Distributed and Centralized Task Allocation:
When and Where to Use Them

Johannes van der Horst
SENSe
University of Southampton
Southampton, UK
jgvdhO8r@ecs.soton.ac.uk

Abstract—Self-organisation is frequently advocated as the solu-
tion for managing large, dynamic systems. Distributed algorithms
are implicitly designed for infinitely large problems, while small
systems are regarded as being controllable using traditional,
centralised approaches. Many real-world systems, however, do
not fit conveniently into these ‘“small” or ‘large” categories,
resulting in a range of cases where the optimal solution is
ambiguous. This difficulty is exacerbated by enthusiasts of either
approach constructing problems that suit their preferred control
architecture.

We address this ambiguity by building an abstract model
of task allocation in a community of specialised agents. We
are inspired by the problem of work distribution in distributed
satellite systems, but the model is also relevant to the resource
allocation problems in distributed robotics, autonomic computing
and wireless sensor networks. We compare the behaviour of a
self-organising, market-based task allocation strategy to a classi-
cal approach that uses a central controller with global knowledge.
The objective is not to prove one mechanism inherently superior
to the other; instead we are interested in the regions of problem
space where each of them dominates. Simulation is used to
explore the trade-off between energy consumption and robustness
in a system of intermediate size, with fixed communication costs
and varying rates of component failure. We identify boundaries
between regions in the parameter space where one or the other
architecture will be favoured.

This allows us to derive guidelines for system designers, thus
contributing to the development of a disciplined approach to
controlling distributed systems using self-organising mechanisms.

Index Terms—self-organising control, centralised control, re-
source management, space vehicle control

I. INTRODUCTION

The complexity of our modern distributed systems has
led to increased interest in alternative methodologies such as
self-organisation and self-adaptation for network configuration
and control. These interrelated approaches promise increased
robustness and scalability , while internally managing of the
individuals in these networks. Self-organisation, which is the
focus of this paper, achieves this through local interaction [1],
while self-adaptive systems continuously regulate themselves
while on-line. In recent years, however, these approaches have
become an end in itself: an increasing number of publications
claim merit primarily because they demonstrate the successful
application of either technique. A parallel literature on tradi-
tional centralised approaches exists that assumes that global

Jason Noble
SENSe
University of Southampton
Southampton, UK
jn2@ecs.soton.ac.uk

knowledge of the system is indispensable, usually motivated
by claims of optimality. This schism is exacerbated by enthu-
siasts of the respective approaches constructing problems that
suit their preferred control architecture. For self-organisation
to become a respected tool available to system designers, we
need to know when to use it and, just as importantly, when
not to use it.

Distributed algorithms are implicitly designed for infinitely
large systems. However, practical demonstrations of self-
organising control methodologies frequently employ only
modest numbers of agents. At the same time there is an
assumption that small systems will be adequately addressed
using centralised control. But this raises an important question:
when can we describe a system as small? And when is it large?
The clarity with which we think about the extremes obscures
the vagueness that lies in between. This hazy middle-ground
is also where a number of real-world systems can be found.
In this paper we address this uncertainty by comparing the
performance of two task allocation schemes. The objective is
not to prove one superior to the other, but to identify the areas
where their respective strengths makes one of them the control
mechanism of choice. One is a self-organising, distributed
mechanism that utilises market mechanisms to achieve good
allocation [2]; the other is a centralised controller that uses
a global model of the network to calculate allocations. The
analyses of their respective behaviours illuminate points of
interest to the wider self-* community: we need to carefully
and responsibly identify the valid regions of application for
these techniques.

Our interest in this area stems from research on ways of
controlling distributed satellite systems [3]. Current spacecraft
generally have monolithic structures, but a next generation is
envisaged where a large number of specialised, free-flying
modules will cooperate to complete mission objectives. The
spatially distributed approach promises an increase in ro-
bustness, mission flexibility and lower system cost [4] [5].
However, these will be challenging systems to manage: failures
and changing satellite positions mean that the communication
topology is unstable, nodes have severe power limitations, and
communication uses energy which translates to a measurable
impact on system performance. Spacecraft engineering has
traditionally been dominated by centralised control, but the

characteristics of this problem point to a potential need for
distributed control. Fractionated satellites fall in the problem-
atic area where we have multiple components, but possibly not
enough to warrant a self-organising approach. Although a wide
range of task allocation strategies is available, we therefore
limit our investigation to a centrally coordinated approach and
a decentralised one.

