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a b s t r a c t

Recently, mutual interdependence analysis (MIA) has been successfully used to extract representations,

or ‘‘mutual features’’, accounting for samples in the class. For example, a mutual feature is a face

signature under varying illumination conditions or a speaker signature under varying channel

conditions. A mutual feature is a linear regression that is equally correlated with all samples of the

input class. Previous work discussed two equivalent definitions of this problem and a generalization of

its solution called generalized MIA (GMIA). Moreover, it showed how mutual features can be computed

and employed. This paper uses a parametrized version GMIAðl) to pursue a deeper understanding of

what GMIA features really represent. It defines a generative signal model that is used to interpret

GMIAðl) and visualize its difference to MIA, principal and independent component analysis. Finally,

we analyze the effect of l on the feature extraction performance of GMIAðl) in two standard

pattern recognition problems: illumination-independent face recognition and text-independent

speaker verification.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Statistical pattern recognition methods such as Fisher’s linear
discriminant analysis (FLDA) [9], canonical correlation analysis
(CCA) [16] or ridge regression [25] aim to model or extract the
essence of a dataset. The goal is to find a simplified data
representation that retains the information that is necessary for
subsequent tasks such as classification or prediction. Each method
uses a different viewpoint and criteria to find this ‘‘optimal’’
representation. Furthermore, pattern recognition problems impli-
citly assume that the number of observations is usually much
higher than the dimensionality of each observation. This allows
one to study characteristics of the distributional observations and
design proper discriminant functions for classification. For
instance, FLDA is used to reduce the dimensionality of a dataset
by projecting data points on a space that maximizes the ratio of
the between- and within-class scatter of the training data. In this
way, FLDA aims to find a simplified data representation that
retains the discriminant characteristics for classification. On the
other hand, CCA assumes one common source in two datasets.
The dimensionality of the data is reduced by retaining the space
that is spanned by pairs of projecting directions in which the
datasets are maximally correlated. In contrast, ridge regression

finds a linear combination of the inputs that best fits a desired
response.

In this paper, we present alternative criteria to find an
‘‘optimal’’ dataset representation. We aim to extract an invariant
representation of high-dimensional instances of a single class,
where the number of input instances N is smaller than their
dimensionality D. An invariant is a property or feature of the input
data that does not change within its class. Approaches that have
been designed for this purpose are mutual interdependence
analysis (MIA) and generalized MIA (GMIA) [4–6]. We revisit
both methods in Sections 2 and 3, respectively, and parametrize
GMIA with l, which subsumes MIA for l¼ 0. In Section 4, we
introduce a generative model for GMIAðl). On synthetic data, we
demonstrate that GMIAðl) extracts features unlike approaches
such as PCA and ICA. Also we show how these features differ from
the sample mean. Section 5 evaluates the discriminative quality of
GMIAðl) features for illumination-invariant face recognition on
synthetic data. Section 6 analyses the effect of l on real data for
illumination-invariant face recognition and text-independent
speaker verification. The document concludes with a summary
and directions for future work.

2. Mutual interdependence analysis (MIA)

MIA was first introduced by the authors in Claussen et al. [4] to
uniquely represent high-dimensional samples of a single class.
The understanding of how this problem can be succinctly and
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elegantly stated has been evolved and generalized [6]. In this
section we present an up to date statement of MIA.

2.1. Scatter-based definition of MIA

Throughout this paper, xðpÞi ARD denotes the ith input vector,
i¼1yN(p) in class p. Furthermore, we use XðpÞDX to represent a
matrix with columns xi

(p) and X to denote the matrix with
columns xi of all K classes. Moreover, l¼ ð1=NÞ

PN
i ¼ 1 xi, 1 is a

vector of ones and I represents the identity matrix.
Assume that we wish to find a class representation w(p) of

high-dimensional data vectors xi
(p)
ðDZNðpÞÞ. A common first

step is to select features so as to reduce the dimensionality of the
data. However, because of possible loss of information, this
preprocessing is not always desirable. Therefore, we aim to find
a class representation of similar or same dimensionality as
the inputs.

The quality of such a representation can be evaluated by its
correlation with the class instances. Our intuition is that
a superior class representation is highly correlated and also has
a small variance of the correlations over all instances in the class.
The former condition ensures that most of the signal energy in the
samples is captured. The latter condition is indicative of member-
ship in a single class. Note that only vectors in the span of the
class instances contribute to the cross-correlation value. There-
fore, in the absence of prior knowledge, it is reasonable to
constrain the search for a class representation w to the span of
the training vectors w¼XðpÞ � c, where cARNðpÞ . This problem
definition is the motivation for the MIA criterion proposed in
Claussen et al. [4].

The MIA representation for class p is defined as a direction
wðpÞMIAARD that minimizes the projection scatter of the class p

inputs, under the linearity constraint to be in the span of X(p):

wðpÞMIA ¼ argmin
w,w ¼ XðpÞ �c

ðwT � ðXðpÞ�lðpÞ � 1T
Þ � ðXðpÞ�lðpÞ � 1T

Þ
T
�wÞ ð1Þ

Note that the original space of the inputs spans the space of the
mean subtracted inputs plus possibly one additional dimension.
Indeed, the mean subtracted inputs, which are linear combina-
tions of the original inputs, sum to zero. Mean subtraction cancels
linear independence resulting in a 1D span reduction. The
following two theorems describe the MIA solution.

Theorem 2.1. The minimum of the criterion in Eq. (1) is zero if the

inputs xi are linearly independent.

If inputs are linearly independent and span a space of
dimensionality NrD, then the subspace of the mean subtracted
inputs in Eq. (1) has dimensionality N�1. There exists an
additional dimension in RN , orthogonal to this subspace. Thus,
the scatter of the mean subtracted inputs can be made zero. The
existence of a solution where the criterion in Eq. (1) becomes zero
is indicative of an invariance property of the data.

Theorem 2.2. The solution of Eq. (1) is unique (up to scaling) if the

inputs xi are linearly independent.

