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On the Equivalence of Finite Element and Finite Integration Formulations
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The paper offers a comparative study of numerical methods of analysis of electromagnetic fields. The focus is on the finite element
method (FEM) and finite integration technique (FIT), but with the cell and equivalent network approaches also considered. It is shown
how the approximate integrals describing coefficients of the FEM need to be derived for a mesh with parallelepiped elements to achieve
consistency with FIT equations. The equivalence of FEM and FIT formulations for a triangular mesh in 2D is highlighted. The TEAM
Workshops Problem No. 7 is used as an example for numerical comparisons. Two formulations have been considered: 1) using the edge
values of the magnetic vector potential and the nodal values of the electric scalar potential ; and 2) expressed in terms of the edge
values of both magnetic and electric - � vector potentials.

Index Terms—Eddy currents, electrical engineering education, finite element method (FEM), finite integration technique (FIT), mag-
netic circuits.

I. INTRODUCTION

T HE finite element method (FEM) has established itself as
the prime numerical technique for electromagnetic field

computations, but some researchers prefer and promote the use
of the finite integration technique (FIT) [1], the cell method
(CM) [2], or the equivalent electric and magnetic networks
(ENM) [3]. The similarities between CM, FIT, and FEM were
observed in [4] and [5], while the analogy between FEM and
ENM was explored thoroughly in [6]. The main differences
between the different approaches are related to the way in
which space is discretized and equation coefficients are set up,
in particular the so-called “mass matrices” of the FEM theory
[4]. The CM, FIT, and ENM formulations usually rely on a
discretization that is equivalent to hexahedral FEM elements of
eight nodes and 12 edges (or curved rectangular parallelepipeds
under cylindrical symmetry). The FEM mass matrices are
nondiagonal, unlike the ones arising in CM, classical FIT,
and ENM. The purpose of this paper is to extend the previous
comparative analysis of the methods. It is demonstrated that the
CM, FIT, and ENM equations may be considered a special case
of the FEM formulation. The derived approximate integration
formulas yield the equations equivalent (identical).

II. EQUATIONS OF FEM AND FIT

Both nodal elements using scalar potentials , and edge
elements in terms of vector potentials are considered. The
FEM equations for scalar potentials correspond to the nodal
equations of the edge network with branches coinciding with
element edges [6]. The edge model of a rectangular prism is
shown in Fig. 1(a). The permeances, conductances, and capaci-
tances forming the mass matrix may be found from
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(1b)
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Fig. 1. (a) Edge and (b) facet model of an element.

where are interpolation functions of an edge ele-
ment for the edges and , respectively; ;
and is the volume of the element. The FEM equations for
vector potentials and edge elements represent loop equations
of the facet network, the branches of which cross the element
facets.

A portion of a network of a parallelepiped element is shown in
Fig. 1(b). The reluctances and impedances of the element model
relate to the mass matrix elements and are described by

(2a)

(2b)

where are interpolation functions of a facet element
for the facets [6].

The FEM mass matrices are nondiagonal; consequently, so
are the matrices of the equivalent network models. In the models
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Fig. 2. Reluctance (facet) model of a triangle with mutual reluctances.

Fig. 3. Permeance (facet) model of a triangle with mutual permeances.

of Fig. 1, the branches that are not perpendicular to each other
will have a mutual coupling. Both the flux and the current in
branch of the edge model depend on voltages in the other
branches parallel to , for example,

(3)

In the above relationship, the conductances and capacitances
are defined as follows:

(4a)

(4b)

where and are dimensions as in Fig. 1(b).
In the facet model of Fig. 1(b), the electric/magnetic potential

differences across the branch depend on the current/flux
in the branches parallel to ; for example, the “magnetic
voltage” (that is a magnetic potential difference across the re-
luctance) of branch may be written as

(5)

where

(6)

Coupling will also occur within the facet and edge models of
a triangular element; see Figs. 2 and 3. Fig. 2 shows a reluctance
(facet) model of a triangular element that has been derived using
a facet model of a five-sided prism [7]. Here, the loop fluxes
are given by the product of the component of the potential

and the length ( m) in the -direction. The edge (per-
meance) model of a triangular element, i.e., the 2D model for a

Fig. 4. Reluctance (facet) model of a triangle without mutual reluctances.