The literature relating to decentralised task allocation spans
several different disciplines: multi-robot coordination, dis-
tributed computing, wireless sensor networks, and operations
research. The history and constraints of these fields have
largely determined the approaches followed. A few attempts
at classifying the space of task allocation problems have
been made, but usually these are field-specific [6], [7]. [8],
discussing multi-robot systems, defined the following three
axes:

o Single-task vs multi-task agents: Agents can execute a
single or multiple tasks simultaneously.

o Single-agent vs multi-agent tasks: Some tasks can be
completed by one agent, while others need multiple
agents.

o Instantaneous vs time-extended assignment: Instanta-
neous assignment permits only instantaneous allocation
of tasks, with no information about the future. In time-
extended allocation more information is available, such as
the distribution of future tasks or the set of all possible
tasks.

These dimensions are a good start in classifying multi-
robot problems, but we have found the following additional
parameters to be useful in describing the more general problem
space of task allocation in multi-agent systems.

o Communication cost: In some networks bandwidth is
effectively unlimited, which makes communication costs
negligible, while in others communicating more than is
necessary decreases system utility. The cost of transmit-
ting information therefore determines the amount and ac-
curacy of available information: global information (and
control) is infeasible when communication is expensive,
necessitating an approach that relies on local information.

o Group size: The number of agents in the group determines
the rules and behaviour that apply, with a non-linear
relationship between group size and the expected system-
level behaviours, as argued elegantly by [9]. For a small
group (less than ten agents) it is feasible to control agents
either individually, or using centralised control; both of
these methods are likely to run into problems with a
very large group (thousands of agents or more). The
space in-between is an area where the appropriate control
mechanism can be contested.

« Agent heterogeneity: Diversity in agent types allows role
specialisation, while homogeneous agents typically have
greater redundancy.

o Volatility and node failure: If individual agents in a
systems are extremely reliable, the control strategy need
not consider the potential disruption to task allocation and

routing: indeed in many models failure is not included
as a possibility. In other systems it will be common for
agents to malfunction or die, thus necessitating constant
rearrangement of the communication network and reallo-
cation of tasks.

Distributed satellite systems span a portion of this space.
The majority of missions will involve single-task agents, with
tasks requiring multiple agents to complete (either consec-
utively or concurrently). Task assignment can be regarded
as instantaneous, as roles may change at any time due to
component failure or changing mission objectives. For most
applications, communication costs will be high due to the
power it requires. Initially group sizes will be moderate, in
the range of tens to hundreds, although massive systems have
also been proposed [10]. The component spacecraft will be
heterogeneous, but with some redundancy.

Our goal is to use both analytic and simulation methods to
start to carve out the problem space defined by the dimensions
listed above, separating it into regions where either distributed
or centralized control is indicated as being more efficient and
effective. We have focused in particular on communication
cost, group size, and volatility. Previous attempts to compare
distributed with centralized control on a level playing field
are surprisingly rare: comparative studies primarily use the
performance of centralised controller as a baseline against
which to demonstrate the quality of the decentralised solution.
Examples include [11] on computational grids, and [12] who
compared a centralized climate control system to various
market-based approaches. We suspect that the lack of fair
comparisons is due to the dichotomy outlined by [13] between
the centralized and decentralized mindsets. Centralised control
is so ubiquitous in our way of thinking that it is rarely named
explicitly, and decentralized approaches on the other hand
can seem exotic and enchanting in the way that global order
emerges from local interactions. It is our hope that the current
paper will help to take some of the sound and fury out of
this clash of architectures, simply through comparing each
approach in terms of overall system efficiency at multiple
points in the task allocation problem space.

II. METHOD

The task allocation problem is set on a network of spe-
cialised agents with multi-component tasks initially arriving at
any point in the network from an external user. In our case the
agents represent satellites, the external user is a ground station,
and the links are wireless communication channels, but agents
could also be robots or supply depots, while the connections
between them could represent communication paths such as
wired links or roads.

Tasks consist of multiple task components, each of which
need to be executed by an agent with the required skill;
agents are specialists in a single component. In the fractionated
satellite case, for example, we have one type of satellite that
is responsible for communication with the ground station, an-
other with imaging capabilities, while yet another type handles
data storage and processing. The task allocation mechanism

is responsible for deciding which agents should execute task
components: this must be done in a manner that maximises
successful task allocation while minimising communication.
It must also be done in a way that is sensitive to network
topology, e.g., excessive local allocation of tasks could exhaust
the energy reserves of local nodes and thus disrupt future
communication to more distant nodes.