By solving in the span of the original rather than mean subtracted
inputs, a closed form solution of Eq. (1) can be found [4]:

wðpÞMIA ¼ zXðpÞ � ðXðpÞ
T
� XðpÞÞ�1

� 1 where z is a constant ð2Þ

Consider that ðXðpÞ
T
� XðpÞÞ�1

� 1 is a column vector. The structure of
the solution shows that w is a data-dependent transformation
representing a linear combination of the input observations.

The mathematical structure of this MIA solution has a striking
similarity with linear regression. Indeed this result can be
obtained as follows. Let us assume the regression problem

y¼X � b. We are looking for b such that the unknown regression
y is equally correlated with all inputs XT

� y¼ 1. It can be shown
that the solution to this problem is given by Eq. (2) with z¼ 1 and
y¼w. In Section 3, we return to the discussion of similarities
between the two problems. Eq. (2) computes a unique represen-
tation we call MIA with the property of invariant correlation with
all samples in the input. This uniqueness indicates that MIA
captures an inherent property of the input data.

2.2. CCA-based definition of MIA

The minimum variance criterion is also used in other data analysis
approaches such as FLDA. However, this theory does not apply when
analyzing data from one class. This motivated the comparison with
CCA as a generalization of FLDA, and the discovery of an equivalent,
CCA-based formulation of the MIA problem. We revisit this new
definition following and extending Claussen et al. [6]. First, we review
CCA and its FLDA equivalent formulation. Thereafter, we extend this
formulation to address the MIA problem.

If a common source sARN influences two datasets XARD�N

and ZARK�N , of possibly different dimensionality, CCA is used to
extract this inherent similarity. The goal of CCA is to find two
vectors to project the datasets such that their projection lengths
are maximally correlated. Let CXZ denote the cross covariance
matrix between the datasets X and Z. Then the CCA problem is
given by maximization of the objective function

Jða,bÞ ¼
aT � CXZ � bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aT � CXX � a
p

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bT
� CZZ � b

q ð3Þ

over the vectors a and b. The CCA problem can be solved by a
singular value decomposition (SVD) of C�1=2

XX � CXZ � C
�1=2
ZZ [19]. The

solution is obtained by solving the two eigenvector problems:

C�1=2
XX � CXZ � C

�1
ZZ � CZX � C

�1=2
XX

� �
� a¼ la ð4Þ

and

C�1=2
ZZ � CZX � C

�1
XX � CXZ � C

�1=2
ZZ

� �
� b¼ lb ð5Þ

We hypothesize that the maximally correlated projections XT
� a

and ZT
� b represent an estimate of the common source.

Canonical correlation analysis can be used to extract classifica-
tion relevant information from a set of inputs. Indeed, let X be the
union of all data points and Z the table of corresponding class
memberships, k¼1,y,K and i¼1,y,N:

Zki ¼
1 if xiAXðkÞ

0 otherwise

(

All classification relevant information is represented by this
classification table. Therefore, this information is retained in those
input components of X that originate from a common virtual
source with the classification table. It has been shown [2,19,14,1]
that this special CCA approach is equivalent to FLDA.

CCA with Z given by the class membership can be modified to
extract a representation of inputs from a single class, similar to
MIA. One possible interpretation of CCA is from the point of view
of the cosine angle between the (non-mean-subtracted) vectors
aT � X and ZT

� b. The aim is to find a vector pair that results in a
minimum angle. We will use a modified CCA criterion (MCCA) as
follows. First, consider the original inputs rather than the mean
subtracted covariance matrices; second, the class membership
table for data from a single class collapses to a vector and b to a
scalar, therefore ZT

� b¼ 1 � b. Thus, criterion Eq. (3) becomes

H. Claussen et al. / Pattern Recognition 44 (2011) 650–661 651
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independent of b resulting in

âMCCA ¼ argmax
a

aT � XðpÞ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aT � XðpÞ � XðpÞ

T
� a

q ð6Þ

Theorem 2.3. The MCCA criterion in Eq. (6) has MIA of Eq. (2) as

solution.

This criterion is maximized when the correlation of a with all
inputs xi

(p) is as uniform as possible. A solution to this problem can
be found by

@JðaÞ

@a
¼XðpÞ � 1�aT � XðpÞ � 1 � ðaT � XðpÞ � XðpÞ

T
� aÞ�1

� XðpÞ � XðpÞ
T
� a¼ 0

ð7Þ

Therefore, zXðpÞ � 1 ¼XðpÞ � XðpÞ
T
� a with z¼ aT � XðpÞ � XðpÞ

T
� a=ðaT �

XðpÞ � 1Þ. Furthermore,

a¼ zðXðpÞ � XðpÞ
T
Þ
�1
� XðpÞ � 1

¼ zðXðpÞ � XðpÞ
T
Þ
�1
� XðpÞ � XðpÞ

T
� XðpÞ � ðXðpÞ

T
� XðpÞÞ�1

� 1

¼ zXðpÞ � ðXðpÞ
T
� XðpÞÞ�1

� 1 ð8Þ

Note that z is a scalar that results in scale-independent solutions.
As can easily be seen, the solution in Eq. (8) is identical to the MIA
solution in Eq. (2). In the following, we rename âMCCA to âMIA.

We review the properties of the MIA formulation in Eq. (6) [6]:

Corollary 2.4. The MIA problem has no defined solution if the inputs

are zero mean, i.e., if XðpÞ � 1 ¼ 0.

This is obvious from Eq. (6).

Corollary 2.5. Any combination âMIAþb with b in the nullspace of

X(p) is also a solution to Eq. (6).

This means that only the component of a that is in the span of X(p)

contributes to the criterion in Eq. (6).

Corollary 2.6. The solution of Eq. (6) is not unique if the N(p) inputs

X(p) do not span the D-dimensional space RD.

