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Scale-invariant filtering design and analysis
for edge detection

By SAsaN MAHMOODI*

School of Electronics and Computer Science, Southampton University,
Building 1, Southampton SO17 1BJ, UK

Existing edge detection filters work well on straight edges but make significant errors
near sharp corners by producing rounded corners. This is due to the fact that the
edge maps produced by these filters are scale variant. We enhance Canny’s optimality
criteria to incorporate detection performance near corners as an explicit design objective.
The resulting optimal filter, termed ‘Bessel integral filter’, can be derived analytically
and exhibits superior performance over recent alternatives, both in terms of numerical
accuracy and experimental fidelity. A noise-free localization index is also derived here to
account for the detection accuracy of discontinuities forming sharp corners in the absence
of noise. We prove here that edges detected by the filters that are not optimal with respect
to this noise-free localization index are scale variant. However, the Bessel integral filter
proposed here is optimal with respect to the noise-free localization index and therefore
it is a scale-invariant filter.

Keywords: edge detection; Canny-like criteria; Bessel integral filter; scale-space smoothing;
two-dimensional filtering design; scale-invariant filters

1. Introduction

One of the popular approaches in edge detection is to detect discontinuities by
convolving a linear filter with an image. It is a common practice in the literature
to design a linear filter in one dimension for signals by modelling the edge as a one-
dimensional Heaviside function and then extend it for a two-dimensional image
by simply adding one dimension to the calculated one-dimensional linear filter.
Such an approach in filter design leads to edge detection algorithms, which do not
account for two-dimensional features in edges, such as sharp corners and curved
discontinuities and therefore may demonstrate a behaviour known as scale-space
smoothing causing edges to deform, distort and smooth. Such a behaviour is a
consequence of the fact that these filters are scale variant (Lindeberg 1998a,b).
The amount of feature distortion depends on the size (scale) of the filter. This
smoothing effect distorts the original shape of objects in images. It is, therefore,
important to design filters to detect edges regardless of the filter size (scale).
Our contribution in this paper is to introduce a new framework to design scale-
invariant filters for images with two-dimensional features. To this end, we exploit
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some basic principles similar to the ones introduced by Canny (1986). A two-
dimensional ideal wedge is defined here to model various types of corner-shaped
discontinuities. The problem is then reduced to design a linear filter to detect
any point on sharp corners forming discontinuities regardless of the wedge angle
and orientation. In his seminal paper, Canny (1986) proposes a framework for
computational edge detection by introducing certain criteria such as maximum
signal-to-noise ratio (SNR) and localization and least multiplicity of response to
derive an optimal filter approximated by a derivative of Gaussian (DroG) for edge
detection. Deriche proposes a computationally more efficient recursive filter with
a constant execution time with infinite support to implement Canny’s DroG in
Deriche (1987). Tagare & deFigueiredo (1990) exploit the theory of stochastic
processes to model the distribution of zero-crossings to calculate an optimal
localization index for DroG. An effective width is defined for an indefinite length
filter in Sarkar & Boyer (1991) to implement a filter that outperforms DroG and
is computationally more efficient. Canny-like criteria are employed by Petrou &
Kittler (1991) and Petrou (1995) to propose an optimal filter for ramp edges by
arguing that edges in real world images are closer to ramps. Infinite symmetric
exponential filter is also proposed by Shen & Castan (1992) to demonstrate that
such a filter has a better localization property than DroG filter. A Wiener filter is
proposed in Rao & Ben-Arie (1994) by optimizing discriminative signal-to-noise
ratio (DSNR) instead of SNR to demonstrate superior performance in terms of
Pratt’s figure of merit (Pratt 2007). DSNR is also employed by Wang et al.
(1996) to propose an optimal filter for bipolar ramp edges demonstrating less
distortion and higher figures of merit than the optimal filters for ramp edges
proposed in Petrou (1995) and Petrou & Kittler (1991). Demigny (2002) employs
Canny’s criteria for the optimal design of filters for edge detection in a discrete
setting. Canny-like criteria are employed directly in a two dimensional domain
by Jacob & Unser (2004) to design optimal steerable filters initially introduced in
Freeman & Adelson (1991) by using Gaussian window functions. The technique
of scale multiplication is proposed in Bao & Wu (2005) to employ multiple scales
to enhance the localization criterion in the DroG filter for edge detection. The
rest of the paper consists of the following sections. In §2, we initially define the
Canny-like criteria, then derive an optimal filter in a two-dimensional domain
and finally discuss its mathematical properties. Section 3 deals with numerical
evaluations of Canny-like criteria for the optimal filter proposed here and some
popular filters in the literature. Experimental results are presented in §4 and
finally the paper concludes in §5.