Fig. 5. Permeance (facet) model of a triangle without mutual permeances.

formulation using the scalar potential , is shown in Fig. 3. In
the model, the branch magnetomotive forces (mmfs) repre-
sent edge values of or , i.e., is the edge value of or
for .

Equations arising from the CM, classical FIT, and ENM for-
mulations may appear to be similar to those obtained from the
FEM, but there is an important difference: They do not contain
mutual couplings, and thus the mass matrices are diagonal. For
example, for the models of Fig. 1, we can write

(7a)

(7b)

In the reluctance and permeance models of a triangle

(8a)

(8b)

with and as shown in Figs. 4 and 5.

III. DERIVING FEM EQUIVALENT TO FIT

From circuit theory, it is well known that a three-branch star
with mutual couplings may be converted into an equivalent one
without any couplings, as demonstrated by Fig. 4. This may be
achieved by exploiting the condition , which allows the
expressions for the “magnetic voltage” in the branch with fluxes

(see Fig. 2) to be written as

(9)

where the reluctances are described in Fig. 4. As
a result, a model may be derived containing no mutual reluc-
tances but having a diagonal mass matrix with self-reluctances
identical to the FIT formulation (Fig. 4).
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The mutual couplings may also be eliminated from the edge
model of Fig. 3. When formulating the nodal equations and
finding the fluxes “entering” the nodes, account needs to be
taken of the condition applicable to the tri-
angular loop. Consequently, using the notation from Fig. 3, the
flux entering node equals

(10)

where the mmf and the permeances are depicted
in Fig. 5.

For the 2D models considered, it is therefore possible to start
with different mass matrices for FEM and FIT and yet achieve
identical matrix of coefficients for both formulations. The above
transpositions, regrettably, do not apply to 3D systems. In 3D
cases, it is possible to derive FEM equations equivalent to FIT
formulation and arising from the integrals (1) and (2), describing
the elements of the mass matrix, by applying the following ap-
proximation

(11)

where is the number of element nodes , and is the
value of the function in the node .

This formula may result in models free of mutual cou-
plings, thus with coefficients the same as if obtained from FIT.
Unfortunately, the procedure described by (11) is only suc-
cessful—in terms of making the matrix diagonal—in the case
of parallelepiped elements (it also works for curved rectangular
parallelepipeds), i.e., for elements with . The mass
matrices of tetrahedral and five-sided prism elements may be
made diagonal only if complemented by additional assump-
tions regarding fluxes or currents—for example, by imposing
(or assuming) one of the facet flux or current densities in a
tetrahedron to be negligibly small.

Interesting results are obtained when (11) is applied to a five-
sided element (Fig. 6) in that no coupling will occur between
parallel branches, e.g., between and in
the edge model or between and in the facet model.
Both FIT and FEM formulations using (11) lead to the same
description of those elements of the mass matrix that represent
the parameters of the branch in the edge model, for ex-
ample (for ) and , where is
the area of the triangle face and is the element height (Fig. 6).
The coefficients related to the parameters of the branch

in the facet model are also identical, e.g., and
. However, despite using (11) in both

formulations, the FEM and FIT result in different descriptions of
such entries in the mass matrix that are related to the branches

in
the edge model and the branches in the facet
model. Using FEM and (11) gives

(12a)

(12b)

(13a)

(13b)

Fig. 6. Circuit models of a five-sided element: (a) edge; (b) facet.

Fig. 7. TEAM Workshops Problem No. 7.

where denote angles related to nodes . of
the triangular “base” as shown in Fig. 3.

The derived edge model containing couplings between
branches may be converted into a model without couplings
where . To achieve this, similar transformations are
needed as in the case of the 2D edge models described by
Figs. 3 and 5. It may be shown that

(14a)

(14b)

Unfortunately, as in the 2D case, the transformations change
the description of the sources; an additional mmf will appear
in the converted network (Fig. 5).