We distinguish between two types of communication pack-
ets:

o Negotiation packets are small, and require little energy to
be transmitted (c¢;).

o Task transfer packets represent a substantial amount of
data that must be transferred (e.g., image data for process-
ing on a remote node). The energy required to transfer
a task, c;y is a multiple of the transmission cost for
negotiation packets, i.e., c;y = acy,.

A. Self-organising task allocation

Market mechanisms have become an increasingly popular
way of dealing with complicated allocation problems. Since
Smith’s definition of the Contract Net protocol [14] more than
30 years ago, auctions have been applied to a range of fields,
ranging from distributed computation [15], to mobile robotics
[16], to job shop scheduling [17]. The ability to use only
local information is especially suited to cases where global
communication is either impossible or very expensive, which
encourages the use a distributed auction, similar to [18] or
[19].

We use a distributed auction, similar to [18] or [19] for
outsourcing labour as inspiration for our self-organising con-
trol (SOC) mechanism (see [3] for a previous analysis of
robustness in this model). Bid values are used to convey the
suitability of available agents for a potential task allocation.
The auction protocol for a task component is shown in Fig. 1.
When an agent becomes aware of a task component that need
to be allocated, it sends an announcement to all nodes in its
auction community. We define the auction community to be all
agents within the time-to-live range (drrr) of the auctioneer.
Relevant nodes, i.e., those with the appropriate component
specialization and enough energy, calculate bids that reflect
their fitness: the bid value (B) takes the ratio of maximum
(emaz) to remaining energy (e,..,) into account, as well as a
scaling factor for the size of the task (2).

B =, &mae

erem
This cost function leads to inexpensive bids from under-
utilised agents, while those that receive more allocations
increase their bids as their available energy decreases. Agents
do not try to win tasks by underbidding others — our objective
is to control the system by transmitting the minimum informa-
tion; we are not modelling bidding strategies for a competitive
real-world market. Bids are routed back to the auctioneer along
the path of the original auction announcement. At every agent
along the return route bids are aggregated and the only best
bid is returned, in a manner analogous to [20]. The use of bid

aggregation results in a significant energy saving across the
network because fewer packets are transmitted.

The auctioneer assigns the task component to the agent with
the lowest bid and transmits an allocation-offer message. If
winning agent wants to accept the offer, it returns an acknowl-
edgement message, upon which the auctioneer transfers the
task and payment. If, however, the agent has changed state
since bidding by accepting another task component from a
different source, it transmits a negative acknowledgement to
the auctioneer, who will then repeat the auction. If no relevant
agents exist within the auction community (e.g., due to several
node failures) allocation will certainly fail. The likelihood
of this happening is dependent on the size of the auction
community which is in turn determined by dpry. In this sense
drrr, serves as a robustness parameter because it governs the
system’s resilience to node failure.

Ground Station | Node2 |
New task upload , |
Initiate auction

Auction announcement*

Node3 | Node4 |

Auction

Auction ani ity

N
-Calcu\ate bid

Bid

Aggregate bids

Bid

Aggregate bids

Bid

Find best b\dj

Allocate task element (Node3,)

Allocate task element (Node3) N

Allocation ‘ ‘

Allocation

Payment)
d!

Subtract commission

Payment N

»
Payment Ack

Payment Ack

Node2 |

Ground Station |

Fig. 1. Message sequence diagram describing the distributed task allocation
flow. Node 1 acts as auctioneer, while node 3 is the successful bidder.
The auction announcement messages are flooded thought the network, nodes
capable executing the task respond with bids that convey their suitability. Bids
are aggregated on the return path: only the best bid is forwarded. The task is
allocated to the lowest bidder and payment and the task is transferred.

This strategy would work smoothly when a system contains
a single auctioneer. However, multiple simultaneous auction-
eers exist in our system: tasks can originate with any agent,
multiple tasks will be in the system at any one time, and tasks
will of course be passed around the system as each component
is performed. With multiple auctioneers we potentially find
conflicting allocation: the best available node will be allocated
several different tasks concurrently. To remedy this we need a
localising force that will counter the tendency to allocate all
tasks in the system to the agent with the highest energy level.
Thus, when an agent relays a bid to the auctioneer the bid
is increased by a constant commission factor. Bids from far

away will therefore appear more expensive to the auctioneer,
causing it to favour nearby nodes.