This follows from Corollary 2.5. A unique solution can be found
by further constraining Eq. (6). One such constraint is that a be a
linear combination of the inputs X(p):

âMIA ¼ argmax
a,a ¼ XðpÞ �c

aT � XðpÞ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aT � XðpÞ � XðpÞ

T
� a

q ð9Þ

Corollary 2.7. The MIA solution reduces to the mean of the inputs in

the special case when the covariance matrix CXX has one eigenvalue l
of multiplicity D, i.e., CXX ¼ lI.

Indeed, Eq. (9) can be rewritten as

âMIA ¼ argmax
a,a ¼ XðpÞ �c

aT � lðpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aT � CðpÞXX � aþða

T � lðpÞÞ2
q ð10Þ

After normalizing with a¼XðpÞ � c=JXðpÞ � cJ and using the spectral
decomposition theorem ([20], p. 317), it can be shown that
aT � CðpÞXX � a is invariant to a given equal eigenvalues of CXX

(p). The
function under Eq. (10) is monotonically increasing in aT � lðpÞ.
Therefore, the optimum is obtained when aT � lðpÞ=JaJ is max-
imum resulting in âMIA ¼ lðpÞ.

Sample data from one class results in a unique direction that is a
characteristic feature of the data. MIA may capture information that
is powerful enough to distinguish instances from different classes.

3. Generalized mutual interdependence analysis (GMIA)

Real world data are generally noisy. Claussen et al. [6]
analyzed MIA’s sensitivity to noise and extended its model to
capture this effect in the data with a Bayesian MIA interpretation.
This section provides a complete presentation of this analysis. It
reviews the Bayesian general linear model, shows assumptions
that distinguish MIA from linear regression, and generalizes MIA
for utilization of uncertainties and prior knowledge.

3.1. The Bayesian general linear model

In the following, let yARD, XARD�N , nARD and bARN

represent the observations, the matrix of known inputs, a noise
vector and the weight parameters of interest, respectively. The
general linear model is defined as

y¼X � bþn ð11Þ

The Bayesian estimation finds the expectation of the random
variable b given its a priori known or estimated distribution, the
signal model and observed data y. As discussed in Kay ([18], p. 325),
the expected value Efbjyg from the conditional probability pðbjyÞ
can be introduced as a biased estimator of b. If n�N ð0,CnÞ and
b�N ðlb,CbÞ are independent Gaussian variables, the joint
probability density function (PDF) pðy,bÞ as well as the conditional
PDF pðbjyÞ are Gaussian. Considering our prior assumptions,
pðyÞ ¼N ðly ,CyÞ and pðy,bÞ ¼N ð½ly

lb
�,½ Cy

Cby

Cyb

Cb
�Þ. Using this, the condi-

tional probability pðbjyÞ can be computed as follows:

pðbjyÞ ¼
pðy,bÞ

pðyÞ

¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞDþN

Cy Cyb

Cby Cb

" #�����
�����

vuut
exp �

1

2

y�ly

b�lb

" #T

�
Cy Cyb

Cby Cb

" #�1

�
y�ly

b�lb

" #2
4

3
5

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞDjCyj

q exp �
1

2
ðy�lyÞ

T
� C�1

y � ðy�lyÞ

� �

After a few mathematical transformations ([18], p. 326), the
posterior expectation of b given y is found to become

Efbjyg ¼ lbþCb � X
T
� ðX � Cb � X

T
þCnÞ

�1
� ðy�X � lbÞ ð12Þ

¼ lbþðX
T
� C�1

n � XþC�1
b Þ
�1
� XT
� C�1

n � ðy�X � lbÞ ð13Þ

Ridge regression is a generalization of the least squares solution to
the regression problem. It follows from Eq. (13) by further
assuming lb ¼ 0, Cb ¼ s2

bI and Cn ¼ s2
nI:

bRIDGE ¼ XT
� Xþ

s2
n

s2
b

I

 !�1

� XT
� y ð14Þ

Eq. (14) is useful when XT
� X is not full rank or when we have

numerical instability in the computation of the inverse. During
training, ridge regression assumes an availability of the desired
output y to aid the estimation of a weighting vector b. Thereafter,
b is used to predict future outcomes of y.

3.2. A Bayesian view on MIA

Next, we discuss the Bayesian interpretation of MIA to account
for uncertainties in the inputs. Consider the following model:

r¼XT
�wþn ð15Þ

The intended meaning of r is the vector of observed projections of
inputs x on w, while n is measurement noise, e.g., n�N ð0,CnÞ.

H. Claussen et al. / Pattern Recognition 44 (2011) 650–661652
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We assume w to be a random variable. Our goal is to estimate
w�N ðlw,CwÞ assuming that w and n are statistically indepen-
dent. Ideally, the data r¼ z1 follow from the variance minimiza-
tion objective if no noise is present and the variance of projections
is zero, which is exactly the MIA criterion (as expressed in
Theorem 2.1). We define a generalized MIA criterion (GMIA)
applying the derivation for Eqs. (12) and (13) to model Eq. (15):

wGMIA ¼ lwþCw � X � ðX
T
� Cw � XþCnÞ

�1
� ðr�XT

� lwÞ ð16Þ

¼ lwþðX � C
�1
n � X

T
þC�1

w Þ
�1
� X � C�1

n � ðr�XT
� lwÞ ð17Þ

The GMIA solution, interpreted as a direction in a high-dimen-
sional space RD, aims to minimize the difference between the
observed projections r considering prior information on the noise
distribution. It is an update of the prior mean lw by the current
misfit r�XT

� lw times an input data X and prior covariance
dependent weighting matrix. Eqs. (16) and (17) suggest various
properties of MIA and will enable us to analyze the relationship
between the mean of the dataset and the solution wGMIA. In
general, it is desirable that the MIA representation is robust to
small variations in X (e.g., due to noise). Eq. (16) indicates that
small variations in X do not have a large effect on the GMIA result.
Indeed wGMIA is an invariant property of the class of inputs.
Furthermore, Eqs. (16) and (17) allow us to integrate additional
prior knowledge such as smoothness of wGMIA through the prior
Cw, correlation of consecutive instances xi through the prior Cn,
etc. Moreover, we can use the GMIA formulation to define an
iterative procedure that tackles datasets with large N and D. In
such cases it might be unfeasible to compute the matrix inverse.
By using subsets of the input data, one can iteratively compute lw

as a GMIA representation of the whole dataset from smaller
subsets.

