
A Platform-Based Software Design Methodology for Embedded Control
Systems: An Agile Toolkit

Lucas Cordeiro1,2, Carlos Mar1, Eduardo Valentin1,4, Fabiano Cruz1,4

Daniel Patrick1, Raimundo Barreto1, and Vicente Lucena3

1Departamento de Ciência da Computação - Universidade Federal do Amazonas (UFAM), Brazil
{caam, dpp, rbarreto}@dcc.ufam.edu.br

2Centro de Ciências, Tecnologia e Inovação do Pólo Industrial de Manaus (CTPIM), Brazil
lucas@ctpim.org.br

3Centro de P&D em Tecnologia Eletrônica e da Informação (CETELI/UFAM), Brazil
vicente@ufam.edu.br

4Instituto Nokia de Tecnologia (INdT), Brazil
{eduardo.valentin, fabiano.cruz}@indt.org.br

Abstract

A discrete control system, with stringent hardware con-
straints, is effectively an embedded real-time system and
hence requires a rigorous methodology to develop the soft-
ware involved. The development methodology proposed in
this paper adapts agile principles and patterns to support
the building of embedded control systems, focusing on the
issues relating to a system’s constraints and safety. Strong
unit testing, to ensure correctness, including the satisfac-
tion of timing constraints, is the foundation of the proposed
methodology. A platform-based design approach is used
to balance costs and time-to-market in relation to perfor-
mance and functionality constraints. It is concluded that
the proposed methodology significantly reduces design time
and costs, as well as leading to better software modularity
and reliability.

1 Introduction

Embedded computer systems are used in a wide range
of systems from machine condition monitoring to airbag
control systems. As the system complexity increases, its
development lifecycle is also affected. Because of that, sys-
tem development methodologies must be applied in order to
manage the team size, the product requirement (scope), and
to meet the project’s constraints (time-to-market and costs).
Furthermore, embedded software (ESW) plays an important

role in this kind of system mainly due to its flexibility and
consequently to overcome the time-to-market pressure.

Nevertheless, many development methodologies that are
used to produce software that runs on the personal comput-
ers (PCs) are not appropriate for developing discrete control
systems. These devices share common characteristics with
typical embedded real-time systems, i.e. they have a data
acquisition stage, the application of a complex control al-
gorithm, followed by output of a result. The correctness of
these systems depend not only on the results, but also on the
time in which these results are produced [11].

Therefore, this kind of system contains very different
characteristics such as dedicated hardware and software,
and constraints that are not common to PCs based systems
(e.g., energy consumption, execution time, memory foot-
print). In addition, severe coding errors such as implemen-
tation of finite-state machine (FSM), stack/memory over-
flow, and timing must be avoided when designing the ESW.
Another important point is that some embedded control sys-
tems may put lives at risk (mission criticality) if some fail-
ure occurs. Therefore, definitively, these systems should be
treated differently from the case where the only cost of fail-
ure is the project’s investment.

Based on this context, we propose a platform-based soft-
ware design methodology based on the agile principles such
as adaptive planning, flexibility, iterative and incremental
approach in order to make the development of embedded
control software easier. To achieve that, this methodology
is composed by practices from Software Engineering and
Agile methods (Scrum and XP) which aim at minimizing



the main problems present on the software development
context (i.e. requirement volatility and risk management),
and by others practices that are needed to achieve hard-
ware and software development (i.e. platform-based de-
sign [23]). With this goal in mind, we also focus our atten-
tion on hardware-bound embedded software that imposes
several challenges to the software design methodology (e.g.,
real-time and code size).

The remainder of this paper is organized as follows: Sec-
tion 2 summarizes the related works. Section 3 is concerned
with describing the proposed agile development methodo-
logy and its main components (processes, lifecycle, roles
and responsibilities). Section 4 shows the application of the
proposed methodology by focusing on the processes that
were applied to the digital soft-starter and induction mo-
tor simulator prototypes. Section 5 shows the experimen-
tal results of our proposed methodology. Finally, section 6
summarizes this paper and identifies the next steps of this
research.

2 Related Works

There are several works about agile development
methodologies for embedded systems. However, there is
an interesting paper that describes the experience of apply-
ing Agile approaches to the development of firmware for
the Intel Itanium processor family [8]. In this paper, they
identified the agile practices that the Intel team successfully
applied, but they did not take into account the hardware re-
lated development. Moreover, this work did not mention
how to address the non-functional requirements (e.g., code
size and real-time) and did not provide any experimental
results of their work.