When this process executes concurrently across the network,
we find that it self-organises into zones of allocation around
auctioneers “selling” similar types of task components. The
sizes of the zones are determined by the distribution of bidding
agents, their individual energy levels, the number of tasks
injected into the system and the topology of the network.
This auction mechanism is equivalent to a reverse, sealed-
bid auction, but it is truly distributed. Not only do all agents
have to act as temporary auctioneers, but all agents in the
auction area help calculate the winner. Furthermore, agents do
not maintain a model of the network beyond their immediate
neighbours — routing occurs in an ad hoc manner through the
auction mechanism itself.

B. Centralised control

In this section we develop a centralised allocation mecha-
nism to compare SOC against. This centralised controller is
designed to serve as a fair comparison: it is subject to the
same transmission cost constraints as the SOC version, with
reasonable fault tolerance mechanisms. The central controller
uses global information to compute the best allocation: of
particular interest in this study is the cost involved in building
and maintaining the allocation model. As stated above, the
objective is not to prove one approach superior to the other,
but rather to find the regions of parameter space where either
approach dominates.

The network consists of a manager agent that calculates
allocations using a model of the network, and a number
of worker agents that execute tasks on command from the
manager. The workers have the same capabilities as for SOC:
each has a special skill and limited energy, some of which will
be spent on communication. The manager polls agents to keep
track of the available energy of nodes, their respective skills
and the connections between them. As the manager knows the
effect of all communication and allocation in the network, it
can accurately adjust its view of the network as it progressively
allocates tasks. However, external influences on the system
cannot be predicted and require detection. Workers do not
maintain a map of the network: instead they only need to know
how to reach the manager, who will in turn provide them with
routing instructions for a task.

As with SOC, tasks are initially injected into the system
by the ground station. Alternatively new task components
appear in the system when the preceding task element has
been completed. In both cases the relevant agent notifies the
manager, who uses its model of the network to determine an
allocation. The manager transmits the allocation information
to the originating agent. The agent then proceeds to transfer
the task along a route specified by the manager to the
receiving agent. The receiving agent acknowledges receipt
by transmitting a task-received message to the manager. The
manager can now update its model to reflect the energy used in
transmission and allocation, before relaying the acknowledge-
ment to the originating node, thereby closing the allocation

loop. If the originating node does not receive the allocation
acknowledgement message in a predetermined time, it will
repeat the allocation process. A message sequence diagram is
shown in Fig. 2.

Ground Station I Node1 I

New task upload

Controller |

New Task Notification)

Calculate allocation

Node2 |

Task Transfer

Task Transfer

¢ Task Received Notification

Controller | Node2 |

Transfer Success |

Ground Station I Node1 |

Fig. 2. Message sequence diagram describing the task allocation flow for
central control. Nodes that relay messages are not shown. All messages are
addressed.

The ability to allocate tasks successfully in a changing
environment depends on the accuracy of the manager’s net-
work model and on the workers knowing the correct route
to the manager. Both these factors are determined by the
interval between status polling messages (Tstqtus) Sent by
the controller. These messages refresh workers’ routes and
update the manager’s network model. With a large Tg¢44ys the
manager is effectively implementing open-loop control, while
smaller values of 7444445 provide feedback resulting in a more
accurate model, which also requires more communication.
Tstatus therefore acts as a robustness parameter, analogous to
dTT L for SOC.

C. Experimental setup

The test network initially consists of 225 agents in a 15
by 15 lattice topology. Agents can communicate directly only
with their immediate neighbours to the north, south, east and
west; communication to other agents must be relayed via these
neighbours. Every agent has a skill or specialization randomly
selected from the set of types S = A, B,C, D, E.

Two tasks are injected into the network every 100 time steps,
over a total duration of 2000 time steps, for a total of 40
tasks. These tasks consist consist of five components, each
of which requires one unit of energy to execute. Every task
component is dependent on the successful allocation of the
preceding component, as the causal dependencies in shown in
Table I demonstrate. The execution of components is not tied
to specific nodes: any node with the corresponding skill and
sufficient energy is suitable.