Throughout the remainder of the document, the GMIA
parameters are Cw¼I, Cn ¼ lI and lw ¼ 0. We refer to this
parameterization by

GMIAðlÞ ¼ zX � ðXT
� XþlIÞ�1

� 1 where z is a constant

When l-1, the GMIA solution represents the mean of the
inputs. Indeed, the inverse ðXT

� XþlIÞ�1-ð1=lÞI simplifying
the solution to wGMIA-ðz=lÞX � 1. Furthermore, MIA (solution to
Eq. (2)) is equivalent to GMIAðlÞ when l¼ 0. In the rest of the
paper, we denote MIA by GMIA(0) to emphasize their common
theoretical foundation.

4. Generative signal model for GMIA

So far we have discussed two equivalent definitions of GMIA(0)
and a generalization of the criterion by following Claussen et al.
[4,6]. Furthermore, Claussen et al. [4–6] show how a mutual
feature can be computed using mutual interdependencies in data
(sounds and images) of the same class. Nonetheless, we aim for a
deeper understanding of what GMIA features really represent,
which lacks in previously published materials. This section
defines a generative signal model that will allow us to create
synthetic data in order to interpret GMIA and visualize its
differences to GMIA(0), principal component analysis (PCA) [21],
independent component analysis (ICA) [17] and the sample mean.
This way we can compare the feature extraction results to the true
feature desired.

Assume the following generative model for input data x:

x1 ¼ a1sþf1þn1

x2 ¼ a2sþf2þn2

^
xN ¼ aNsþfNþnN ð18Þ

where s is a common, invariant component or feature we aim to
extract from the inputs, ai, i¼1,y,N are scalars (typically all close
to 1), fi, i¼1,y,N are combinations of basis functions from a given
orthogonal dictionary such that any two are orthogonal and ni,
i¼1,y,N are Gaussian noises. We will show that GMIA estimates
the invariant component s, inherent in the inputs x.

Let us make this model precise. As before, D and N denote the
dimensionality and the number of observations. Additionally, K is
the size of a dictionary B of orthogonal basis functions. Let
B¼ ½b1, . . . ,bK � with bkARD. Each basis vector bk is generated as a
weighted mixture of maximally J elements of the Fourier basis
which are not reused ensuring orthogonality of B. The actual
number of mixed elements is chosen uniformly at random, JkAN

and Jk � Uð1,JÞ. For bk, the weights of each Fourier basis element i

are given by wjk �N ð0,1Þ, j¼1,y,Jk. For i¼1,y,D (analogous to a
time dimension) the basis functions are generated as

bkðiÞ ¼

PJk

j ¼ 1 wjksin
2piajk

D
þbjk

p
2

� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

2

PJk

j ¼ 1 w2
jk

r

with

ajkA 1, . . . ,
D

2

� �
, bjkA ½0,1�, ½ajk,bjk�a ½alp,blp�, 8ja l or kap

In the following, one of the basis functions bk is randomly selected
to be the common component sA ½b1, . . . ,bK �. The common
component is excluded from the basis used to generate uncorre-
lated additive functions fn, n¼1,y,N. Thus only K�1 basis
functions can be combined to generate the additive functions
fnARD. The actual number of basis functions Jn is randomly
chosen, i.e., similarly to Jk, with J¼K�1. The randomly correlated
additive components are given by

fnðiÞ ¼

PJn

j ¼ 1 wjncjnðiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJn

j ¼ 1 w2
jn

q
with

cjnA ½b1, . . . ,bK �, cjnas, 8j,n, cjnaclp, 8ja l and n¼ p

Note that JsJ¼ JfnJ¼ JnnJ¼ 1,8n¼ 1, . . . ,N. To control the mean
and variance of the norms of common, additive and noise
component in the inputs, each component is multiplied by the
random variable a1 �N ðm1,s2

1Þ, a2 �N ðm2,s2
2Þ and a3 �N ðm3,s2

3Þ,
respectively. Finally, the synthetic inputs are generated as

xn ¼ a1sþa2fnþa3nn ð19Þ

with
PD

i ¼ 1 xnðiÞ � 0. The parameters of the artificial data genera-
tion model are chosen as D¼1000, K¼10, J¼10 and N¼20. The
parameters of the distributions for a1, a2 and a3 are dependent on
the particular experiment and are defined correspondingly.

The GMIA solution is compared in Fig. 1 (rightmost plot in
top row) to the mean of the inputs as well as PCA and ICA results.
Note that the parametrization of GMIAðl) represents the variance
of the noise in model (18). The mixing model parameters are
chosen as m1¼1, m2¼10, m3¼0, s1 ¼ 0:05, s2 ¼ 0:05 and
s3 ¼ 0:05.

We hand selected PC10, the 10th principal component and IC1,
the first independent component, due to their maximal correla-
tion with the common component. Over all compared methods,
GMIA extracts a signature that is maximally correlated to s. All
other methods fail to extract a signature as similar to the common
component as GMIA.

We now analyze and compare in more detail GMIA(0), GMIAðlÞ
and the sample mean, by representing graphically results in a
large number of randomly created synthetic problems, matching

H. Claussen et al. / Pattern Recognition 44 (2011) 650–661 653
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model (18). Each point in Fig. 2 represents an experiment for a
given value of l (x-axis). The y-axis indicates the correlation of the
GMIA solution with s, the true common component. The intensity
of the point represents the number of experiments, in a series of
random experiments, where we obtain this specific correlation
value for the given l. Overall, we performed 1000 random
experiments with randomly generated inputs using various
values of l.

