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Abstract. One of the most recent trends in biometrics is recognition by ear ap-

pearance in head profile images. Determining the region of interest which con-

tains the ear is an important step in an ear biometric system. To this end, we 

propose a robust, simple and effective method for ear detection from profile im-

ages by employing a bank of curved and stretched Gabor wavelets, known as 

banana wavelets. A 100% detection rate is achieved here on a group of 252 pro-

file images from XM2VTS database. The banana wavelets technique demon-

strates better performances than Gabor wavelets technique. This indicates that 

the curved wavelets are advantageous here. Also the banana wavelet technique 

is applied to a new and more challenging database which highlights practical 

considerations of a more realistic deployment. This ear detection technique is 

fully automated, has encouraging performance and appears to be robust to de-

gradation by noise. 

1 Introduction 

Biometrics concerns the recognition of individuals based on a feature vector extracted 

from their anatomical and/or behavioral characteristic, and plays a vital role in securi-

ty and surveillance systems. Any automatic biometric system needs detection and 

partitioning process to extract the region of interest from the background. 

Ear as a biometric identifier has attracted much attention in the computer vision and 

biometric communities in recent years. Ear, which is characterized by the appearance 

of the outer ear, lobes and bone structures is frequently used in biometric. Ear identifi-

cation has some advantages over other biometric technologies for various reasons. An 

ear contains a large number of specific and unique features that assist in human identi-

fication. It contains a rich and stable structure that does not change significantly over 

time [1]. An ear can be remotely captured without any knowledge or consent of the 

person under examination. It also does not suffer from changes in facial expression. 

These properties make ears very attractive as a biometric identifier. As a result, the ear 

biometric is suitable for security, surveillance, access control and monitoring applica-

tions. 

Iannarelli [2] performs two early studies suggesting ears are unique to individuals 

and supporting the use of an ear as a biometric modality. There are some studies 

which show how the ear can be used for recognition, using 2D and 3D images [1, 3]. 



The 2D approaches use the ear as a planar structure affixed to the head. Alternatively, 

3D approaches can be used and this has so far been achieved with range scan data. Ear 

detection is the most important step in an ear recognition system, and the detection 

quality will therefore affect directly the performance of the whole recognition system. 

Recent approaches mostly focus on ear recognition without a fully automated me-

thod for ear detection [1, 3]. However automated schemes have recently been pro-

posed for ear detection prior to recognition. Some researchers have focused on 2D [4, 

5, 6] and 3D [7, 8] ear detection. The two most sophisticated approaches in 2D ear 

detection are proposed in [4] and [5]. Islam et al. [4] modifies the cascaded AdaBoost 

approach to detect the ear from 2D profile images in a learning method by using a 

training data of ear images. They report good results on large size databases. However 

if the ear image is rotated with the respect to the training data or if its appearance is 

different from the ears in the training data, their method could fail to detect the ear, 

because the training data does not contain example test data in such cases. Forming a 

database of rotated ears will require much more storage than that required for a tech-

nique which is inherently immune to change in feature orientation. Arbab-Zavar et al. 

[5] propose an ear detection algorithm based on the elliptical shape of the ear by using 

a Hough transform. Their method is robust with occlusion; however their ear detection 

algorithm only works under some specific conditions applied to the images of the 

database to avoid errors caused by the presence of nose and/ or spectacles. 

We contend that it is prudent to continue investigating approaches which consider 

the ear as a planar surface. This will allow for application in access control and sur-

veillance, and for acquisition from documents. The ear plane is not aligned to that of 

the head, but it is chosen as such we can consider the ear to be on a flat surface. For 

ear detection, we shall need to locate the ear in a profile image automatically with an 

algorithm which is robust at the presence of noise. It therefore appears appropriate to 

investigate a technique which depends on the general structure of the ear. 

We employ a bank of banana wavelets, which are generalized Gabor wavelets, to 

extract curvilinear structures. In addition to the frequency and orientation, banana 

wavelets are also characterized with properties associated with the bending and curva-

ture of the filter. The ear is an image structure mainly contains features which are 

similar to those of banana wavelets. These features then appear well matched to the 

general structure of the ear which has many curvilinear structures, particularly in the 

region of the helix (the uppermost part of the ear) and the tragus (which are the lower 

parts). 

This paper is structured as follows. Section 2 gives a brief background on banana 

wavelet filters. Section 3 describes our new technique to detect the ear. The extraction 

results are provided in section 4. Finally, the conclusions are presented in section 5. 

2 Banana Wavelets 

Banana wavelets are a generalization of Gabor wavelets and are localized filters de-

rived from a mother wavelet [9], particularly suited to curvilinear structures. 