Transmission cost was fixed at 0.01 units for a negotiation
packet and 1 for a task transfer packet, i.e., the value of o was
100. Even though the basic model includes the possibility that
agents will run out of energy, agents in the simulation runs
described have effectively been supplied with infinite energy.
This was done in order to isolate the effects of node failure
from node exhaustion.

1) Node failure: An agent is removed from the network
when it fails: not only can they not perform any work, but its
connections with other nodes are broken, disrupting routing

TABLE I
COMPOUND TASK STRUCTURE USED IN EXPERIMENTS. THE EXECUTION
OF TASK ELEMENTS (LEFT-HAND COLUMN) RESULTS IN ANOTHER TASK
ELEMENT (RIGHT-HAND COLUMN) THAT MUST BE EXECUTED. TASKS ARE
ONLY CONSIDERED COMPLETE IF ALL THE TASK ELEMENTS ARE
SUCCESSFULLY EXECUTED.

A— B
B—C
C — D
D—FE
E —.

and network topology. In this experiment an exponential
distribution is used to model agent failures, where the shape
parameter (\) is the failure rate.

)\€_>‘t

ren={ 5

t>0

t<0 M

We vary A from O for no failures, to 10~% for a mean of 192
observed failures over a full run.

2) Robustness parameters: A higher failure rate requires
greater robustness from the task allocation mechanism. With
SOC this is achieved by modifying the size of the auction
community. We therefore range dppry from 3 to 8, which
results in a auction community size ranging from 24 up to
144, although communities limited by the edge of the network
are smaller. Central allocation is more successful if the model
of the network is frequently updated by decreasing the Ts¢qtys
parameter. We explore a range of values from 10 to 200, as
well as the case where only an initial update occurs and tasks
are allocated in an open-loop fashion.

III. RESULTS

We want use the above task allocation mechanisms to find
the regions in which they perform well, i.e., the role played
by parameters such as group size, communication cost, and
agent failure rates. To compare self-organising to centralised
task allocation, we develop analytical descriptions of each ap-
proach under idealized circumstances. This is supplemented by
simulation in which the relative performance of each method
is compared by looking at the number of tasks successfully
allocated, as well as the overall energy used. Finally we
combine these approaches to return to our central question:
what are the conditions under which each method will be
preferred?

A. Analytic treatment of allocation cost

1) Self-organised task allocation: We start by finding a
description for the total communication cost required to al-
locate a single task component. To derive an upper bound on
cost we assume the most expensive topology for allocation:
a linear network. From the message sequence diagram for
SOC (Fig. 1) we see that, for a network with n agents,
up to m auction-announcement messages will be broadcast.
If all nodes place bids, this will result in n bid messages,
because each node only forwards the best bid it receives.
Assuming the worst case, i.e., that allocation goes to the most

distant node, this will require n transmissions, for each of
the allocation, task transferral/payment, and their respective
acknowledgement messages. The worst case total transmission
cost cqqc required for an auction is therefore:

Caue = DNCyy + NCif 2
= dnciy + ancey 3)

Where
Cif = QCty “4)

However, due to limited time-to-live (d7ry) of messages,
Cauc can be further constrained. With drrp < n, let the
number of nodes that are within relay range of the auctioneer
be n’. This is determined by the dprr, as well as the topology
of the network. The worst case cost for a single auction as:

Cauc = 5nlctz + adrrrcis (5)

The first term is the negotiation overhead, while the second
term describes the task transfer cost. The negotiation overhead
is a linear function of the number of nodes within communi-
cation range of the auctioneer.

If ¢ tasks of s components each and c;y = acg,, the
total system cost over the duration of the experiment can be
approximated as

csoc = tSCauc (6)
= tscy, (5n' + adrrr) (N

From this expression we can see that the total cost of
allocating tasks grows linearly with ¢, and linearly with n’,
which is in turn a function of drrr. Note that this expression
is independent from n which means the allocation scheme will
scale well. Communication cost ¢;, has a linear relationship
to csoc, making it a significant driver of overall system
efficiency.

2) Central control: We can similarly find an expression for
the worst-case cost of allocation for central allocation from
Fig. 2. If ¢ tasks of s components each are allocated, the
allocation cost is described by:

Calloc = t5(4ctmn + thn) (8)
= tscen(4 + «) 9)

However, the centralised controller also requires status
updates to maintain its model of the system:

can

(10)

Cstatus =
Tstatus

where cgiqty 18 the total system expenditure on status updates,
and 74145 1S the status update interval.