Manhart and Schneider [13] also related a successful in-
dustrial experience when partially adopting agile methods
in the production of software for embedded systems. In-
deed, they made slight modifications in a well established
software development process for the automotive branch
adopting some agile elements in order to adequate their pro-
cess to new needs as flexibility and high speed software pro-
duction. As pointed out in the paper many other application
areas may benefit from their experiments, nevertheless the
authors did not present any measurement results that could
prove their expectations.

A very interesting paper that describes the experience of
applying agile test techniques to ESW is presented in [17].
In this paper, the authors focus on the test techniques that
were applied to a mobile spectrometer, using a newly de-
veloped proprietary technology. In another paper, Koss and
Langr propose some adaptations of test techniques used in
object oriented (OO) programming languages to ESW writ-
ten in C language [12]. There is also an interesting work
that describes the application of Extreme Programming’s

test driven development to embedded systems featuring cus-
tom hardware and software designs [6]. In this paper, an
agile method for testing embedded systems using existing
software test frameworks and methodology is presented.

The conceptual framework proposed by Ronkainen e
Abrahamsson, evaluate the possibility to use agile devel-
opment practices in embedded software environment [16].
Therefore, they define requirements for new agile methods
which include (i) special emphasis on hardware/software ar-
chitecture, (ii) refactoring must be integrated into the con-
figuration management system, (iii) techniques to measure
the code mature in different development phase, and (iv)
techniques to design test cases that take into account not
only the correctness but also the timeliness of the applica-
tion. Although this paper is totally conceptual, the require-
ments for new agile methods served as basis for our pro-
posed methodology.

Vicentelli and Martin propose a rigorous methodology
that aims to (i) deal with integration problems among intel-
lectual property (IP) creators, semiconductor vendors, and
design house, (ii) consider metrics to measure embedded
system design, (iii) work from conception to software im-
plementation, and (iv) favor reuse by identifying require-
ments for real plug-and-play operation [23]. Nevertheless,
they did not provide any concrete guidance and they rely
on abstract rules of thumb only. Although the methodology
proposed by them is totally conceptual, it also served as ba-
sis for the development of our proposed methodology.

The hardware/software co-design methodology pro-
posed by Gajski [7] aims to develop embedded systems by
formally describing the system’s functionalities in an exe-
cutable language rather than a natural language. The ex-
ecutable specification is refined through the system-design
tasks of allocation, partition, and refinement. Estimators
are also used in order to explore design alternatives. How-
ever, this methodology does not provide any project man-
agement activity and assumes that most of the requirements
are captured before applying the partitioning algorithms.

From the point of view of embedded software design
methodologies, the proposed work aims to: (i) tradeoff flex-
ibility and performance by adopting highly programmable
platforms, (ii) adopt processes and practices to develop
ESW that is under stringent hardware constraints, (iii) sup-
port a software driven hardware development approach
through a comprehensive flow from specification to imple-
mentation, (iv) propose test techniques in a combination we
have not seen before, (v) make use of the iterative and incre-
mental approach in order to offer clearly an iterative process
where the designer can validate the system specification,
and (vi) provide experimental results of the application of
the proposed methodology in the embedded control systems
domain.

The next section describes the proposed methodology



and its main components (processes, lifecycle, and roles).

3 Proposed Development Methodology

The proposed methodology aims to define roles and res-
ponsibilities and provide processes, lifecycle, practices and
tools to be applied in embedded real-time system projects.
It contains three different processes groups that should
be used during the system development: system platform,
product development and management.

The system platform processes group aims to instantiate
the platform for a given product. It means that the system
designer must choose the system components that will be
part of the architecture and API platforms from a platform
library. After that, the system designer has still the pos-
sibility to customize the architecture and API platforms in
order to meet the application constraints. The customiza-
tion process is carried out by programming the designer-
configurable processors and runtime-reconfigurable logic
integrated into the platform. The customization process is
carried out by successive refinements in an iterative and in-
cremental way into the proposed methodology.

The product development processes group offers prac-
tices to develop the application’s components and integrate
them into the platform. The functionalities which make up
the product are partitioned into either hardware or software
elements of the platform. Our partitioning algorithms used
to carry out this task take into account the energy consump-
tion, execution time, and memory size of the application’s
components. In addition, the partitioning technique is also
applied in an iterative and incremental way. The mechani-
cal design is also part of this processes group, but it is out
of the scope of this paper.

In addition to that, this processes group aims to apply a
novel test design approach in order to improve the system’s
coverage by stressing and covering variables and function
calls in ESW. As depicted in Figure 1, this approach focuses
on designing firstly the unit and functional tests before re-
ally implementing the application’s code. The application’s
code is implemented by making use of the API platform
which provides a unique abstract representation of the ar-
chitecture platform through the software layer.