A banana wavelet bB is parameterized by a vector b  of four variables, i.e. 

 scf ,,,b  where f ,  , c and s  are frequency, orientation, curvature, and size 

respectively. This filter is built from a rotated and curved complex wave function 

 yxF ,b
 and a Gaussian  yxG ,

b
 function rotated and curved in the same way as 

 yxF ,b
 [9]: 
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Any image can be represented by the banana wavelet transform allowing the de-

scription of both spatial frequency structure and spatial relations. The convolution of 

the image with complex banana filters with different frequencies, orientations, curva-

tures, and sizes, captures the local structure points of an object. 

3 Ear Detection 

We argue that any ear contains curvilinear structures such as helix, anti-helix and 

inter-tragic notch. The essence of our ear detection technique is to initially calculate 

the magnitude of the filter responses  bx0 ,AI by convolving a banana wavelet bB  

with an image I and then to find the positions where this magnitude has local maxima, 

i.e.: 
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where     00 *, xbx
b IBFI   and 0x  is the position of a pixel in an input image I . A 

banana wavelet bB produces a strong response at pixel position 0x  when the local 

structure of the image at that pixel position is similar to bB . An input ear image and 

the response magnitudes, which are calculated by convolving the input image with the 

filters depicted in Fig. 1, are shown in Fig. 2. In this figure, white pixels represent high 

values in the response magnitudes. Therefore there are local maxima (highlighted) at 

those positions where ear has similar curvature, orientation, and size to those of the 

corresponding banana wavelet. 
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Fig. 1. (a)-(h) 8 filters used in this work 
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Fig. 2. (a) Input image, and (b)-(i) after convolution with 8 banana filters. 

A position of interest is selected by considering two conditions: i) the response 

magnitude has to represent a local maximum ( 1 Q ) and ii) its value should be greater 

than a certain threshold ( 2 Q ):  
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and length of side w . 

In addition to the conditions (Q1) and (Q2), the spatial arrangement of the positions 

of local maxima should match a template representing the ear structure (Fig. 3 illu-



strates this template). Locations of the local structure points in this template are gener-

al for any ear. For example, the convolution of filter 4 with any ear, produces a strong 

response at the top middle part as illustrated in Fig. 2-e. 

 

 

 

Fig. 3. The ear template Fig. 4. Regions of interest 

To reduce computational burden, the ear detection process starts with a coarse 

search by applying the banana wavelets to the whole image to extract the regions of 

interest containing curved lines in order to perform a finer search for the ear within 

these regions (Fig. 4). These regions are much smaller than the whole image and 

therefore the fine search performed by applying the banana wavelets to these regions, 

requires less computational demand. 

In the fine search, the regions of interest are divided into a group of smaller neigh-

borhoods and convolved with a bank of banana filters (8 filters in this paper are cho-

sen, as shown in Fig. 1) to calculate positions corresponding to local maxima in each 

neighborhood. The neighborhood with maximum number of positions matching the 

ear template and meeting conditions (Q1) and (Q2) is considered as the neighborhood 

containing the ear. In the case that many overlapping neighborhood windows are de-

tected, only one region is selected which contains maximum percentage of overlapped 

windows. Our technique is generic and applicable to any database. The parameters of 

the 8 filters are chosen by experiments (Table 1). R and C in the table are the number 

of rows and columns of the banana wavelet filters, respectively, which are used in the 

convolution process between banana wavelet filters and the image. 

Table 1. Parameter Settings for the Banana Wavelets 

 f    c  s  R  C  

Filter 1 0.05 4/  0.1 1 50 50 

Filter 2 0.28 2/  0.05 1 30 15 

Filter 3 0.28 4/3  0.05 1 30 30 

Filter 4 0.28   0.05 1 30 50 

Filter 5 0.28 4/5  0.05 1 30 30 

Filter 6 0.28 2/3  0.02 1 50 30 

Filter 7 0.28 4/7  0.03 1 30 30 

Filter 8 0.28 2  0.05 1 20 40 



4 Results 

Our primary purpose is to evaluate success in ear detection. The efficiency of banana 

wavelet technique is tested using a database of 2D images selected from the XM2VTS 

face profile database [10]. Our database consists of 252 images from 63 individuals 

with four images per person collected during four different sessions over a period of 

five months to ensure the natural variation between the images of the same person. 

The images selected are those where the whole ear is visible in a 720×576 24-bit im-

age. The ears in the database are not occluded by hair but there are few images with 

some occlusion by earrings. This is the same subset of the XM2VTS face profile data-

base used by Hurley et al. [11] and Arbab-Zavar et al. [5]. 

The new technique correctly detects all the ears in the images in the database (the 

detection rate was 100%). Some results of detection using banana wavelets are shown 

in Fig. 5. The system is fully automatic and it does not require any manual interference 

for ear detection. As such the approach appears suitable for real time biometric appli-

cations. The parameters used in these results are 1x ,  2y , 08.0 ,  

8.1 , and 7w . 