2. Two-dimensional optimal filter and its mathematical properties

Our objective here is to design a filter to detect image discontinuities with
numerical cost as low as that of a linear convolution. In an image, such
discontinuities may appear as edges along straight lines, edges forming sharp
corners and curved edges. In order to account for all kinds of aforementioned
edges, let us consider a piecewise constant image (an ideal wedge) shown in
figure 1 forming a sharp corner in the centre of coordinate system, point O(¢ # 7).
In this figure, without loss of generality, we can assume that the z-axis is one of
the wedge sides to simplify our calculations. Point O can also be considered on
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Figure 1. The input image used for the optimal filter calculation.

discontinuity along a straight line for ¢ = . It can also be assumed to be on a
curved edge for ¢ = 7 by considering point O to be on an infinitesimal line on the
curve. Therefore, an optimal filter is sought to detect the discontinuity at point
O regardless of the wedge angle and orientation.

(a) Filter derivation

In this paper, by considering an ideal wedge as an input signal shown in figure 1,
the first Canny’s (1986) assumption that two-dimensional edges locally have a
constant cross section in some direction, is violated (e.g. see point O in figure 1).
This wedge is defined as a piecewise constant image conveniently described in

polar coordinates as
g(r,0)=(H(0) — H(0 — ¢)), (2.1)

where H, r and 6 are the Heaviside step function, radial and angular coordinates,
respectively. A two-dimensional image g given in equation (2.1) (or figure 1) is
assumed to be the input signal modelling discontinuity with any arbitrary angle
and orientation. Let us also assume that the input image is contaminated with
a zero-mean Gaussian noise. The detection performance and localization indices
(Canny 1986) are then optimized by using the method of Lagrange multipliers to
find the optimal filter.

Let us now start by calculating the detection performance and localization
indices for point O at the centre of coordinate system (0,0) in figure 1. Our first
assumption is that the desired filter is linear and space invariant. We further
assume the impulse response is isotropic, i.e. in polar coordinates our desired
filter is a function of only r (radial coordinate). In order to calculate the detection
performance, the response of the isotropic filter to the discontinuity at point
O is calculated by a convolution in Cartesian coordinates evaluated in polar
coordinates as

+oo p2m
Ug|O:h*g:J J o(r,0 + ) h(r)r dr db, (2.2)
0 0

where *, Uy, g and h are the two-dimensional convolution operation, the convolved
image, the ideal wedge defined in equation (2.1) and the desired filter, respectively.
To detect the edge in the sharp corner O, we consider the directional derivative of
U, along the unit vector m with respect to which axis z (in Cartesian coordinates)
has a fixed angle 6, so that 8,, € (0, ¢). This unit vector n is represented in polar
coordinates as n=cos(fd — 0,)¢, —sin(f — 0,,) ey, where ¢, and €y are radial and
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angular unit vectors in polar coordinates, respectively. The gradient magnitude
of the convolved image U, is examined to find pixels representing discontinuities.
Since the relationship between the gradient magnitude and the directional
derivative along the unit vector n at point O is dU,/dn =V U,.n = |V Uy cos(a)
where « is a constant angle between n and VU,|o, the directional derivative of
the convolved image is proportional to its gradient magnitude. The directional
derivative of U, along the unit vector n at point O in figure 1 is therefore
calculated as

aU,
1,0,0,) = 5(0.0,)= |

+oo rd+o+m g9p
l

—rdrdé, (2.3)
0 an

where 0h/dn=Vh.n=(dh/dr)cos(d —60,). By integrating with respect to @,
H,(0,6,) can be written as

+00 dh
H,(0,0,)=(sin(f, — ¢) — sin(ﬁn))J rd—dr. (2.4)
o r
Let us now assume that the ideal wedge shown in figure 1 is contaminated with
zero-mean Gaussian noise N(r,¢) with variance Ng. The filter response to noise
is therefore written as

+00 2w dh
H,(0,6,) =L Jo N(r,ﬂ—i—w)a cos(f — 6,)rdrdé. (2.5)

Therefore, the mean-squared response of filter dh/dn to the noise at point O
is E(H?) = N&( (J;OO ?]W r(dh/dr)? cos®(6 — 6,)dr df), where E(.) is the statistical
expectation. By integrating with respect to 6, the above equation is rewritten as

E(H?)= Njw (Lm r (%)2 dr). (2.6)

Using equations (2.4) and (2.6), the detection performance is written as
|f r(dh/dr)dr|
JIi r(dnydryar

To calculate the localization index, let us now assume that (dH,/dn)(0,6,) =0
where n is the unit vector that has an 6, angle (6,, € (0, )) with respect to axis x
(in Cartesian coordinates). Generally the condition (dH,/dn)(0,6,)=0 may not
hold for any given isotropic filter. In §2b, it is demonstrated that filters which do
not meet the abovementioned condition, produce scale-variant edges. For now,
we assume that (dH,/dn)(0,0,) =0, since we seek to detect point O in figure 1.
Therefore, if H, is the response of the filter dh/dn to the noise, then the filter
response at the presence of noise, should have a local maximum in a point with
coordinates (rg, 8,), i.e.