From the application’s code, the formal translator con-
verts it to a formal model with the purpose of allowing an
embedded software engineer to verify that certain safety
properties hold in the model (by using temporal logic for-
mulas and model checking). Furthermore, if the model does
not satisfy the specification then a counter-example is gen-
erated which is included into the test suite and after that it
is used to adjust the application’s code. Analysis of per-
formance and energy consumption are carried out using the
instruction set architecture (ISA) of the platform. This anal-
ysis is mainly based on the unit and functional tests to sim-

Figure 1. Test Design Approach.

ulate the system’s behavior and ensure that constraints are
satisfied during the development cycle.

The product scope, time, quality, and costs parameters
are monitored and controlled by the product management
processes group. These parameters also influence the sys-
tem platform and product development processes groups.
When the project starts with an infeasible project plan
which needs corrective actions to be carried out then this
processes group aims to get the project back on the track
and ensure that the project’s parameters are met. The prod-
uct management processes group consists of the practices
promoted by the Scrum agile method as well as the agile
patterns described in [3, 18].

It is important to point out that the processes of the me-
thodology were proposed in order to cover the system de-
velopment lifecycle as described by [1]. Therefore, the
main motivations of the proposed methodology include, but
are not strictly limited to provide: (i) a full lifecycle cov-
erage, (ii) project management activities, (iii) flexibility,
(iv) means to address the non-functional requirements, (v) a
software driven hardware development approach, (vi) con-
crete guidance of the processes, and (vii) experimental re-
sults. The next subsections are concerned with describing
the processes groups, roles and responsibilities, and the pro-
cesses lifecycle of the proposed methodology.

3.1 System Platform Processes Group

The system platform processes group is composed of
the following processes: product requirements, system plat-
form, product line, and system optimization. Figure 2



depicts the processes that are related to system platform
processes group. The product requirements process aims
to obtain the system’s requirements (functional and non-
functional) that are relevant to determine the system plat-
form in which the product will be built. The platform in-
stance process helps the development team define the sys-
tem platform by making use of a set of design tools and
benchmarks.

Figure 2. System Platform Processes Group.

After defining the system platform, the product line pro-
cess helps the development team setup the repository in
which the system platform components will be available to
the product development. This process also allows the de-
velopment team to implement and integrate system’s func-
tionalities into the system and release new product versions
into the market. After implementing and integrating the
system’s functionalities into the product development line,
the system optimization process provides activities to ensure
that system’s variables such as execution time, energy con-
sumption, program size and data memory size satisfy the
application constraints.

3.2 Product Development Processes
Group

The product development processes group is composed
of the following processes: functionality implementation,
task integration, system refactoring, and system optimiza-
tion. Figure 3 depicts the processes that are related to prod-
uct development processes group. The functionality imple-
mentation process ensures that test cases are created for ev-
ery product’s functionality. This process helps increase the
product quality and reduce the creation of complex func-
tions. Moreover, it also helps create a comprehensive test
suite for testing and validating that the API Platform layer
will function properly for the software applications by mak-
ing use of verification techniques (e.g., model checking).

The task integration process provides means to integrate
new implemented functionalities into the development line
of the product without forcing the other team members
to work around it. The system refactoring process helps
the development team identifies opportunity to improve the
code and changing it without altering its external behavior.
After refactoring the code, the system optimization process

Figure 3. Product Development Processes
Group.

allows the development team to optimize small part of the
code by making use of profiler tools that monitor the pro-
gram and tells where, for instance, it is consuming time,
energy, and memory space [15]. This process guarantees
that software metrics meets the system constraints.

3.3 Product Management Processes
Group

The product management processes group is composed
of the following processes: product requirements, project
management, bug tracking, sprint requirements, product
line, and implementation priority. Figure 4 depicts the pro-
cesses that are related to product management processes
group. The product requirements process (that also belongs
to the system platform processes group) aims to obtain the
system’s requirements (functional and non-functional) that
must be part of the product. The project management pro-
cess allows the development team to implement the sys-
tem’s requirements by managing the product and sprint
backlog, coordinating activities, generating system’s build,
and tracking the product’s bug.

Figure 4. Product Management Processes
Group.

The bug tracking process allows the product leader to
manage the lifecycle of the project’s issues (bug, task, and



enhancement) and provide the needed information about
the product quality through the release notes for the end
user. The sprint requirements process allows the develop-
ment team to analyze, evaluate, and estimate the system’s
functionalities before starting a new project’s sprint. This
information is included into the sprint backlog which will
help the development team partition the system function-
alities into either hardware or software before starting the
sprint.