The facet model of the element obtained from FEM and
(11)—as described by (13)—may be converted into a cou-
pling-free model following an assumption that the sum of the
fluxes in branches and is negligibly small, thus—as
in the 2D case—we have . After some further
manipulations, we find

(15a)

(15b)

As a result of these transformations, the loop mmf does not
change, thus the right-hand side vector of the FEM equations is
not affected.

IV. EXAMPLE

The TEAM Workshops Problem No. 7 (Fig. 7) has been se-
lected to illustrate the theoretical investigations [8], [9]. The
magnetic field and eddy current distributions have been calcu-
lated for a conducting plate with a hole, with the excitation pro-
vided by a multiturn coil.

Two formulations have been adopted: 1) an - formula-
tion with edge values of magnetic vector potential and nodal
values of electric scalar potential ; and 2) an - - method
with edge values of magnetic and electric vector po-
tentials [10]. The bounded space has been subdivided into about
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TABLE I
COMPARISON BETWEEN FIT AND FEM RESULTS FOR ���-��� FORMULATION

TABLE II
COMPARISON BETWEEN FIT AND FEM RESULTS FOR ���-��� -��� FORMULATION

150 000 elements, some 16 000 of which were placed in the con-
ducting region.

First, consider the results of an - formulation. The re-
sultant system of equations corresponds to a reluctance–con-
ductance network consisting of about half a million loop equa-
tions related to the magnetic network and 20 000 nodal equa-
tions of the electric network. The relevant parameters for the
FEM model were derived using (1) and (2), thus creating mu-
tual conductances and reluctances. A block relaxation method,
combined with incomplete Cholesky decomposition, has been
used to solve the final system of equations. Table I shows ex-
ample values of the flux and current densities at points and

as marked in Fig. 7. The selection of these points was guided
by available TEAM results [9], [11], as the published compar-
isons refer to flux densities in and current densities in .
The values are given for an instant of time when the coil current
was at its maximum (a 50-Hz supply has been assumed).

A formulation in terms of - - was also considered. The
relevant equations are in fact loop equations of the magnetic
and electric networks. In the example, the number of loop equa-
tions of the electric network was 63 000, while the number of
equations of the magnetic network was the same as in the -
approach. The relevant parameters for the model were derived
using (2) for the FEM, thus creating mutual resistances and re-
luctances. For the FIT formulation, the coefficients were cal-
culated using (2), where the integrals were approximated using
(11). The resulting equations were solved using a block relax-
ations method in a similar way as for the - solution. The
computed flux densities for and current densities for are
summarized in Table II.

The current densities presented in both Tables I and II are
close to values published in [9] and [11]. Moreover, similar dis-
crepancies to those reported and highlighted in [9] have been

observed in relation to the values obtained using the potential
against the results based on .

For all points considered, the differences between the FIT
and FEM results do not exceed 0.6% for flux density and 0.7%
for current density. It therefore appears reasonable to conclude
that the proposed approximation (11)—which leads to equations
equivalent to the FIT method with a diagonal mass matrix—is
perfectly acceptable without noticeable loss of accuracy. More-
over, the diagonal matrix is easy to invert, thus seeking edge
values of , representing loop fluxes in the model of Fig. 1(b),
may be conveniently replaced by an easier task of finding nodal
potentials associated with element centers (nodes ). In the
case of diffusion problems, the additional advantage of making
the mass matrix diagonal is a possibility of applying explicit nu-
merical schemes [4].

V. CONCLUSION

The FEM and FIT formulations have been compared, with
particular emphasis on the analysis of the mass matrix. The
differences between the formulations were explained using
the “language” of circuit theory. In the circuit equivalents
of the FEM method, there are couplings between branches,
whereas such couplings are absent from the FIT description.
It was demonstrated that, in the 2D case, the coupled models
may be transformed into coupling-free equivalents. In the 3D
formulation, the FIT-equivalent FEM models are possible only
under special circumstances; the elements of the mass matrix
must be computed using a suggested approximation (11). The
reported test results have confirmed that the differences as a
consequence of accurate or approximate integral computations
are small. Thus, in order to benefit from the computational
advantages of the diagonalization of the FIT matrix, it is rec-
ommended to use the proposed approximation (11). For the
parallelepiped elements, this reduces the problem of solving
the FEM equations to a simpler and more efficient solution of
FIT equations.
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