Y=

(2.7)

OH, dH,

=0. (2.8)
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Let us now evaluate the individual terms in equation (2.8). The McLaurin’s series
expansion along the unit vector n is employed to calculate (0Hy/dn)l,, g, for a
small displacement 7y:

d0H,
an

_oH,

92 H,
0
(m-ﬂn) an

+ O(r3). (2.9)
(0.62) dn? !

(0,0,)

As indicated before, we assume (0 H,/dn)|(4,) =0 therefore equation (2.9) for a
small displacement ry is written as

dH,
an

9*H,
(Toﬂn) n

(2.10)

(0,0,) '

The terms with higher orders of 1y are ignored, since the displacement 1y is
assumed small. Equation (2.8) is, therefore, written as

0H, 82H
=_ . (2.11)
(10,6n) dn? (0,6,)

on
Owing to the presence of zero-mean Gaussian noise, it is reasonable to assume
that 1y is a zero-mean random variable whose variance is calculated as the
expectation of 1 by using equation (2.11), i.e
E[((aHn/an>|('f‘o,0n))2]
[(92Hy/dn?)| (00,0

E(ry) =

(2.12)

Let us now evaluate the variance of the Gaussian random variable (0 H,/dn)] .4,
in polar coordinates. Similar to the calculation method in equation (2.6), the
variance of the random variable (3 H,/dn)|(,g,)| can be written as

aH 2 37-" —+00 d2h 2 ah
- —\1 "\ T2 + dr. 2.13
On the other hand, the denominator in equation (2.12) can be calculated

by considering the boundary conditions, (dh/dr)|,—o = (dh/d7)|;=4+00 =0, and
therefore

0*H,
on?

. t 1dh
= (sin®(6,, — @) — sin*(6,,)) Jo 3 dr. (2.14)

(076n)

The localization index is the reciprocal of equation (2.12). By using
equations (2.12)—(2.14), the localization index can, therefore, be written as
equation (2.15)

|f (1/r)(dh/dr)dr|

\/j (r(d2h/dr2)? + (1/7)(dh/dr)?)dr

The problem of finding a filter A maximizing the product ¥4 evaluated in
equations (2.7) and (2.15) can be reduced to extremizing one of the integral terms
and keeping the other terms constant in equations (2.7) and (2.15) by using the
method of Lagrange multipliers. We also note that the terms in equations (2.7)

(2.15)
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and (2.15) do not depend on h itself and consist of only the first and second
derivatives of h. To find the optimal filter in the space of admissible functions,
the functional to extremize can, therefore, be written with respect to P =dh/dr,
ie.

+00 +00

B(P.P) = |

I'(P,P,,r) d7’=J
0

9 9 P? )
yrP+arP°+ 3| rP;+— )+ —P)dr,

0 r r
(2.16)
where I'(P, P,,r) is the Lagrangian, v, a, 8, w are constant coefficients and P, =

dP/dr. We therefore arrive at the Euler-Lagrange equation:

(J)/

1
TPy + P, — (a’r + —) P—~yr——=0, (2.17)
T T

where o =a/B, ¥ =v/6 and ' =w/B. By assuming that r %0, the above
equation is rewritten as

r’Pp + 1P, — (a/1* + 1)P — y'r* — o =0. (2.18)

Equation (2.18) is of the type of modified Bessel differential equation (Polyanin &
Zaitsev 2003). Solutions for differential equation (2.18) exist, only if (y/a)=
(w/B). The necessary condition for functional (2.16) to have a minimizer is that
its second variation is positive. The second variation for functional (2.16) can
then be calculated as

400

+0o0
62E:J (T'ppq* + T'p.p, qf)dr:J
0 0

<(2a7’ + ?) 7 + 2r6qf) dr, (2.19)

where I'pp=(0°I'/P?), Tpp, = (8*I'/0P?), Tpp, = (9T /dPIP,) =0, q(r)=
0P(r) and ¢.=dg/dr are from the space of admissible functions. The second
variation calculated above is positive if inequalities (2.20) are satisfied for Vr € R™:

ar + b >0 and 2r8>0. (2.20)
r

In order for inequalities (2.20) to be true for any r € R*, it is required that
a>0, 8>0. The general solution of equation (2.18) is therefore written as
P =AK,(rv/&) + Bli(rv/&) + C, where I;(r) and K;(r) are modified Bessel
functions of the first and second kind and degree one (Polyanin & Zaitsev
2003) and A, B and C are constants, respectively. It is noted that o' =a/f is
positive since both « and § are positive. This solution is subject to the boundary
conditions P(+00)=0 and P(0) =0. We also note that P(r) is required to be
asymmetric along the unit vector n. Therefore, P(r) along the unit vector n is
written as