The product line process guarantees that the system
functionalities implemented during the sprint will be inte-
grated into the product development line. This process also
helps the development team to release new product versions
into the market. The implementation priority process helps
the product leader manage any kind of interruptions that
may impact the project’s goals. This process guarantees that
the project’s tasks are 100 percent completed after initiated.

3.4 Roles and Responsibilities

The proposed methodology involves four different roles
and the responsibility of each role is described as follows:

Platform Owner: Platform owner is the person who
is officially responsible for the products that derive from
a given platform. This person is responsible for defining
quality, schedule and costs targets of the product. He/she
must also create and prioritize the product backlog, choose
the goals for the sprints, and review the product with the
stakeholders.

Product Leader: Product leader is responsible for the
implementation, integration and test of the product ensur-
ing that quality, schedule, and cost targets defined by the
platform owner are met. He/she is also responsible for me-
diating between management and development team as well
as listening to progress and removes block points.

Feature Leader: Feature leader is responsible for man-
aging, controlling and coordinating subsystem projects,
pre-integration projects, external suppliers that contribute
to a defined set of features. The feature leader also tracks
the progress and status of the feature development (deliv-
erables, integration and test status, defects, and change re-
quests) and reports the status to the product leader.

Development Team: The development team which may
consist of programmers, architects, and testers are responsi-
ble for working on the product development. They have the
authority to make any decisions, do whatever is necessary
to do (according to the project’s guidelines), and ask for any
block points to be removed.

If the product to be developed is small, i.e. it is com-
posed of few components (less than 50 KLOC) and does
not require other development teams to implement the prod-
uct’s functionalities then one product leader and the de-
velopment team are enough for the product development.

On the other hand, if the product is composed by several
components (more than 50 KLOC) and requires other de-
velopment teams to implement the product’s functionali-
ties then the Feature Leader role must be involved in the
processes. In this context, one product leader requires fea-
ture leaders to manage, control and coordinate components’
projects. Therefore, for medium and larger projects, one
product leader and several feature leaders and development
teams may be involved in the processes.

3.5 Processes Lifecycle

The proposed agile methodology consists of five phases:
Exploration, Planning, Development, Release, and Mainte-
nance. In the Exploration phase, the customers provide re-
quirements for the first product release. These requirements
are included into the product backlog by the platform owner.
After that, the platform owner and product leader estimate
the requirements with no item larger than 3 person-days of
effort. In this phase, the development team identifies the
platform and application constraints and estimates the sys-
tem’s metrics based on the product backlog items. With this
information at hand, the development team is able to define
the system platform that will be used to develop the product
in the next phases.

In the Planning phase, the platform owner and customers
identify more requirements and prioritize the product back-
log. After that, the development team spends one day to
estimate the sprint backlog items and decompose them into
tasks. The tasks that make up the sprint backlog must take
from 1 to 16 hours to be completed. Explanatory design and
prototypes may also be developed at this phase in order to
help clarify the system’s requirements.

In the development phase, the team members implement
new functionalities and enhance the system based on the
items of the sprint backlog. The daily meetings are held
at the same time and place with the purpose of monitoring
and adapting the activities to produce the desired outcomes.
At the end of the each iteration, unit and functional tests
are executed in a continuous integration build. System opti-
mization also takes place during this phase. The last sprint
provides the product to be deployed in the operational envi-
ronment.

In the Release phase, the product is installed and put into
practical use. During this phase, it usually involves the iden-
tification of errors and enhancement in the system services.
Therefore, the platform owner and customers decide if these
changes will be included in the current or subsequent re-
lease. This phase aims to deliver the release product and
needed documentation to the customer. The Maintenance
phase may also require more sprints in order to implement
new features, enhancement and bug fixes raised in the re-
lease phase.



The next subsections describe only a subset of processes
of the proposed methodology that focuses on achieving the
aims of the embedded control systems. A detailed descrip-
tion of all processes of our proposed methodology is public
available for downloading at [4].

4 Applying the Proposed Methodology

This section is concerned with describing the applica-
tion of the proposed methodology in the development of
the digital soft-starter and induction motor simulator equip-
ments. We chose these equipments as case studies because
they impose several challenges to develop the ESW that is
under stringent hardware requirements (e.g., real-time and
code size) and also require a close interaction among the
engineers in order to develop the products.

Both projects were split into 2 different sprints and de-
veloped by four embedded system engineers (each project
had two engineers), one product leader, and one platform
owner. The ESW of the digital soft-starter and induc-
tion motor simulator were implemented using the proposed
methodology described in Section 3. Furthermore, these
equipments were built using two development platforms.