Banana wavelet filters can capture the curved structures better than Gabor wavelet 

filters. To show this, Gabor wavelet technique is applied to the same subset of the 

XM2VTS face profile database with the same filter sizes, orientations and frequencies 

as those of banana wavelet filters (the same parameters in Table 1, except that curva-

ture c was set to zero). The detection rate obtained by Gabor wavelets is 97.2%. 

Banana wavelet technique is robust to degradation of images such as the motion 

blur, partly shown in Fig. 5-a. It is also accurate and robust to some rotations (note the 

large subject rotation in Fig. 5-b). In addition to that, the technique is robust at pres-

ence of earrings and/or glasses, as shown in Fig. 5-c. 

 

   

   

(a) Blurred ear (b) Rotated ear (c) Ear occluded by earrings 

 

Fig. 5. Samples of ear detection using our technique 



It also appears robust to noise. The accuracy of detection in presence of noise is 

more than 98% when the noise standard deviation   is quite high. These results are 

illustrated in Fig. 6. Here, images are contaminated by additive zero mean Gaussian 

noise with various noise variances. Here, the technique is successful until   = 500 in 

which case a region containing the eye is erroneously selected (see Fig. 6-f). 

 

 

(a) 0% noise 

 

(b)   = 100 

 

(c)   = 200 

 

(d)   = 300 

 

(e)   = 400 

 

(f)   = 500 

Fig. 6. Samples for the results at presence of noise 

The results of the noise analysis are provided in Fig. 7. Here, for noise-free images 

the detection rate is 100%. As expected, the detection rate drops with increasing noise. 

The analysis of the database is shown in Fig. 7 where at   = 100 the recognition rate 

is still above 98% but this drops to under 80% when   = 200. This is actually quite a 

severe level of noise, as shown in Fig. 6-c. In much worse cases, i.e., beyond the level 

experienced in surveillance video footage, as shown in Fig. 6-f detection rate drops to 

about 10%. The graph also shows the performance of the Gabor wavelet. As the noise 

increases, the advantages associated with using curvature become masked by the noise 

and in cases of severe noise the Gabor wavelet is more successful than the banana 

wavelets. 

We also apply banana wavelet technique to detect the ears from a new database 

[12] from which a selection of images is shown in Fig. 8. The advantage of this data-

base is that, it has a lot of variations of ear orientation, size, color skin, and lighting 

condition, allowing investigation of the performance of our technique on a data ac-

quired in a more realistic scenario (see Fig. 8). The database is acquired as subjects 

walk past a camera triggered by a light beam signal, and other biometrics are acquired 

at the same time. As the acquisition is largely uncontrolled, subjects sometimes 

present the whole head without occlusion and other combination with partial or large 

occlusion, and partial or sometimes the head is even absent. 
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Fig. 7. Detection rate for banana wavelets technique and Gabor wavelets 

technique in the presence of noise 

Table 2 shows the results of applying banana wavelet technique to the new data-

base. The same parameters determined by analysis of the XM2VTS database are used 

in this analysis. As such, the approach is not tuned for this new database (and scena-

rio) and it is likely that these results could be improved further.  We do believe that 

the structure of the results will remain similar, in that some subjects’ ears will remain 

concealed by hair, and that in a walk-through scenarios it is difficult to acquire images 

which consistently capture the whole ear. 

 

     

     

(a) Group A (b) Group B (c) Group C (d) Group D (e) Group E 

Fig. 8. Samples from the new database: (a)-(e) show the groups according to Table 2  



 
Table 2. Results of applying banana wavelet filters to the new database 

 Number of samples Success ear detection 

Group A: whole head, no occlusion 885 85% 

Group B: whole head, small occlusion 308 65.3% 

Group C: partial head, no occlusion 653 79% 

Group D: partial head, small occlusion 208 44.7% 

Group E: large occlusion 383 17.8% 

5 Conclusions 

This paper demonstrates how banana wavelets can be used to find the ear from head 

profile images for biometric purposes. The complexity of the task has been reflected 

in the fact that ear images can vary in appearance under different viewing and illumi-

nation conditions. The experiments show that the system is effective for ear detection, 

which the proposed technique correctly detects all the test images selected from the 

XM2VTS database. The technique accrues advantages of noise tolerance and relative 

immunity to noise. It does not depend on a controlled lighting conditions or skin col-

or; it therefore appears suitable for general applications. The technique proposed here 

is applied to a more complex database which the acquisition of this database is largely 

uncontrolled. The result of the ear detection for the new database is good enough 

according to the uncontrolled conditions, and shows the expected performance in 

occlusion. The performance of the banana wavelets technique is compared with that of 

Gabor wavelets technique which shows that banana wavelets can capture the curved 

structures better than Gabor wavelets. Finally, the technique proposed here is fully 

automated and does not require any help to detect the ear. The success of our tech-

nique relies on the fact that the selected curvilinear structures are general for any ear. 

We look forward to using this new approach as a primer for recognition purposes. 
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