—Ki(rva') r>0
P(r)y= K (rva) r<0. (2.21)
0 r=0
Figure 2a depicts P(r) for o’ =0.2 along the unit vector n. It is clear that

as r— 0, P(r) approaches to infinity. For implementation purposes, this is not
computationally tractable. Therefore, a regularization procedure is proposed here
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Figure 2. (a) The Bessel function P(r) along the unit vector; (b) a three-dimensional view of the
optimal isotropic filter h; (¢) the cross section of the filter. (Online version in colour.)

as follows:
—K (Ir|lWa) r>e
P(r)=3 Ki(Ir|Va)  r<-—e. (2.22)
0 |r] <e

The isotropic filter h is then calculated by integrating the above function with
respect to r.

m) =] Pias (2.23)

In this paper, we refer to isotropic filter (2.23) as Bessel Integral filter. Figure 2b,¢
shows a three-dimensional view of the isotropic filter h and its cross section for
o' =0.2 and e = A =1, respectively, where A is the sampling distance.

(b) Mathematical analysis for edge detection filters and algorithms

In the first part of this section, we present some mathematical properties of
the Bessel Integral filter. In the second part of §2b, we describe general properties
of scale-variant and invariant filters to demonstrate that the Bessel integral filter
belongs to a family of scale-invariant filters. In the following theorem, we initially
prove that the local exterma of the gradient magnitude of the convolved image
calculated in equation (2.2) correspond to the discontinuities of the piecewise
constant image g.
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Theorem 2.1. Let Uy: Q — RT(Q is the image domain) be the image obtained
in equation (2.2) by convolving the reqularized function he in equation (2.23) and
a piecewise constant image g shown in figure 1. In a neighbourhood of point O, if
the gradient magnitude of U, has a local extermum in (1y,6y) so that 1y is a small
displacement from point O and 6y #0, ¢, then this local extermum approaches
point O, as e — 0.

A proof for theorem 2.1 is provided in appendix A. In theorem 2.2 presented
below, we prove that the gradient magnitude of the image convolved by the input
image and the isotropic filter A is infinity on the discontinuities of the original
image when the regularizing parameter ¢ approaches zero.

Theorem 2.2. The gradient magnitude of the convolved image Uy:Q— R*
between the regularized isotropic function he calculated in equation (2.23) and a
piecewise constant image g approaches infinity on the discontinuities of the input
image g, if ¢ > 0.

A proof for the above theorem is presented in appendix B. Proposition 2.3
presented below readily follows from theorems 2.1 and 2.2. This proposition is
the basis for an edge detection algorithm by finding the local maxima of the
gradient magnitude of the input image convolved with the Bessel integral filter.

Proposition 2.3. The gradient magnitude of the convolved image Uy : Q — RT
between the regularized isotropic filter h, calculated in equation (2.23) and a
piecewise constant image g has local mazxima on the discontinuities of the input
image g, if ¢ = 0.

Given that the gradient magnitude is always positive, the proof of
proposition 2.3 is straightforward and is therefore skipped here. According to
proposition 2.3, if filter (2.23) is convolved with any input image, the local maxima
of the gradient magnitude of the convolved image correspond to discontinuities
of the input image. Proposition 2.3 is therefore a fundamental statement for our
discontinuity detection algorithm proposed in this paper. The result obtained
from theorem 2.1 leads also to proposition 2.4. This proposition rationalizes the
assumption made to arrive at equation (2.10) from equation (2.9) for the Bessel
integral filter.

Proposition 2.4. For the Bessel integral filter and the input image g shown
in figure 1, equation (2.9) approaches equation (2.10) as e — 0 if 1y is a small
displacement.

The proof of this proposition is straightforward and immediate from the result
obtained from theorem 2.1 and is therefore skipped. According to proposition 2.4,
localization calculated in equation (2.15) is only true for the Bessel integral filter.
However, the localization index for any other isotropic edge detection filter is
calculated by using equations (2.8) and (2.9). From these equations, the reciprocal
of the square root of variance of 1y being the localization index is calculated as

(0% Hy /917 (0,0,

A= .
EUOH /37 3,0,))*1 + (9Hy /O 0,,))?

(2.24)
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In the absence of noise, a noise-free localization index is derived as

(0*Hy/dn*)(0,0,)
(aHg/an)l(()ﬂn)

Equations (2.24) and (2.25), theorem 2.1 and proposition 2.4 lead to lemma 2.5.

Any =

(2.25)

Lemma 2.5. Let the function h(r): R™ — R continuous in (0,+00), be a two-
dimensional isotropic edge detection filter in a polar coordinate system. If the
central value of such a filter h(0) is bounded, the two-dimensional noise-free
localization index calculated in equation (2.25) for the wedge angle ¢ #m, has
a bounded value.