The total communication expenditure over the duration (1)
of the experiment is therefore

T 2
coo = Cia (tsn(4 +a)+ i) (11
Tstatus

Note that ccc is dominated by the n? term due to the
status updates. This means that in systems with very large

n a great deal of energy will be expended on maintaining
the manager’s system model. In the case of open-loop control
(Tstatus — inf), the allocation cost is linear with respect to
all the parameters in the allocation term. As with SOC, the
system is also sensitive to the value of ¢;,, — in fact it will be
even more sensitive due to the linear relationship with system
size (n) rather than the with the constant n'.

B. Simulation results

1) Task allocation success: The analytical description of
the task allocation mechanism provides us with a description
of the worst-case performance for a system without failure.
To gauge the average performance and explore the effects
of network volatility due to node failures, we simulate task
allocation using the experimental setup described in Section
1.

A contour plot of the number of tasks successfully com-
pleted is shown in Fig. 5 for SOC and Fig. 6 for central control.
This is shown for a range of failure rates and a significant
variation in the robustness parameter (d;y for SOC, Tgsiqius
for centralised control). Note the similarity in the shape of the
landscapes formed by the allocation schemes. Both exhibit
a strong deterioration as A increases, which leads to a higher
number of failures. The decrease in performance is more rapid
for centralised control. A top to bottom deterioration is also
visible — in both graphs the greatest robustness is shown at
the top. We observe that for small values of dpry, SOC fails to
allocate successfully even when no failures occur. Centralised
control is always successful in a network where no nodes fail.

25

20

X

4t A
A5

Og+00 le-04 2e-04 3e-04 4e-04 5e-04 6e-04 7e-04 8e-04 9e-04
A

Fig. 3. Number of tasks successfully allocated using self-organising control
by node failure rate (M) and time-to-live range(drrr), i.e., the relevant
robustness parameter. As failures increase, the number of tasks allocated
decreases.

2) Energy consumption: Fig. 5 shows the total energy
usage for a self-organising system over the same values of
node failure rate and time-to-live range as shown in Fig. 3.
Note that for a given failure rate, increasing robustness by
increasing drry, results in higher energy usage. Fig. 6 shows

=

o

=)
T

Tstatus

1 }) |
2 g 1
b ® %
5 S

200 1

._.
@
S

T

2

288+00 le-04 2e-04 3e-04 4e-04 5e-04 6e-04 7e-04 8e-04
A

Fig. 4. Number of tasks allocated using central control by node failure rate
(A) and the status update interval (Tstqtus), the relevant robustness parameter.
Note the y-axis is inverted to have the highest robustness at the top.

the total energy usage for a centrally controlled system over
the same values of node failure rate and status update interval
as shown in Fig. 4. Again, for a given failure rate increasing
robustness results in higher energy usage. In both of these
figures it may appear at first glance that a higher failure rate
is good news. However, this decrease in energy usage only
occurs because fewer tasks are being successfully allocated.
The main distinction between the two figures is that high levels
of robustness in the centralised control case are associated
with extreme levels of energy consumption, nearly an order
of magnitude greater than in the self-organising case.

S
/ |
N ,
&
o
S S
& 9

-
2
)
el
S
5 S N} 1
¥ 8
4/ J
/
o0
8e-04 9e-04

Og+00 le-04 2e-04 3e-04 4e-04 5e-04 6e-04 7e-04
A

Fig. 5. Energy used in allocating tasks using self-organising control (Fig.
3) by node failure rate (\) and time-to-live range(drrr), i.e., the relevant
robustness parameter.

— 4000 /—qof/’/'/
30(2)800 15 //

50F 100

100

Tstatus
ébo

150

2001

230

e+00 2e-04 4e-04 6e-04 8e-04

Fig. 6. Energy used in allocating tasks using central control (Fig. 4) by node
failure rate (A) and the status update interval (Tstqtus), the relevant robustness
parameter. Note the y-axis is inverted to have the highest robustness at the
top.

C. Conditions favouring either approach

When designing a task allocation system, some of the above
parameters are imposed on the system designer, while others
have to be selected. The cumulative effect of these param-
eters will determine whether a self-organising or centralised
approach is to be preferred.

