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This paper presents an effective methodology for robust optimization of electromagnetic devices. To achieve the goal, the method
improves the robustness of the minimum of the objective function chosen as a design solution by minimizing the second-order sensitivity
information, called a gradient index (GI) and defined by a function of gradients of performance functions with respect to uncertain
variables. The constraint feasibility is also enhanced by adding a GI corresponding to the constraint value. The distinctive feature of the
method is that it requires neither statistical information on design variables nor calculation of the performance reliability during the
robust optimization process. The validity of the proposed method is tested with the TEAM Workshop Problem 22.
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I. INTRODUCTION

D UE to a growing demand for high-performance and
high-reliability electromagnetic devices or equipment,

attention has recently focused on the robust optimization
of products with the aim of minimizing the variation of the
performance as a result of uncontrollable factors such as manu-
facturing errors, operating conditions, material properties, etc.
[1]–[5]. Until now, most of the reported attempts have used
the Taguchi’s robust design concept or Monte Carlo simulation
based on the assumption that design parameters are random
variables with a probability distribution [2]–[4]. However,
implementation difficulties usually arise because it is not easy
to acquire probability data of uncertain variables; moreover,
information about which parameter is dominant may not be
available.

To overcome the aforementioned drawbacks, this paper pro-
poses an effective methodology utilizing the second-order sensi-
tivity information, defined as a “gradient index” (GI) in [5], for
the robust optimization of electromagnetic systems. The basic
concept of the method is to obtain robustness of the objective
function by minimizing a GI value calculated from the gradients
of performance functions with respect to uncertain variables.
Simultaneously, the constraint feasibility is also considered by
adding a term determined with a constraint value and a GI corre-
sponding to the constraint. Consequently, the method needs nei-
ther statistical information on design variations nor calculation
of the performance reliability while it is searching for a robust
optimal solution.

In this paper, the optimization method is numerically im-
plemented by combining the commercial finite element code
MagNet [6] with a Design Optimization Tools (DOT) optimizer
[7]. A modified feasible direction algorithm with the second-
order sensitivity information by finite differencing is used to
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obtain a robust optimal solution. The validity of the proposed
method is tested with the TEAM Workshop Problem 22.

II. BASIC CONCEPTS OF A GRADIENT INDEX FORMULATION

To help designers understand the GI formulation presented by
Han and Kwak [5] in mechanical engineering, its basic concepts
are briefly summarized.

A typical optimization problem with the aim of minimizing
an objective/performance function , subject to a set of con-
strains , is expressed as

(1)

where is an -dimensional design variable vector. The values
and denote the lower and upper bounds of the design vari-

able vector, respectively. Conventional optimization methods do
not take into account the effect of variations in design variables
on the objective function and the constraint feasibility. Thus, an
optimum solution obtained might be very sensitive, or the con-
straints might be violated, in the presence of perturbations of the
design variables.

With the aim to improve the robustness of the objective and
constraint functions effectively, the proposed robust optimiza-
tion method in essence utilizes the GI value, defined as a max-
imum gradient of the objective function of interest with respect
to uncertain variables, , as follows:

(2)

where denotes the number of uncertain variables considered
in the robust optimization problem. The robustness of the objec-
tive function as well as constraint feasibility are simultaneously
improved by searching for a new optimum solution of the ro-
bust optimization problem formulated with the concept of GI as
follows:

(3)
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Fig. 1. Illustration of geometric relationship between �, CT, CTMIN, and �.
(a) Constraint function �. (b) Penalty function � �� �.

where is a gradient function of the objective function with
respect to the uncertain variables , and is a target value
of the objective function determined by a designer after solving
(1). In order to enhance the robustness of constraint feasibility,
an additional term, , is added to each constraint function
in (3). The penalty function can be defined as

(4)

where is a gradient function of the th constraint func-
tion with respect to the uncertain variables. The values CT and
CTMIN are constraint tolerances, respectively, as illustrated in
Fig. 1, while the factor is selected depending on the impor-
tance of the constraint and the number of design variations from
the viewpoint of robustness. When the constraint is in a feasible
region , the penalty term is zero. In the case that
the constraint is numerically critical
or violated , the penalty term is proportional
to the gradient index for the constraint function and is added
according to the value of for the robustness of the constraint
feasibility.

Since the gradient index is incorporated with both the objec-
tive function and the constraints to increase the design robust-
ness, robust designs can be effectively obtained.

Fig. 2. Flowchart of the proposed robust optimization method.

III. NUMERICAL IMPLEMENTATION

The proposed method has been implemented by combining
the commercial finite element code MagNet with a DOT opti-
mizer as shown in Fig. 2, where a modified feasible direction al-
gorithm with the second-order sensitivity information by finite
differencing is used to search for a robust optimal solution. To
obtain the GI values, the first-order sensitivity values are com-
puted by the continuum design sensitivity analysis (CDSA) [8],
[9], and then the second-order sensitivity information on the ob-
jective function with respect to the selected uncertain variables
is calculated based on the finite difference technique in the DOT
optimizer.