Lemma 2.5 is proved in appendix C. Lemma 2.5 in fact indicates what kind of
filters produces scale-variant edges and it therefore leads to lemma 2.6 describing
what property a filter should possess to be able to produce scale-invariant
edges. In the proof of lemma 2.5, it is demonstrated that equation (2.25) for
an isotropic filter A(r) (r is the radial coordinate in the polar coordinate system)
can be written as

(sin®(0, — @) —sin’(6,,)) [ (1/r)(dh/dr) dr
h(0)(sin(2(p — 6,,)) + sin(26,))

It can also be verified that for a Gaussian filter and in the absence of noise, the
localization index calculated in equation (2.26) is proportional to the reciprocal
of the standard deviation (scale) of the Gaussian filter, i.e. if the scale of
the Gaussian filter increases, the noise-free localization of the detected edge
corresponding to the corner point O in figure 1 decreases. This phenomenon
observed in the case of images with discontinuities containing sharp corners such
as the one shown in figure 1 is related to the scale variance property of a Gaussian
filter. The conditions under which an isotropic filter detects scale-invariant edges
are indicated in lemma 2.6 concluded from the results obtained from theorem 2.1
and lemma 2.5.

Axp = (2.26)

Lemma 2.6. Let the function h(r): R™ — R continuous in (0,+00), be a two-
dimensional isotropic edge detection filter in a polar coordinate system. The
localization index in the absence of noise for such a filter is infinity regardless of
the value of wedge angle and its orientation as shown in figure 1, if h(r) approaches
mfinity as r— 0.

The proof of this lemma is similar to the proof of theorem 2.1 and can be given
by evaluating the localization index calculated in equation (2.26) in lemma 2.5 as
r— 0 and it is therefore skipped in this paper. Lemma 2.6 can be considered as
a direct consequence of proposition 2.3 for the Bessel integral filter as a member
of a family of filters for which this lemma is applicable.

3. Numerical evaluations of detection performance and localization
In this section, the detection performance and localization indices are numerically
evaluated with respect to the parameters of the Bessel integral filter derived in the

previous section. These indices are evaluated here to compare with some existing
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filters in the literature. The filter P,(r) regularized in equation (2.22) is employed
to numerically evaluate indices with respect to the regularizing parameter e
and u=1/«’. The parameter u is used here instead of o« for convenience. The
detection performance and localization indices are calculated according to Canny
(1986). Figure 3 depicts the detection performance and localization indices and
their product with respect to u and the regularizing parameter ¢. As shown in
this figure, by lowering the regularizing parameter ¢, the detection performance
index decreases as depicted in figure 3a. The localization index greatly improves
as ¢ is lowered (figure 3b). The product of these two indices improves as &
is lowered (figure 3¢). We also notice that the ability of the filter for noise
removal increases by raising the values for u (and as a result the filter size). The
localization, on the other hand, almost remains unchanged, if u is increased (or
decreased) as demonstrated in figure 3b. We now need to determine the window
size according to which the regularized Bessel integral filter is truncated, since
this filter in spatial domain is not band limited. Therefore, we define the truncated
filter as

0 O<r<e
P(r,d) =1 K (ﬁ) e<r<d. (3.1)
0 r>d

The normalized truncation error E(d) defined in equation (3.2) as

_ o IP(r) = Po(r,d)|dr |
max( [~ |P.(r) — Po(r, d)| dr)

(3.2)

We notice that the normalized truncation error E(d) for e €[0.01,1] depends
only on d/,/u. For d/./u=4, the error term E becomes negligible (£ = 0.0265).
Therefore, in this paper, the window size of the filter proposed here is set to W =
8 /1 x 8,/m. Figure 4 depicts the detection performance, localization indices and
their product with respect to the filter size for DroG, Demigny and Bessel integral
filters with e =0.01, 0.1 and 1. As shown in the figure, the localization of the filter
proposed here increases and its detection performance decreases, as lower values
for ¢ are selected, which confirms the result shown in figure 3. The localization
of the Bessel integral filter for all values of ¢ is superior to the localization of
the other two filters (figure 4b). Finally, figure 4¢ depicts the product of the
detection performance and localization. The Bessel integral filter with ¢ =0.01
has the best overall performance (product of indices) over the whole range of
filter sizes.

4. Experimental results

Before the experimental results are discussed in this section, there are two
implementation issues that require more clarification. Firstly, if the regularizing
parameter less than unity (e.g. as low as ¢ =0.01) is required anywhere in this
paper, the filter is initially constructed in a higher resolution (e.g. A =0.01) with
the required ¢ and then down-sampled to the normal resolution A =1. Secondly,
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Figure 3. The detection performance and localization with respect to a range of values for u and

regularizing parameter ¢. (a) Detection performance index; (b) localization index; (¢) the product
of these two indices. (Online version in colour.)