The architecture platform for both projects contains
a RS-232 serial converter, a microcontroller AT89S8253
which has an 8051-like architecture with code and data me-
mory integrated on a chip, a real-time clock PCF8583, four
channels of A/D converter and one channel of D/A con-
verter. Additionally the platform has 12 KB of flash me-
mory and 32 KB of RAM. The communication between the
converters and the ESW is carried out by the communica-
tion protocol I2C [19].

We chose this platform for both projects because it has
already a set of interconnected HW/SW components that to-
gether implements a set of functionalities and decreases sig-
nificantly the development speed and costs. It is important
to point out that after applying the proposed methodology,
the final hardware configuration of the digital soft-starter
equipment dispensed one channel of D/A converter, three
channels of A/D converter, and 32 KB of external RAM in
order to reduce production costs.

Generally speaking, the digital soft-starter is an equip-
ment that makes use of an efficient method for starting mo-
tors. Therefore, the main system’s requirements that were
implemented to the digital soft-starter include: (i) the sys-
tem should be able to automatically control the start of the
induction motor, (ii) the system should read the voltage
signal provided by the sensor through an analog-to-digital
converter, (iii) the PWM signal generated by the micro-
controller should meet all timing requirements of the appli-
cation, and (iv) the user interface of the equipment should
have a keyboard and a graphical display.

In order to validate the digital soft-starter equipment and

also the proposed methodology, we constructed an induc-
tion motor simulator. In general, the main characteristics
implemented for our induction motor simulator include:
(i) the system should simulate the behavior of the motor
through a mathematical model; (ii) the system should repro-
duce the supplied PWM signal through I/O micro-controller
ports; (iii) the system should calculate and show in the dis-
play the voltage and current values based on the PWM sig-
nals supplied by the soft-starter; and (iv) a man-machine
interface (display and keyboard) should be available in the
final solution.

The next subsections describe the processes of the pro-
posed methodology and the build infrastructure.

4.1 Process for Managing the Product Re-
quirements

This process helped us identify the market needs for the
digital soft-starter product line and manage the product re-
quirements. At the beginning of the project, we arranged
a brainstorming meeting in order to capture high-level re-
quirements of the product. After that, we created an ini-
tial product backlog with the purpose of capturing more re-
quirements and creating a first product prototype.

The first project iteration allowed us to answer ques-
tions such as whether the technology needed for the sys-
tem exists, how difficult it would be, check the platform
performance from different vendors, and implement a cou-
ple of system’s functionalities. In further iterations, we
implemented more system’s requirements by focusing on
the items with highest business values (the business values
range from 1 lowest to 5 highest). After that, the final con-
figuration of our development platform would dispense un-
needed components and combine everything on one board
for economical production costs.

As a requirement management strategy, we put much
emphasis on delivering the system’s functionalities (i), (ii),
and (iii) in the beginning of the sprints for the digital soft-
starter project and system’s functionalities (i) and (iii) for
the motor simulator project. Delivering these functionali-
ties with highest business value, helped our customer and
platform owner get feedback on functionality earlier and al-
low them to spot any misunderstanding more quickly. At
the end of each iteration, the product leader and customer
verified if the product was still feasible or not. If the project
would not be feasible then it could be canceled just after the
end of the iteration (risk management).

4.2 Process for Managing the Project

This process helped us refine and prioritize the product
backlog that contains the system’s functionalities. In the
sprint planning, the product leader and our customer chose



the goals of the next sprint based on the highest business
value and risks of the product backlog items. After that, we
had a meeting to consider how to achieve the sprint’s goals
and to create the sprint backlog. The sprint backlog should
contain only tasks in the 4-16 hour range in order to make
the management activities easier (risk reduction).

During the system development, the sprint backlog was
updated regularly as the activities were being accomplished.
The product leader held two meetings per week with the
team members in order to monitor and control the comple-
xity of the tasks. These daily meetings provided a great
feedback to the product leader and created the habit of shar-
ing the knowledge. After starting the sprint, we imple-
mented first the functional requirements and then focused
on the non-functional requirements of the system. This ap-
proach helped us obtain better optimization results because
we optimized the global system instead of only parts of the
system which sometimes might not lead to the global opti-
mization [5].

During this phase, system’s builds were also generated
on a weekly basis which helped our customer clarify the
requirements and asses the risks earlier in the development
process. At the end of the sprint, the product leader and
development team showed the results of the work to the
customers. This meeting aimed to present the product in-
crement, technology and business situation. These artifacts
helped the product leader and customers decide the goals of
the next sprint. In addition, after each sprint review there
was a retrospective meeting which had the purpose of col-
lecting the best practices used in the sprint and identifying
what could be improved for the next sprint.