For example, suppose the above system is implemented in
a space where A = 1.5e — 04 and we require an average
allocation success of 97.5% (39 out of 40 tasks). Referring to
the task allocation graphs (Fig. 3 and 4), we find that an SOC
approach requires drry, > 5 while the centralised approach
requires Tseqtus < D0. On the energy consumption graphs (Fig.
5 and 6), these points show expected energy consumption of
610 units for SOC and 1500 for centralised allocation. In this
particular case, SOC is clearly the preferred approach.

However, this is not always so: we can use Eq. 7 and Eq.
11 to estimate the network size for which centralised control
and self-organised control will be equivalent in performance.
It follows that for smaller networks centralised control will be
favoured. Note that this is an approximate threshold based on
the expressions we derived for the upper bounds of allocation
cost. We refine the upper bound given by Eq.11 to incorporate
the effect of the lattice topology. The maximum distance
between the manager node and any worker node is /n, while
the maximum transfer distance is 21/n. This gives:

Tn?)
Tstatus
If all other parameters remain fixed as for the experiment
above, then we find the intercept of Eq. 7 and Eq. 12 at 16
nodes. The effect of the topology is also demonstrated in this
example: the root n term is determined by the lattice topology.

For alternative topologies, e.g., scale-free networks, this factor
would be different, shifting the point of ambivalence.

coo = Cig (ts\/ﬁ(él + 2a) + (12)

For both allocation approaches, total energy usage scales
linearly with communication cost (c;,). This means that there
will be no point of ambivalence with respect to this dimension,
except when ¢, = 0.

IV. DISCUSSION

Central control is traditionally used for controlling small
systems, while self-organising approaches have been proposed
for large systems. In this paper we explored the parameters
that determine whether we should regard a system as “small”,
or suited to central control; or “large”, where distributed
approaches will be better. The results demonstrate that both
self-organising control and centralised control have a place
in the tool set of a system designer. Although we focussed
on self-organisation, the principle of identifying the most
suitable control methodology is applicable to the wider self-*
community.

Simulation was used to map the trade-off between success-
ful task allocation and energy consumption for a range of
failure rates. This allows for unbiased selection of the most
efficient allocation approach. In addition, we demonstrated
a method for estimating the boundaries in parameter space
that divide regions where one architecture or the other is
the most attractive. Although this method was applied to a
specific problem, it can be adapted to serve the wider self-*
community.

Which parameters turned out to be the most important in
determining the appropriateness of each approach? The size
of the network is a critical factor, because the allocation costs
of centrally controlled systems scale with n2. In our example
system, we found that 16 agents was the point of ambivalence
between self-organised and centralised approaches. However,
there is no suggestion that 16 is any sort of magic number
dividing small from large systems. Our point is only to
demonstrate that it is possible to find this threshold for any
given problem.

Network volatility is also an important parameter, because
the robustness measures required to deal with high volatility
consume a significant amount of energy. This is especially
true for centrally controlled systems. On the other hand, if
the system is very stable, e.g., agents are extremely reliable,
robustness measures are not required which changes the point
of ambivalence dramatically: centrally controlled systems be-
come much more competitive. This is not only applicable
to agent failures, but also to changes in topology, or nodes
changing their capabilities in a manner that is unpredictable
to the manager node.

Whether communication cost should be regarded as signifi-
cant depends on the relative size of tasks and communication
costs. If the total communication cost is orders of magnitude
less than task sizes, or communicating does not directly
impact the ability of an agent to do work, the choice of
allocation system will be determined by other factors, such as
implementation and verification effort. When communication
comes at some cost we will prefer one approach to the other,

but increases in communication cost will never lead to a switch
in the preferred option.

Several limitations of this study directly suggest future
extensions. One limitation was that the energy expended on
communication was the primary limiting factor in determining
performance. Many systems have other factors that constrain
performance, such as bandwidth, processing power, or physical
limitations on the speed of task transfer. Future work should
include similar analyses of these factors. Task allocation
problems become harder when multi-component tasks with
logical interdependencies are involved, as presented by [21].
The current model uses only a single type of sequential task
structure: the ability of the system to cope with variation
in this regard will be investigated further. Additionally the
response of the allocation methods to heavier task workloads
will be of interest. Finally, our simulations considered only
a regular lattice as a network topology. Our analytical results
have highlighted the likely effects of alternative topologies,
but this remains to be verified.