similar to other filters, the Bessel integral filter is also convolved with the original
image, and then the non-maximum suppression algorithm is applied on the
gradient magnitude of the convolved image to detect discontinuities. Let us now
compare the algorithm proposed here with DroG (Canny 1986), Demigny (2002)
and Jacob & Unser (2004) edge detection algorithms. The three Jacob—Unser
filters employed in this paper are a wedge filter with wedge angle /2, and two
third-order edge detectors with filter smoothing parameters 0.09 and 0.2 (named
as edge 1 and edge 2 filters, respectively, in this paper) (see Jacob & Unser (2004)
table 1 for more details). The six filters are applied on the synthetic star image
shown in figure 6 to compare the accuracy (localization) of the detected edges. To
measure the distance between each detected edge pixel from the corresponding
real edge pixel on the original image, we use signed distance function (SDF)
(Sethian 1996) of the original image of figure 6. To compute an error term
representing the average error between the true and the detected edge pixels,
let us assume that z = ¢(z,y) is the SDF of the synthetic star image calculated
by using the fast marching algorithm (Sethian 1996) and z; and y; are the x
and y coordinates of the ith edge pixel of an edge map produced by one of the
algorithms investigated here. The average error term associated with the edge

map containing Nedge pixels is measured by 1/N vazl |¢(zi, y;)|. Same filter size
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Figure 4. Detection performance and localization indices with respect to various filter sizes for
Demigny, DroG and Bessel integral filters with ¢ =0.01, 0.1, and 1. (a) Detection performance
index, (b) localization index and (¢) product of these indices. (a—c) Thin line, Bessel ¢ =0.01;
diamonds with solid line, Bessel ¢ = 0.1; squares with solid line, Bessel ¢ = 1; crosses with solid line,
Demigny; circles with solid line, Canny. (Online version in colour.)

is used for all filters in each measurement. Figure 5 shows the average error term
for each algorithm for filter sizes 5, 9, 13, 17, 21, 41 and 101. By changing the filter
sizes for each measurement, other filter parameters are also changed accordingly.
For example, for DroG and Jacob—Unser algorithms, standard deviation = filter
size/8, and for the Bessel integral filter u = (filter size)?/64 are calculated. As
depicted in figure 5, the average error term increases for all scale-variant filters.
However, the average error of edge detection for the Bessel integral filter is
unchanged and lowest as implied from theorems 2.1, 2.2, proposition 2.3 and
lemma 2.6 proved in §2. The edge maps detected by the six filters for the filter
size =41 is depicted in figure 6. As shown in this figure, the sharp corners are
detected properly only with the Bessel integral filter regardless of filter size and
wedge angle. The other filters with the same size have smoothed the sharp
corners. We notice that the central processing unit (CPU) time required to
produce edge maps is the same for all filters with the same size. Because all
edge detection algorithms investigated here are based on the calculation of the
gradient of the convolved image with a linear filter. For example, it takes around
0.1s for a PC with a 2.6 GHz CPU to run every algorithm discussed in the

Proc. R. Soc. A (2011)


http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on May 4, 2011

Scale-invariant filtering design 1731

£
g oy
5 3 /;/ //
5 /ey
2t i 4

\

0 20 40 60 80 100 120
filter size

Figure 5. The average error between the detected edges and real edges in the ‘Star’ image with
respect to filter size for the filters discussed in this paper (see the text for more details). Squares
with solid line, Bessel ¢ = 1; crosses with solid line, Demigny; circles with solid line, Canny; inverted
triangles with solid line, Jacob—Unser edge 1; stars with solid line, Jacob—Unser wedge; asterisks
with solid line, Jacob—Unser edge 2. (Online version in colour.)

original image Bessel integral (e=1)

Jacob—Unser wedge (angle = g) Jacob—Unser edge 1 Jacob—Unser edge 2

Figure 6. The edge maps of the ‘Star’ image (320 x 320) detected by the filters investigated in this
paper with filter size =41 x 41.

section with filter size 41 x 41 in a MATLAB environment (v. 7.3) on the original
image of figure 6 for edge detection. In order to choose equivalent threshold
levels in all algorithms investigated in this paper for a fair comparison, a strip of
logarithmically increasing grey scales is added to the bottom of the noisy and real
world images used here. This strip of grey scales named as threshold scaling strip
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Figure 8. Edge map produced by Bessel integral filter with e =0.01 and Jacob-Unser edge 1 filter
and Jacob—Unser wedge filter with wedge angle = 90° (filter size =9 x 9).

in this paper and its cross section are shown in figure 7. The threshold levels in all
algorithms are adjusted so that the same number of discontinuities in the strip is
detected by all algorithms. Figure 8 shows a real world image of a text book. Noise
is introduced to this image in the data acquisition process. The Bessel integral,
Jacob—Unser edge 1 and Jacob—Unser wedge filters (size =9 x 9) are applied to
the image of this figure. The threshold levels for all algorithms are adjusted so
that the first edge in the threshold scaling strip is detected. A close inspection of
this figure indicates that the edge map produced by the Bessel integral filter has
the best accuracy (e.g. see ‘t’ in ‘that’, ‘transition’” and ‘gradient’, ‘r’ in ‘gradient’
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Figure 9. Comparison of edge detection performance in a noisy environment. (a) Original noisy
image of Cameraman (256 x 256), (b) Bessel integral filter (¢ =3.4) and (¢) Jacob—Unser edge 1
flter (hlter size=13 x 13).