4.3 Process for Implementing New Sys-
tem’s Functionalities

This process supported us for implementing the system’s
functionalities of the digital soft-starter and induction mo-
tor simulator prototypes in a systematic way. According to
the business value of the systems functionalities defined in
the Section 4, we started implementing the requirements re-
sponsible for generating and handling the PWM signals. In
order to implement these systems functionalities, we strove
to write first the unit test for each stage of computation.
However, this kind of activity required certain level of expe-
rience from the embedded system engineers. Nonetheless,
we had to successfully compile the unit test before really
writing the functionality’s code.

In order to test each computation stage of the systems’
functionalities, we had to run the ESW on the PC and target
platform. We used this approach throughout the develop-
ment cycle in order to avoid debugging hardware and soft-
ware simultaneously. By running the ESW on the PC plat-
form, we could exercise all code paths and gain confidence

in our code before running it on the target platform. An-
other way to gain confidence in the code is to use the JTAG
debug capability.

After that, we could run the ESW on the target platform
to verify the application’s timeliness. For both projects, we
created data files on the PC that had all possible parameters
combinations that make sense for the system’s functions in-
puts. In this way, we could provide these data to our unit
tests to exercise the code’s paths of the functions. The unit
tests created to the digital soft-starter and induction motor
simulator were developed by using the embUnit framework
test tool [21].

For those software components that touch the hardware,
we just used the #if and #else statements while running
the ESW on the PC platform. Later on, we developed and
run application tests on the target platform in order to stress
the hardware dependent code. To implement all systems’
functionalities, we followed the product’s coding standard
defined at the beginning of the project with the purpose
of keeping consistence throughout the systems’ code. An
important point to take into account is that if there is the
need for splitting a given system’s functionality into differ-
ent functions then the unit tests should be created for each
system’s function.

4.4 Process for Refactoring the Code

After implementing the system’s functionalities, we
identified in further sprints opportunities to improve an ex-
isting code. For instance, we identified during the digital
soft-starter and induction motor simulator projects that the
functionalities could be split into different modules. More-
over, we also identified duplicated code in both projects.
Therefore, the application of this process led to elimina-
tion of duplicated code, reduction of the amount of system’s
functions, and improve the system performance. However,
before improving the code for those tasks in common, we
first created branches in the system repository for not break-
ing an existing working code.

After that, we verified if there was some need for updat-
ing the unit tests of the functionality. If there was no need to
update the unit tests then we could start improving the code
without altering its external behavior. After refactoring the
code, we run the unit tests in order to verify if the changes
were working correctly. If there was no compilation pro-
blem and the unit tests would not fail then we could inte-
grate our changes into the product development line. After
integrating the code, the regression tests could also be run
in order to check if there was no compilation and semantic
problems. If there was no problem then the refactoring was
completed.



4.5 Process for Managing the Product
Line

This process allowed us to set up the system reposi-
tory by populating it with the system platform components
which consists of the API platform. Collection of com-
ponents that comprises the architecture platform were also
chosen based on the application constraint’s. The repository
contained only the system components that were needed
to derive new product lines. In other words, the devel-
opment team derived the product line (or the platform in-
stance) from the platform just by choosing a set of compo-
nents from the platform library or by setting parameters of
the library’s reconfigurable components.

After that, they created in the system repository the de-
velopment line in which the product would be built. This
product development line allowed the team members to de-
velop and optimize the product components. In order to
implement new system’s tasks (which may include new re-
quirements, enhancements and bug fixes), each team mem-
ber should create a branch in the product development line.
This branch would help the team member implement the
task without forcing other team members to work around
it. After implementing and optimizing all system’s compo-
nents that make up the product, the development team could
create a release branch of the product with the purpose of
not interfering with the current system development.

4.6 Build Infrastructure and Tools

Figure 5 shows our proposed build infrastructure that
aims to support the processes of our proposed methodo-
logy. This infrastructure allows the team members to inte-
grate new tasks into the system and hence manage the prod-
uct development line as described in Subsection 4.5. The
CVS repository has the purpose of controlling the system’s
code version. In our projects, this repository is hosted in the
sourceforge website and can be accessed at [14].

Our proposed build infrastructure for continuous test and
integration works as follows: (i) firstly we must check out
the code that is in the repository to a local workspace.
Therefore, it allows us to implement new system’ function-
alities, fix bugs and improve the system’ code. Moreover,
we are also able to generate new product’ builds in the lo-
cal repository. (ii) after implementing and testing the code
by following the activities described in the Subsections 4.3
and 4.4, we can make the code available in the repository.