In closing, we want to reiterate that it is only by understand-
ing the compounding influences of all the relevant parameters
that we can make unbiased design decisions on the best control
strategy for a particular job.

REFERENCES

[1]1 S. Bullock and D. Cliff, “Complexity and emergent behaviour in ict
systems,” HP Labs, Tech. Rep. HPL-2004-187, 2004.

[2] D. Cliff and J. Bruten, “Animat market — trading interactions as
collective social adaptive behavior,” Adaptive Behavior, vol. 7, no. 3-4,
pp. 385414, January 1999.

[3] J. van der Horst, J. Noble, and A. Tatnall, “Robustness of market-based
task allocation in a distributed satellite system,” in Advances in Artificial
Life: Tenth European Conference on Artificial Life (ECAL *09) (in press).
Springer, 2009.

[4] O. Brown and P. Eremenko, “Fractionated space architectures: A vision
for responsive space,” in Responsive Space 4, 2006.

[5] D. J. Barnhart, T. Vladimirova, and M. N. Sweeting, ‘“Very-small-
satellite design for distributed space missions,” Journal of Spacecraft
and Rockets, vol. 44, no. 6, pp. 1294-1306, 2007.

[6]

[7]

[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

T. L. Casavant and J. G. Kuhl, “A taxonomy of scheduling in general-
purpose distributed computing systems,” IEEE Transactions on Software
Engineering, vol. 14, no. 2, pp. 141-154, February 1988.

G. Dudek, M. R. M. Jenkin, E. Milios, and D. Wilkes, “A taxonomy for
multi-agent robotics,” Autonomous Robots, vol. 3, no. 4, pp. 375-397,
1996.

B. P. Gerkey and M. J. Matari¢, “A formal analysis and taxonomy of
task allocation in multi-robot systems,” The International Journal of
Robotics Research, vol. 23, no. 9, pp. 939-954, September 2004.

P. W. Anderson, “More is different,” Science, vol. 177, no. 4047, pp.
393-396, August 1972.

I. Bekey, “Phase I Study: Extremely large swarm array of picosats for
microwave / RF earth sensing, radiometry and mapping,” NASA Institute
of Advanced Concepts (NIAC), Tech. Rep., April 2005.

T. Eymann, M. Reinicke, O. Ardaiz, P. Artigas, Diaz, F. Freitag,
R. Messeguer, L. Navarro, D. Royo, and K. Sanjeevan, “Decentralized
vs. centralized economic coordination of resource allocation in grids,”
Grid Computing, pp. 9-16, 2004.

F. Ygge and H. Akkermans, “Decentralized markets versus central con-
trol: A comparative study,” Journal of Artificial Intelligence Research,
vol. 11, pp. 301-333, 1999.

M. Resnick, Turtles, termites, and traffic jams : explorations in massively
parallel microworlds. MIT Press, March 1997.

R. G. Smith, “The contract net protocol: High-level communication
and control in a distributed problem solver,” IEEE Transactions on
Computers, vol. 29, no. 12, pp. 1104-1113, 1980.

C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and
S. W. Stornetta, “Spawn: A distributed computational economy,” /[EEE
Transactions on Software Engineering, vol. 18, no. 2, pp. 103-117,
February 1992.

B. P. Gerkey and M. J. Matari¢, “Sold!: auction methods for multirobot
coordination,” IEEE Transactions on Robotics and Automation, vol. 18,
no. 5, pp. 758-768, 2002.

W. Shen, “Distributed manufacturing scheduling using intelligent
agents,” Intelligent Systems, IEEE, vol. 17, no. 1, pp. 88-94, Jan 2002.
P. B. Sujit and R. Beard, “Multiple MAYV task allocation using distributed
auctions,” in AIAA Guidance, Navigation and Control Conference and
Exhibit. AIAA, August 2007.

R. Zlot and A. Stentz, “Market-based multirobot coordination for
complex tasks,” The International Journal of Robotics Research, vol. 25,
no. 1, pp. 73-101, January 2006.

C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva,
“Directed diffusion for wireless sensor networking,” IEEE/ACM Trans-
actions on Networking, vol. 11, no. 1, pp. 2-16, February 2003.

R. M. Zlot, “An auction-based approach to complex task allocation
for multirobot teams,” Ph.D. dissertation, Robotics Institute, Carnegie
Mellon University, December 2006.