and ‘propose’, and so on). As the filter size increases, the scale-space distortion
of Jacob—Unser filters becomes more severe. However, the Bessel integral filter
experiences less scale-space distortion. The Bessel integral and Jacob—Unser edge
1 filters (filter size =13 x 13) are applied to the noisy image of Cameraman as
shown in figure 9a. This image is contaminated with the zero-mean Gaussian
noise with standard deviation 50. The edge maps produced by the Bessel integral
and Jacob—Unser filters are depicted in figure 96 and ¢, respectively. As shown in
this figure, the Bessel integral filter produces competitive results in comparison
with Jacob—Unser filter in the presence of excessive noise. Soft edge maps, as
suggested in Martin et al. (2004), are produced by applying Bessel integral and
Jacob—Unser edge 1 filters (with size 13) on a real world image from Berkeley
segmentation data base (Martin et al. 2004), as shown in figure 10a. There are
many details that are detected with higher accuracy by Bessel integral filter.
For example, number ‘96’ on the front car and the signs ‘CASTROL’ in the
background (figure 10a) are completely readable in figure 10b. However, it is very
difficult (if not impossible) to read these details in the soft edge map produced by
Jacob—Unser filter as shown in figure 10¢. The source code of the edge detection
algorithm proposed in this paper is written in MATLAB (v. 7.3) and is available
in http://users.ecs.soton.ac.uk/sm3/curricul2.htm.

5. Conclusion

A scale-invariant filter termed as Bessel integral filter is derived here by defining
the Canny-like criteria in a two-dimensional image domain. The Bessel integral
filter proposed here is singular at the centre. A regularization method for the
filter is therefore proposed here to improve the robustness of this edge detection
method in the presence of noise. It is demonstrated that the product of the
detection performance and localization indices of the filter proposed here is higher
than some recent filters in the literature. It is also analytically proved in this
paper that the gradient amplitude of the filtered image has local maxima on the
discontinuities of the input image, when the regularizing parameter of the Bessel
integral filter approaches zero. This property of the Bessel integral filter is the
main reason for its scale-invariance property in edge detection. The condition
under which a filter may be scale variant or invariant is presented here. Two
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Figure 10. Bessel and Jacob—Unser edge 1 filters (with filter size 13) are employed to produce soft
edge maps for a real world image from Berkeley University data base. (a) Original real world image
(480 x 320). (b) Soft edge map produced by Bessel filter with ¢ =0.01. (¢) Soft edge map produced
by Jacob-Unser edge 1 filter.
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issues, not discussed in this paper, are open for further research: (i) the possibility
of employing the filter proposed here in a class of steerable filters as in Jacob &
Unser (2004); (ii) the filter proposed here is designed in a continuous domain. A
discrete treatment as in Demigny (2002) for the filtering design introduced here
would lead to a discrete filter equivalent to the Bessel integral filter derived here
in a continuous domain.

This work was supported in part by the IST program of the European Community, under the
PASCAL2 Network of Excellence, the IST-2007-216886 and PinView project with grant number
216529.

Appendix A

Proof for theorem 2.1. Let us consider the piecewise constant image g as shown
in figure 1. Let us further assume that the local extermum of H, =dU,/dn
corresponding to point O in the original image is at coordinate (ry,6p), where
1o is a small displacement, 6y #0,¢ and n=cos(6 —0,)e, —sin(f — 6,)¢. By
using the McLaurin’s series, we can write:

oH 0H 0’H 0’H
o = U ey + 1960 — 6,)
Il 97 100, In* 1(0.4,) Insdnqg,)
+ higher order terms, (A1)

where n; =sin(6 — 6,)¢e, + cos(f — 6,,) ey is perpendicular to n. The higher order
terms are ignored owing to the fact that r is a small displacement. Since Hy (10, 6))
is a local extermum, (9H,/0n)],,9,) = 0. Equation (A 1) can therefore be used to
calculate ry the distance between the local extermum and point O, i.e.

e —(0H /9n)l(0.,0,)
U7 (02 H /02|04, + (B0 — 6,)(*H /3, 9n) |04,

(A2)

From equation (2.2), straightforward calculations show that

dH,
an

+o00 p2m th dh
:J J (7«_2 cos2(0 — 0,) + S sin’(0 — en)> gdrdd.  (A3)

where ¢ is defined in equation (2.1). By integrating the above equation with
respect to #, and then integrating by parts with respect to r for the first term
in the above equation and finally considering the asymptotic behaviour of the
Bessel function, we can write:

0H,
an

— _(sin(2(¢ — 0,)) + sin(26,)) Jm (‘;’;) dr

(0,02) 0

= (sin(2(¢ — 6,)) + sin(26,,))h(e). (A4)
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It is also straightforward to show that
0*H,
a'rld_an (00")