(iii) After that, the Cruise Control tool looks for code
modifications in the repository. If the file date/time changes
then the Cruise Control starts the build process in an auto-
mated way. If there is a compliation error then Cruise Con-
trol tool sends an e-mail to the person responsible for break-
ing the code. Otherwise, it generates the .hex file that will

Figure 5. Continuous test and integration
process.

be loaded into the flash memory of the embedded device
and it also runs other tools (e.g., CCCC and EmbUnit) in
order to capture the metrics and test the code. The next sub-
section describes the experimental results of our proposed
methodology applied to the digital soft-starter and induc-
tion motor.

5 Experimental Results

In this section we present the results of our proposed
methodology. As described in Section 4.1, we created a
list of new features and requirements in order to gather all
our needs (product backlog). Based on the business value,
we chose from the product backlog a set of features and
requirements to be implemented in the project’s sprints.
Therefore, we put much emphasis on delivering the systems
functionalities with highest business value in the beginning
of the sprints. Table 1 shows the measured effort, busi-
ness value, and development speed for each sprint of both
projects.

Table 1. Measured Effort (in hours)
Sprint 1 Sprint 2

Digital Soft-Starter − −
Measured Effort 70 84

Business value 11 16
Sprint Velocity 0.1571 0.1904

Motor Simulator − −
Measured Effort 125 219

Business value 13 21
Sprint Velocity 0.104 0.0958

As can be seen in Table 1, the sprint velocity of the soft-



starter increased as the system was being developed. This
situation took place due to the fact that we were still learn-
ing the involved technology, development environment, and
the application domain. On the other hand, the sprint veloc-
ity of the motor simulator decreased due to the fact that a
team member was moved from the soft-starter to another
project. Therefore, the tasks that were allocated to him had
to be transferred to an engineer of the induction motor sim-
ulator.

As mentioned in Section 4.3, we had hardware indepen-
dent code and hardware specific code for the digital soft-
starter and induction motor simulator projects. For hard-
ware independent code, we applied our proposed test tech-
niques which checks not only the logic but also the tim-
ing. But for hardware specific code, we had to skip over it
when running on the PC desktop. For this kind of ESW, our
approach was to develop and run the test applications that
aim to exercise all code paths of the function in the target
platform manually. Therefore, we had approximately one
test line for each two code lines using these proposed test
techniques to ensure the timeliness and correctness of the
prototypes.

Table 2 shows the relationship between the test and code
lines of both projects. The final size of the digital soft-
starter and motor simulator ESW were approximately 1615
and 854 lines of code respectively. We also used the CCCC
tool to count the effective source lines of code (ESLOC)
of our embedded software. This tool counted 589 and 385
lines of code and 220 and 101 lines of test for the digital
soft-starter and motor simulator respectively. This tool did
not include blank lines, comment lines, and lines with a sin-
gle brace “}”. Source files with long preambles are mainly
the cause for the high percentage of non-code lines.

Table 2. Total LOC (Application and Test)
Project Application Test

Digital Soft-Starter 1615 854
Motor Simulator 957 243

The digital soft-starter and induction motor simulator
embedded software had to run in a constrained environ-
ment. Our development platform had just 12KBytes of
flash memory. Therefore, we used the Big Visible Chart
(BVC) proposed by [2] with the purpose of tracking the
memory usage and power consumption metrics. Both charts
were regularly updated and kept visible in order to look for
trends. Table 3 and 4 show the memory usage and power
dissipation values for both projects. The current consump-
tion was measured by connecting a multimeter in series with
the energy source. The final power dissipation was then ob-
tained by multiplying the current consumption by the sup-
plied voltage. This power is dissipated in the whole system

by the digital and analog components.

Table 3. Memory Usage (Bytes)
Project RAM Flash

Digital Soft-Starter 3631 3252
Motor Simulator 600 6398

Table 4. Power Dissipation (mW)
Project Power

Digital Soft-Starter 855
Motor Simulator 774

The test techniques described in the Section 4.3 were
the suitable vehicle for software design and modularity of
the digital soft-stater and motor simulator embedded soft-
ware. Table 5 shows the average cyclomatic complexity of
the systems. Cyclomatic complexity (v(G)) is a measure of
the complexity of a module’s decision structure that indi-
cates the number of linearly independent paths [9]. Data
on source code size, number of functions and cyclomatic
complexity were obtained using CCCC tool which analyzes
C/C++ files and generates a report on HTML format [20].

The final solutions of the digital soft-starter and motor
simulator prototypes have approximately 35 and 31 func-
tions in C code respectively. Therefore, all sprints were an-
alyzed and the result was an average cyclomatic complexity
of 1.43 and 1.61 at the end of second sprint for the dig-
ital soft-starter and the induction motor simulator. These
low cyclomatic complexity levels make the white-box test-
ing easier due to the fact that they decrease substantially the
number of paths that should be tested to reasonably guard
against errors. For more detail on this metric, refer to [9].