For all test cases in Fig. 2, the weight of the additive noise is
chosen as a3 �N ð0,0:0025Þ. We experiment with three cases:
(a) inputs contain equally a common component; (b) inputs
contain approximately a common component; (c) inputs are
approximately equal.

In Fig. 2(a), the remaining mixing model parameters are
chosen as m1¼1, m2¼10, s1 ¼ 0 and s2 ¼ 0:05. This situation fits
the GMIA(0) assumption of an equally present component with an
energy one order of magnitude smaller than the residual fi+ni.
The results show that the common component is best extracted

by GMIA(0). In Fig. 2(b), m1¼1, m2¼10, s1 ¼ 0:05 and s2 ¼ 0:05.
This situation relaxes the strictly equal presence of the common
component. Clearly, the simple GMIA(0) result and the mean do
not represent s. However, for some l, GMIA succeeds in extracting
the common component. Fig. 2(c) illustrates the case m1¼10,
m2¼1, s1 ¼ 0:05 and s2 ¼ 0:05. Here, all inputs are similar to the
common component and therefore well represented by a signal
plus noise model. The mean of the inputs is a good solution to this
problem.

In summary, GMIA(0) can extract an invariant, or mutual
feature, s from a dataset whenever it fits the model in Eq. (18) and
ai ¼ 1 for all i¼1,y,N inputs. This even holds when the energy of
s is significantly smaller that the energy of the other additive
components in the model. In the more general case of noisy data
and s1a0, the choice of l will trade-off the expected value and
variance of the fit between the feature and the data across
experiments. Moreover, we show that the computed feature
wGMIA is radically different from the mean of the data for cases
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like (a) and (b) in Fig. 2. The invariant feature s may have a
physical interpretation of its own, depending on the problem and
it is powerful in determining the class membership, as we will see
in Sections 5 and 6 below.

5. Illumination invariant face recognition

State-of-the-art face recognition approaches suffer from a
number of outstanding problems, including sensitivity to multiple
illumination sources and diffuse light conditions. We tested the
robustness to illumination scenarios of a GMIA(0)-based mutual
face approach in Claussen et al. [5]. In this problem, we have
called the presumed common invariant feature ‘‘mutual face’’.
However, Section 4 showed that l is problem dependent for an
effective extraction of the common component. Can GMIAðlÞ,
with l40, extract a more discriminative illumination invariant
face representation than GMIA(0)? In the following, we analyze
the suitability of GMIA(0) versus GMIAðlÞ for illumination
invariant face recognition.

Following our generative signal model in Section 4 we define a
realistic synthetic model that allows the artificial generation of
differently illuminated faces. Thus, a large number of test cases
can be generated, which facilitates a statistical analysis of
GMIA for face recognition. Let the face be a Lambertian object
([11], p. 723), where the object image has light reflected such
that the surface is observed equally bright from different angles
of the observer. Then, one can assume a face image H to be a
linear combination of images from an image basis Hn with
n¼1,y,K [29]:

H¼
XK

n ¼ 1

anHn ð20Þ

where the an’s are image weights. An appropriate set of basis
images, to study illumination effects, is the YaleB database [12].
This database contains 65 differently illuminated faces from
10 people and for 9 different camera angles to view a face. Each
illuminated face image is obtained for a single light source at
some unique but distinct position. Here, we use only the frontal
face direction but at various light source positions. The frontal
illuminated faces are excluded from the basis and used as test
images. Moreover, the images with ambient lighting conditions
are excluded. The set of basis functions for the first person, A, of
the YaleB database is illustrated in Fig. 3. Additionally, the test
image H0

A of this person is shown in Fig. 4(a).
Next, 20 images are synthetically generated as inputs to GMIA.

Each of these images is a combination of J¼5 randomly selected
images Hi from the basis set Hn. The basis images are combined
according to Eq. (20) using weights a� Uð0,1Þ. To retain the image

scaling: H¼
PJ

i ¼ 1 aiHi

� �
=
PJ

i ¼ 1 ai.

An ‘‘invariant’’ face signature is extracted to represent each
person using GMIA(0). This process, illustrated in Fig. 8 later, is
defined as follows. First, images are 2D Fourier transformed
and filtered. Thereafter, GMIA is separately computed for rows
and columns resulting in D¼250 and N¼20. In a final step, GMIA
representations for rows and columns are processed by an inverse
2D Fourier transform and added to obtain a face signature of the
person. This signature is called a mutual face and is, e.g., denoted
HGMIA(0)

A for person A. Fig. 4(b) illustrates a GMIA(0) representa-
tion that is generated using the previously described procedure.
Note that GMIAðl) images HA

GMIAðlÞ are extracted accordingly.
A measure is defined to evaluate the similarity between

test and GMIA images for the purpose of face recognition. First,
the images are filtered on their boundary. Second, the mean
correlation scores of both images are computed separately

Fig. 3. Frontal images of the first person from the Yale face database B excluding the ambient and test image. The test image is illuminated frontally.
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for rows (B1) and columns (B2). A combined score is generated as:

B¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB2

1þB2
2Þ=2

q
. Thus, the score is upper-bounded by the

value one.
Now we test if GMIA is able to capture illumination invariant

facial features and can aid face recognition. Fig. 5 illustrates the
results of synthetic GMIA experiments with various illumination
conditions. In particular, we show similarity scores between

GMIAðlÞ representations of 50 randomly generated input sets
from person A and the test images from both A and other persons
BaA. GMIA(0) results in an invariant image representation
(all 50 scores are almost equal). Note that there is a l�dependent
trade-off between the score value and the variance. For all cases of l,
the person A scores higher than person B. Fig. 5(b) shows the
training database from Fig. 3 sorted by the score with the GMIA(0)
representation (mutual face) of the same person. The score becomes
lower line after line from the top left to the bottom right. The mutual
face achieves the highest scores with evenly illuminated images, i.e.,
where the illumination does not distort the image.

