open loop dynamics Go(z) for a DT EM −
Σ∆M as in steps I)-III) of Fig. 2;

(II) Convert CT open loop dynamics Go(z) to DT open
loop dynamics Go(s) with preferred DAC;

(III) Decompose Go(s) as in (14) and realise the EM −
Σ∆M at dynamics level;

(IV) Map the open loop filter Hc1(s) and Hc2(s) to proper
circuit topologies.
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Fig. 9. Conversion from discrete- to continuous-time Σ∆M with distributed feedback

We conclude this section with an example converting the
design of section II-E to continuous-time.

D. Discrete- to continuous-time design conversion example

Step I is completed in design example in section II-
E, obtaining Go(z) as in (11). Step II can be performed
using the Matlab command d2c to convert Go(z) to CT
open-loop dynamics, which yields following normalized zpk
presentation Go(s):

− (s+ 3.543× 104)(s2 + 3.322× 104s+ 1.572× 109)

(s+ 3943)(s+ 1057)(s2 + 1.38× 107)
(15)

In step III, let B1∗O(s) = 3× 104; we decompose Go(s) as

Go(s) =
8.33× 105

s2 + 5000s+ 4.167× 106
· 0.036

·−(s2 + 8.59× 104s+ 1.85× 109)

s2 + 1.38× 107

+
−(s+ 3.37× 104)

s2 + 1.38× 107

= Gs(s) · 0.036 ·Hc1(s) +Hc2(s) (16)

where Hc1(s) and Hc2(s) are the normalized zpk represen-
tations of the signal path and compensation path transfer
functions.

As mentioned in Remark 2, the signal path gain and the
compensation path gain may vary, but they must have the
same sign as Hc1(s) and Hc2(s), and a fixed ratio of 0.036.
Through dynamics level simulation, we set kfb = 4.6×10−6

so as to tolerate electronic noise from the front-end amplifier,
which has corresponding feedback voltage as Vfb = 4.0V .
The compensation path gain is set as 127.8.

In step IV, the distributed feedback and feed-forward
topology, see[18], is adopted to map the designed filter to
circuit topology.

In order to validate this design, we simulate the designed
topology in Matlab Simulink with the model illus-
trated in Figure. 10. The converted continuous-time electro-
mechanical Σ∆M system achieves a SQNR of 86.0dB.

0
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10

3
10

4

PSD of bit stream of 4th CT electro−mechanical Σ∆M

Frequency [Hz]

SNR = 86.0dB @ OSR=128
                      

Signal Bandwidth =1024Hz

Fig. 11. PSD of output bitstream of the 4th order continuous-time electro-
mechanical Σ∆M

IV. CONCLUSIONS

In this paper, we illustrated a three-stage design procedure
for EM-Σ∆M design, and we concentrated on the dynamics-
level design. A complete dynamics-level design method was
developed for DT and CT EM-Σ∆M . Design examples
based on a high-performance accelerometer have been used
to illustrate the design procedure. System-level simulations
show that our designs are competitive when compared with
previous work.

This paper presents only a basic concept to design EM-
Σ∆M , on which further research is being carried out in
several directions. Firstly, we plan to apply the methodology
illustrated here to the case of higher-order Σ∆M applications
with more complex sensing element dynamics, in order to
further validate our approach. Secondly, we want to investi-
gate the possibility of setting up a mathematical optimization
problem for the determination of the QNTF poles, and of
finding efficient methods for its solution. Finally, we aim at
incorporating uncertainty considerations in the design and at
assessing in a systematic way the robustness of the electronic
circuit in the face of parameter uncertainties.

V. APPENDIX

Design QNTF for EM-Σ∆M : This appendix describes the
QNTF design method used to find suitable zeros and poles
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Fig. 10. Circuit realization of fourth order continuous-time electro-mechanical Σ∆M

for QNTF of EM-Σ∆M . Note that the arrangement of zeros
and poles of QNTF is based on the quasi-linear model for
Σ∆M , which is only approximate to the nonlinear dynamics
of real Σ∆M . Consequently ours is not a strictly optimal
solution but a sub-optimal one based on some empirical
guidelines.

We first consider the zeros of QNTF in EM-Σ∆M which
dominate the in band quantisation noise. Given second order
dynamics model for the sensing element in n-th order EM-
Σ∆M , there are n − 2 zeros of QNTF to determine. It
is straightforward to use a zeros arrangement scheme for
(n−2)-th QNTF as in purely electrical Σ∆M , see Table 4.1
in [1]. Secondly, the placement of the poles of the Σ∆M has
to be considered as a trade off between SQNR performance
and system stability. Considering that the poles of the sensing
element are different from the optimal zeros for purely
electrical Σ∆M , we choose a relatively conservative scheme
to arrage n poles using roots of Inverse Chebyshev functions
as described in Chapter 4.6.2 of [13], see Table 4.4 in [13].
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