If a conventional optimization is carried out prior to robust
optimization, designers can determine an achievable range of
the objective function and also obtain other useful information,
such as about which design variables are most sensitive to
change during the optimization and which constraint is sig-
nificant in the problem considered. Assuming that such useful
references are available through the deterministic optimization,
the proposed algorithm for robust optimization of electromag-
netic devices consists of the following steps.

1. Define an objective function, uncertain variables, and
constraint functions and formulate a robust optimization
problem with (3).

2. Solve the dual system for the objective function based on
CDSA and—if necessary—solve additional dual systems
for constraint functions.

3. Extract field and performance data of interest from post-
processed analysis data.

4. Compute the values relating to the objective function, con-
straints, and accordingly their sensitivities.

5. If the design is acceptable for the prescribed convergence
criteria, then the optimization process stops.

6. Otherwise, calculate the second-order gradients of ob-
jective and constraint functions by the finite difference
method and go to step 2.

In comparison to previous approaches for robust optimal
design, such as Taguchi’s robust design concept or Monte Carlo
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Fig. 3. Configuration of the SMES device with eight design variables.

simulation, which require statistical information on design
variations and calculate the performance reliability, the method
based on the gradient index needs no such information.

IV. RESULTS

The TEAM benchmark problem 22 is concerned with the de-
sign optimization of a superconducting magnetic energy storage
system (SMES) as depicted in Fig. 3 [3], [4]. In order to simplify
the design problem, a constraint of the current quench condition
on the superconductivity magnet is not considered here. A typ-
ical optimization problem for minimizing an objective function
subject to a set of constraints is expressed as

(5)

where is the stray field values calculated at the th mea-
surement point along line a and line b, is the stored magnetic
energy, and is the energy target value of 180 MJ. The design
variable vector consists of six parameters describing the di-
mensions of the magnet and the two current densities. To search
for an optimal solution of (5) based on CDSA, two dual sys-
tems for the objective function and the constraint function

, which are implicit functions with respect to design vari-
ables, should be constructed. However, there is no need to an-
alyze the adjoint system in the case of because the dual
system itself is self-adjoint [8], [9].

To complement the above expressions, the proposed robust
optimization for improving the robustness of the objective and
the constraint functions is formulated as follows:

(6)

where is set to be the same as the energy target value . In
order to enhance the robustness of the constraint feasibility, the
penalty function with and shown in (4) is

Fig. 4. Comparison of magnet dimensions after optimization.

TABLE I
DESIGN VARIABLES AND PERFORMANCE INDICATIONS AT THE DETERMINISTIC

AND ROBUST OPTIMA

taken into account, and the default values of and
provided by the DOT optimizer are allotted

to the constraint tolerances.
The optimization problem for minimizing the stray fields of

the SMES device of Fig. 3 is solved using two methods. The
first is a deterministic method based on CDSA that does not
take into account the effects of uncertain parameters; the second
approach is the proposed robust optimization method. In this
paper, all of the eight design variables used in the deterministic
method are selected to be the uncertain variables for the purpose
of comparison between the two methods.

Starting with an initial design, the deterministic and the ro-
bust optima are presented in Table I. The stored energy values
obtained from the two methods almost reach the target value of
180 MJ, but the robust optimum produces a better mean value
of the stray fields than the deterministic algorithm. It is inferred
that the deterministic optimal solution is trapped in one of the
local minima near the constraint boundaries, while a better op-
timal solution is found by the robust optimization as the feasi-
bility robustness of the constraints is improved.

In Fig. 4, the dimensions of the two optimized magnets are
compared to each other. As shown in the figure, the distance
between the two windings resulting from the deterministic op-
timization is too small to be fabricated in practice. On the other
hand, the robust optimization yields a more acceptable result
by prescribing a relatively large value to the factor in .
That is proved by Fig. 5, where the more important constraint in
terms of becomes very robust when the feasibility robustness
is considered in the optimization. The comparison of the sensi-
tivity values of the objective function between the deterministic
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Fig. 5. Comparison of constraint function values after optimization.

Fig. 6. Comparison of sensitivity values of uncertain variables.

Fig. 7. Comparison of stored energy variations when current density changes.

and the robust optima is presented in Fig. 6, where a large sensi-
tivity value implies that the given design is very sensitive to the
design variations. It is noticed that the robust optimum dramat-
ically improves the robustness of the objective function.

In Figs. 7 and 8, the variations of the stored energy values and
the stray fields are compared between the deterministic and the
robust optima, respectively, when the current density values of
J1 and J2 change by the amount of 1%, 3%, and 5% of their op-
timized current values, respectively. These results correspond
to the changes of the constraint function in (5) and the ob-
jective function in a case that the uncertainty may come from a
current controller, which can keep the currents within a certain
range when compensating perturbations. It is concluded that the
variations of the stored energy values are almost the same, but

Fig. 8. Comparison of stray field variations when current density changes.

the stray field variations make big differences between the two
methods under the condition of small changes of the imposed
currents.

V. CONCLUSION

In this paper, a robust optimization approach adopting the
concept of a gradient index has been described and success-
fully applied to the robust optimization problem of a supercon-
ducting magnetic energy storage system, the TEAM Workshop
Problem 22. The results reveal that the proposed method offers
high performance as well as robustness of the objective and the
constraint functions even without the statistical information on
design variations and calculation of the performance reliability
during optimization process.
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