Results indicate that the GMIA(0) feature is more robust to
variations in illumination than the one using GMIAðlÞ while
their discrimination power to other classes appears comparable.
Following, we verify on a more realistic face recognition
application that GMIA(0) achieves similar results to GMIAðl).

6. Applications of GMIA

GMIA(0) has already been tested on challenging real world
applications such as illumination robust face recognition and text-
independent speaker verification [5,6]. In this section, we evaluate
the effect of l on the feature extraction and classification in both
domains. First, we repeat the mutual face approach in Claussen
et al. [5] on the Yale face database [3] with GMIAðlÞ and compare
the result for an optimized value of l to the previous GMIA(0)

Fig. 4. Images used for testing. (a) Frontal illuminated image of the first person

from the Yale face database B. (b) Mutual face that is extracted from 20 randomly

generated inputs. Each input is a combination of five randomly selected images of

a person.
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Fig. 5. Results of synthetic GMIA experiments with various illumination conditions. (a) Similarity scores of GMIAðlÞ representation and the test image of the same and

different people from the YaleB database in 50 random experiments. (b) Images of the YaleB database, ordered from high to low by their similarity score with the mutual

face HA
GMIAð0Þ . The score becomes lower line after line from the top left to the bottom right.

Fig. 6. (a) Image set of one individual in the Yale database. The set contains 11 images of the person taken with various facial expressions and illuminations, with or

without glasses. (b) GMIA(0) result, or mutual face estimated from all images of the set.
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result. We aim to verify that both the results are similar for this
illumination-invariant face recognition approach as indicated in
Section 5. Thereafter, we analyze how l and the data segmenta-
tion affect the result of a GMIA-based text-independent speaker
verification system. We include preprocessing and evaluation
steps to enable the reproducibility of the results.

6.1. Experiments on the Yale database

Next, we compare the performance of GMIA(0) and GMIAðlÞ on
the Yale database. The difference to the YaleB database, used in
Section 5, is that this earlier version includes misalignment,
different facial expressions and slight variations in scaling and
camera angles. By allowing these variations, the algorithm can be
tested in a more realistic face recognition scenario. The image set
of one individual is given, for illustration, in Fig. 6(a). As discussed
in Foley et al. [11], the reflected light intensity I of each image
pixel can be modeled as a sum of an ambient light component and
directional light source reflections. Let Ia and Ip be the ambient/
directional light source intensities. Also, let ka, kd, n and l be
ambient/diffuse reflection coefficients, surface normal of the
object, and the direction of the light source, respectively. Hence,

I¼ Iakaþ Ipkdðn � lÞ

More complex illumination models including multiple directional
light sources can be captured by the additive superposition of the
ambient and reflective components for each light source ([11], see
Eq. 16.20).

We claim that GMIA(0) can extract an illumination-invariant
mutual image, perhaps including Ia ka, from a set of aligned
images of the same object (face) under various illumination
conditions. In the following, mutual faces were used in a simple
appearance-based face recognition experiment. Prominent

methods of this widely researched area include the Eigenface
[26] and Fisherface [3] approaches. Most use mean image
subtraction for preprocessing, which reduces the image space
dimensionality compared to the original image set. Therefore, this
step cancels potentially discriminant image information. In
contrast, GMIA uses centered images (xT

i � 1 ¼ 0 8i) as inputs.
Fig. 7 illustrates the difference between a mean-face-subtracted
input instance in the Eigenface/Fisherface approach and the
centered GMIA input.

The procedure to extract the mutual face from the face set of
one person is discussed in Section 5 and illustrated in Fig. 8. Face
identification is performed using cropped and centered images.
Moreover, the measure of similarity between a test image and the
GMIA representation of a person is defined in Section 5 above.

Mutual faces are learned on all but a single test image
using the ‘‘leave-one-out’’ method discussed in Duda and Hart
([8], p. 75). In exhaustive leave-one-out tests, the performance of
the GMIA(0) and GMIAðl) based approach are 7.4% and 7.3%,
respectively. This verifies the hypothesis in Section 5 that the
illumination-invariant face recognition performances of GMIA(0)
and GMIAðlÞ are similar. Recognition performance for unknown
illumination is comparable or beyond various reported results
obtained on the same data (Table 1). The GMIA(0) approach can
be used to enhance both feature- and appearance-based methods,
only requires minimal training due to its closed form solution, and
appears insensitive to multiple illumination sources and diffuse
light conditions.

6.2. Text-independent speaker verification

In the following, we apply GMIA to the problem of extracting
signatures from speech data for the purpose of text-independent
speaker verification. The signal quality and background noise are

Fig. 7. Examples of training instances used in (a) Eigenfaces, (b) Fisherfaces and (c) GMIA: (a) Mean-subtracted face obtained as difference between a face instance and the

mean of all images in the database. (b) Mean-subtracted face obtained as difference between a face instance and the mean image of all instances for the same person.

(c) ‘‘Centered’’ face image, obtained by subtraction of the mean column value from each image column.

High Pass Filter GMIA(0) on Columns Image Domain

Original Images FFT2 Domain Filtered Data

IFFT2 

IFFT2 

GMIA(0) on Rows Image Domain

Mutual Image

Fig. 8. Extraction process of the mutual image representation.
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major challenges in automated speaker verification. For example,
telephone signals are nonlinearly distorted by the channel.
As noted in Schmidt–Nielsen and Crystal [24], humans are robust
to such changes in environmental conditions. The goal of GMIA is
to extract a signature that mutually represents the speaker in
recordings from different nonlinear channels. Therefore, this
feature represents the speaker but is invariant to the channels.
Intuitively, this signature should provide a robust feature for
speaker verification in unknown channel conditions.