+00 1
—he(r)dr.
T

= (cos(#,) sin*(6,,) — cos(p — 0,) sin*(p — 6,)) Jo

(A5)

By substituting equations (A 4), (A5) and (2.14) into equation (A 2), we can
write:
sin(2(¢ — 6,,)) +sin(26,,))h(e
1y = (2l — 1) + sin(20))he) "
AL /r)h(r)dr

where A= (cos(0,)sin?(8,) — cos(¢ — 0,,) sin*(¢ — 0,))(0o — 0,) + (sin®(8,, — @) —
sin®(,,)). Equation (A 6) is indeterminate as ¢ — 0. By using ’Hopital rule for
intermediate terms, we can write equation (A 6) as

) (sin(2(¢ — 0,)) + sin(26,,))h(e)
rp = lim . 3 . 3 +00
=0 (sin’(0, — @) —sin’(0,)) [ (1/r)(dh/dr)dr
in(2(¢ — 6, in(26,))(dh/d

e=0 (sin®(0,, — @) — sin°(6,))(1/¢)(dh/de)
Therefore, the distance between point O and the local extermum H,(ry, )
approaches zero, as ¢ — 0, i.e. Hy(0,6y) is a local extermum as ¢ — 0. Therefore
[VU;| has a local extermum in point O. The above argument is also correct
for edges along straight lines for ¢ = 7. Any edge point along curved boundaries
can be considered a point on an infinitesimal line for which the above argument
also applies. [ |

Appendix B

Proof for theorem 2.2. Let us consider the piecewise constant image shown in
figure 1 described by equation (2.1) in polar coordinates as an input image g in
equation (2.2). In figure 1, point O is placed on the image discontinuity forming a
sharp corner. We aim to show that |V Uy|o approaches infinity as e — 0. By using
equation (2.2), let us evaluate Hy = (3dU;/dn)|(0,,), Where n=cos(fd —0,)e, —
sin(6 — 6,)¢éy, and 6,,, ¢, and & are any arbitrary angle between 0 and ¢, and the
unit vectors (radial and angular unit vectors) in polar coordinates, respectively.
The Cartesian convolution evaluated in polar coordinates is written as

oU., +oo U+t ahe
—£(0,0,) zlimJ J rdrdd. (B1)
an e=0Jo  Jogn n
On the other hand, dh/dn can be calculated as
dh, dh,
— =Vh,-n=—-cos(d — 0,) = P(r)cos(0 — 0,), (B2)
an ar

where P.(r) is defined in equation (2.22). By substituting equation (B2) into
equation (B 1), then integrating by parts with respect to r and finally integrating
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with respect to 6, we can write:

oU. ~+00

a_g(O7 6,) = (sin(f, — ¢) —sin(6,)) lir% [(rhg(r)) T — J he(r)dr], (B3)
n &— 0

where h(r)=["__ P.(z)dz. Using the asymptotic behaviour of Ki(r) as r— 0

and r — 400 (e.g. Polyanin & Zaitsev 2003; Arfken & Weber 2005) and I’'Hopital’s

rule for indeterminate terms, equation (B 3) can be rewritten as

%(0, 0.) = (sin(6,) — sin(0, — ¢)) lim ( Lﬁo hs(r)df’) (B4)

As ¢ — 0, the integration term in the above equation approaches infinity. Since
(0Uy/31)(0,0) =V Us|o - m, then liné |V Uy |o = +00. We notice that for ¢ =, the
E—>

wedge shown in figure 1 becomes an edge along a straight line on which point O
can be regarded as an arbitrary point. It is also noted that if point O is placed on
some part of the edge (contour) that can be regarded as a regular curve, then the
contour at point O can be approximated as an infinitesimal line passing through
point O for both of which the above argument applies. |

Appendix C
Proof for lemma 2.5. In the absence of noise, the noise-free localization index is

calculated according to equation (2.25). We would like to evaluate the noise-free
localization by calculating the terms (0H,/dn)|(04,) and (0*Hy/dn?)4,):

J0H,
Wyl — h(0)(sin(2(p — 0,)) +sin(26,)) (1)
97 |(0,)
and ) .
0°H, ) *1dh
2g = (sin®(#,, — @) —sin®(8,,)) J ——dr, (C2)
an (0.0) o rdr

where h(r) is only a function of radial coordinate in a polar coordinate system.
By replacing (C1) and (C 2) into equation (2.25), the noise-free localization index
is calculated as

(sin®(0,, — @) — sin®(6,.)) [T (1/7)(dh/dr)dr
(sin(2(p — 6,,)) + sin(26,,)) h(0)

Since h(0) is bounded, (dh/dr)|,=0) =0, and the wedge angle ¢ # 7, then the
noise-free localization index evaluated in (C 3) is bounded. |

Axp = (C3)
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