As shown in Section 4, there exists an application dependent
trade-off in the selection of l to enable an accurate extraction of a
common component in the data. For example, we demonstrate in
Sections 5 and 6.1 that GMIA(0) provides a discriminative,
illumination-invariant representation of a set of face images.
Similarly, the goal of this section is to find a suitable l for text-
independent speaker verification and analyze its sensitivity to
preprocessing and data segmentation. The sample mean, which is
equivalent to GMIAðlÞjl-1, is used as a baseline to evaluate the

choice of l. We start the analysis by a discussion of the test setup
and system to enable reproducibility of the results.

We use various portions of the NTIMIT database [10] to test
the effect of l and compare our results to other methods. The
NTIMIT database contains speech from 630 speakers that is
nonlinearly distorted by real telephone channels. Each speaker is
represented by 10 utterances that are subdivided into three
content types: Type one represents two dialect sentences that
are the same for all speakers in the database, type two contains
five sentences per speaker that are in common with seven other
speakers and type three includes three unique sentences. We use
a mix of all content types for training and testing.

A speech signal can be modeled as an excitation that is
convolved with a linear dynamic filter which represents the vocal
tract. The excitation signal can be modeled for voiced speech as a
periodic signal and for unvoiced speech as random noise. It is
common to analyze the voiced and unvoiced speech separately
([7], p. 50) to ensure that only one of those excitation types
is present in each instance. A comparison of the waveform
structures from voiced and unvoiced sounds is shown in Fig. 9.
In this section, we analyze the speaker verification performance
on both the original data and voiced speech. Let e(p), h(p) and v(p)

be the spectral representations of the excitation, vocal tract filter
and the voiced signal parts of person p, respectively. Moreover,
m represents speaker-independent signal parts in the spectral
domain (e.g., recording equipment, environment, etc.). Therefore,
the data can be modeled as: vðpÞ ¼ eðpÞ � hðpÞ �m. By cepstral
deconvolution, the model is represented as a linear combination
of its basis functions, for each instance i

xðpÞi ¼ logvðpÞi ¼ logeðpÞi þ loghðpÞ þ logmi ð21Þ

This additive model suggests that we can use GMIA to extract a
signature that represents the speaker’s vocal tract logh(p). Several
preprocessing steps are necessary to transform the raw data such
that the additive model holds.

6.2.1. Data preprocessing

In contrast to Claussen et al. [4], each of the utterances is
preprocessed separately to prevent cross interference. First,
silence and background noise are excluded from the wave data.
To achieve this, the logarithmic absolute kurtosis values for
20 ms, half overlapping data intervals are compared against an
empirical threshold. If the values of more than two consecutive
intervals fall below this threshold, all but the first and last interval
are cut. The two retained intervals are exponentially smoothed

Table 1
Comparison of the identification error rate (IER) of GMIA with other methods

using the Yale database.

Method IER (%) Evaluation Comments

GMIA (in this paper) 7.3
Leave-one-out

Cropped face

test

GMIA(0) [5] 7.4

Minimax probability

machine [15]
21.2 k-fold cross

validation

Kernel PCA [28] 26.0

Leave-one-out
Fisherface [3]a 7.3

Eigenface [3]b 24.4

Eigenface w/o 1–3 [3]b,c 15.3

GMIA(0) [5] 2.2 Leave-one-out Only

illumination

Minimax Probability

Machine [15]
10.1 k-fold cross

validation

Without

illumination

Fisherface [3]a 0.6

Leave-one-out Full face testEigenface [3]b 19.4

Eigenface w/o 1–3 [3]
b,c

10.8

Full faces include some background compared to cropped images.

a Classification was performed using 15 FLDA directions.
b Classification was performed using 30 principal components.
c The first three principal components that represent eigenvectors with

maximal eigenvalues were disregarded.
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preventing discontinuities at the cutting ends. Second, the
unvoiced speech segments are eliminated using a short-time
autocorrelation (STAC) like approach. Let w(k) represent a
window function with nonzero elements for k¼0yK�1. The
STAC, which is commonly used for voiced/unvoiced speech
separation, is defined as ([7], p. 35)

STACnðiÞ ¼
X1

m ¼ �1

xðmÞwðn�mÞ xðm�iÞwðn�mþ iÞ

The range of the summation is limited by the window w(k).
Furthermore, STAC is even, STACn(i)¼STACn(� i), and tends toward
zero for jij-K. The disadvantage of this method is its inherent
filter effect that makes it necessary to use long windows ([7],
p. 46). However, short windows are important to ensure accurate
voiced/unvoiced segmentation. Thus, we employ a different
windowing procedure that reduces this effect and prevents the
convergence toward zero. In the following, we use the Hann
window:

wðkÞ ¼
0:5 1�cos

2pk

K�1

� 	� 	
for 0rkrK�1

0 otherwise

8<
:

The modified short-time autocorrelation (MSTAC) function is
given by

MSTACnðiÞ ¼
X1

m ¼ �1

xðmÞwðm�nÞ xðmþ iÞwðm�nÞ

We compute this result for i¼�K=2 . . .K=2 and steps in n of size
K=2. Note that in contrast to the STAC, these results are not
necessarily even. However, quasi-periodic signals x(m), e.g.,
voiced sounds, unveil their periodicity in this domain. The voiced
and unvoiced segments are separated using an empirical decision
function that compares the low and high frequency energies of
each segment. That is, the input segment is assumed to be voiced
if the low frequency energies (0–680 Hz) outweigh the high
frequencies (680–3400 Hz) and vice versa.

The NTIMIT utterances are band limited by the telephone
channels used. Thus, to increase the signal-to-noise ratio, the

voiced speech is downsampled to 6.8 kHz. The data are processed
with various window sizes to show data segmentation effects.
Each utterance is segmented separately to comply with the data
model in Eq. (21). An overlap is introduced if more than half of a
segment would be disregarded at the end of an utterance. This
step limits the loss of signal energy for short utterances and long
window sizes. We partition the utterances alternating in a
training and testing set to balance the text type composition.

6.2.2. Feature extraction

The segmented voiced speech x(p) is nonlinearly transformed
to fit the linear model in Eq. (18). Throughout this article, we have
used correlation coefficients as a measure of similarity between
two vectors. This measure is sensitive to outliers. Also, low signal
values result in large negative peaks in the logarithmic domain.
A nonlinear filter and offset are used, before the logarithmic
transformation, to reduce the effect of these signal distortions.
First, the inputs are transferred to the absolute of their Fourier
representation. Second, each sample is reassigned with the
maximum of its original and its direct neighboring sample values.
Third, an offset is added to limit the sensitivity to low signal
intensities that are affected by noise. The resulting signals are
transferred to the logarithmic domain.

Speech has a speaker-independent characteristic with max-
imum energy in the lower frequencies. As we aim to extract
signatures to distinguish speakers, it is sensible to disregard
information that is common between them. Also, by disregarding
this information, we prevent the effect illustrated in Fig. 2(c). To
achieve this, the mean of the original inputs of all speakers is
decorrelated from them. The new inputs are then used to compute
the final GMIA signatures for each speaker. The procedure used to
extract GMIA speaker signatures is illustrated in Fig. 10.

Note that the GMIA result is a weighted sum of the high-
dimensional inputs. For example, a window size of 250 ms and
10 s of speech data result in D¼1700 and N¼40. In the nonlinear
logarithmic space, it is not meaningful to subtract two features
from each other. Therefore, the parameter l is chosen as the
smallest value that ensures positive weights. Note that in the limit
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Fig. 10. Processing chain for text-independent speaker verification using GMIA.
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(l-1), all weights are equal and positive. The similarity value of
the test data and the learned signatures is given as the negative
sum of square distances between the correspondent signatures.
The possible range of the GMIA distance is [�4,0] because
JwGMIAJ¼ 1.

6.2.3. Speaker verification performance evaluation

Let P, CA, WA, IR, FAR, FRR and EER denote the number of
speakers in the database, number of correctly accepted speakers,
number of wrongly accepted speakers, identification rate, false
acceptance rate, false rejection rate and equal error rate,
respectively. The IR, FAR and FRR rates are given by

IR¼ 100
CA

P
ð%Þ, FRR¼ 100

P�CA

P

� 	
ð%Þ, FAR¼ 100

WA

PðP�1Þ

� 	
ð%Þ

In the speaker identification problem, the identity of the speaker
with the highest score is assigned to the current input. On the
other hand, in speaker verification, a speaker is accepted if the
score between its own and the claimed identity signature exceeds
the one with a background speaker model by more than a defined
threshold. In the following, this background model is taken simply
as the signature of a speaker in the database that achieves the
highest score with the claimant’s input. Thus, multiple speakers
from the database could be accepted for a single claimed identity.
The error rates are computed using all possible combinations of
claimant and speaker identities in the database. For simplicity, we
do not simulate an open set where unknown impostors are
present. Clearly, the threshold has a direct effect on the FRR and
FAR. The point where both error ratios are equal, called equal
error rate (EER), is a prominent evaluation criterion for verifica-
tion methods.

6.2.4. Experimental results

Fig. 11(a) illustrates the EER results of the speaker verification
approach discussed above on the NTIMIT test portion of 168
speakers. We experimented with various window sizes. As shown
in Fig. 11(b), the performance is optimal for windows between
100 and 500 ms and drops sharply for shorter lengths. The results
of unprocessed speech are compared to the ones using only voiced
speech. In all cases, GMIA is contrasted to the mean input feature.

Table 2 presents EER results of GMIA against previous
approaches of the authors and other representative results from
the literature. The identification rates of the algorithms are
included for comparison with previous results in the literature.
Our assumption of differently distorted inputs results in the
chosen data partitioning where the utterances are alternatively
separated in a training and testing set. Note that this

partitioning—and therefore the results—are not exactly compar-
able to the standard work of, e.g., Reynolds [22].

7. Conclusion

The Bayesian estimation perspective on the mutual interde-
pendence analysis problem allows for a parameterized formula-
tion called GMIAðlÞ. When the parameter l¼ 0, GMIA(0) is
equivalent to the original definition of MIA. The goal of GMIA(0)
is to compute a unique characteristic or invariant feature of a
high-dimensional dataset that can be used in pattern recognition
problems. By definition, the GMIA(0) representation is a linear
combination of class examples that has an equal correlation with
all training samples in the class.

This paper defines a generative signal model for GMIAðlÞ and
analyses the effect of l on its feature extraction performance.
This allows us to evaluate and successfully apply GMIAðlÞ in
two problems: illumination-independent face recognition and
text-independent speaker verification. GMIA-based methods are
rather general, nonetheless they extract discriminant features
resulting in competitive classification performance. Given that
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Fig. 11. Comparison of speaker verification results using GMIA and mean features. Optimal performance is achieved for window lengths between 100 and 500 ms. Note

that the performance drops sharply for shorter window sizes. (a) GMIA clearly outperforms the mean based feature. (b) The result of the mean feature is more affected than

GMIA if only voiced speech is used.

Table 2
GMIA(0) and GMIA performance comparison using various NTIMIT database

segments. ‘‘GMM’’ indicates the standard Gaussian mixture model approach [22].

Method EER (%) Identification (%) NTIMIT database

section

GMIA (in this paper) 6.0 67

Test section with

168 speakers

GMIA [6] 6.0 52

GMIA(0) [6] 6.9 48

GMIA(0) [5] 6.8 56

GMM [27] 12.4 N/A

GMM [23] 9.6 N/A

GMM [22] 7.2 69

GMIA (in this paper) 5.7 47

Selection of all

438 male

speakers

GMIA [6] 6.9 39

GMIA(0) [6] 8.4 35

Phoneme GMM [13] 15.7 N/A

GMIA (in this paper) 5.1 44

Full database of

630

speakers

GMIA [6] 6.5 37

GMIA(0) [6] 7.5 32

GMM [27] 8.8 N/A
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the GMIA solution depends on the Gram matrix of the data,
future work will investigate computational tractability in large
dimensions and statistical properties of GMIA for a large number
of inputs.
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