Table 5. Cyclomatic Complexity
Project v(G)

Digital Soft-Starter 1.43
Motor Simulator 1.61

The next section concludes this work and provides goals
for future research.

6 Conclusion and Future Work

This paper described an agile development methodology
and its application in the development of the digital soft-
starter and induction motor simulator equipments. To il-
lustrate the use of the processes and tools of the proposed



methodology, we described how it was applied to develop
the hardware-bound embedded software of both control sys-
tems. In these case studies, the development platform re-
duced substantially development time and costs of the prod-
uct.

In addition, we also applied a set of test techniques in
order to guarantee the timeliness and correctness of the em-
bedded control software. These test techniques led to bet-
ter software design and modularity. Therefore, we obtained
1.43 and 1.61 average cyclomatic complexity levels for the
digital soft-starter and motor simulator equipments respec-
tively. For further steps, we are researching models that can
carry enough information about the ultimate physical imple-
mentation and achieve better results in terms of functional
correctness.

It is important to point out that agile development
methodologies are very difficult to compare with other tra-
ditional methodologies, mainly because they depend on
people’s pride in their work, wanting to be part of a team,
and willingness to pitch in. In order to effectively compare
agile and traditional development methodologies, a statis-
tical analysis must be carried out to provide actual results
in terms of productivity gains. Therefore, we are planning
to perform more experimental studies where the methodo-
logy will be observed while applied in different develop-
ment teams.

7 Acknowledgements

The authors would like to thank the support received
from the Science and Technology Center for the Industrial
Pole of Manaus and the Brazilian Council for Scientific and
Technological Development (CNPq) by its partial financial
support through project 553164/2005-8.

References

[1] P. Abrahamsson, J. Warsta, M. Siponen, and J. Ronkainen.
New directions on agile methods: A comparative analysis.
Proceedings of the 25th International Conference on Soft-
ware Engineering, Portland, Oregon, USA, IEEE Computer
Society, pages 244–254, 2003.

[2] K. Beck and C. Andres. Extreme Programming Explained -
Embrace Change. Second Edition, Addison-Wesley, 1999.

[3] J. O. Coplien and D. Schmidt. Organizational Patterns of
Agile Software Development. First Edition, Prentice Hall,
2004.

[4] L. Cordeiro. Agile embedded software development me-
thodology. http://www.dcc.ufam.edu.br/ lcc/methodology/,
2008.

[5] P. Cybernetica. Suboptimization Problem. Available
at http://pespmc1.vub.ac.be/SUBOPTIM.html. Last visit on
26th December, 2007.

[6] M. Dowty. Test driven development of embedded sys-
tems using existing software test infrastructure. Available at
http://embunit.sourceforge.net/. Last visit on 27th December
2007, 2004.

[7] D. Gajski, F. Vahid, and S. Narayan. A system-design me-
thodology: Executable-specification refinement. European
Conference on Design Automation, Paris, France, 1994.

[8] B. Greene. Agile methods applied to embedded software
development. Proceeding of the Agile Development Confer-
ence (ADC’04)., 2004.

[9] S. E. Institute. Cyclomatic Complexity. Published at the
Carnegie Mellon University, 2007.

[10] P. Koopman. Embedded system design issues (the rest of
the story). Proceedings of the International Conference on
Computer Design (ICCD96), pages 310–317, 1996.

[11] H. Kopetz. Real-Time Systems: Design Principles for Dis-
tributed Embedded Applications. Kluwer Academic Pub-
lishers, 2002.

[12] R. Koss and J. Langr. Test driven development in c. Avail-
able at http://embunit.sourceforge.net/. Last visit on 27th
December 2007, 2002.

[13] P. Manhart and K. Schneider. Breaking the ice for agile de-
velopment of embedded software: An industry experience
report. Proceedings of the 26th International Conference on
Software Engineering (ICSE04), page 3647, 2004.

[14] C. A. Mar, E. B. Valentin, F. T. Cruz, D. O. Patrick, and L. C.
Cordeiro. Digital Soft-Starter and Induction Motor Simula-
tor Code. Available at https://sourceforge.net. SourceForge,
2007.

[15] M. J. Oliveira, S. Neto, P. Maciel, R. Lima, A. Ribeiro,
R. Barreto, E. Tavares, and F. Braga. Analyzing software
performance and energy consumption of embedded systems
by probabilistic modeling: An approach based on coloured
petri nets. ICATPN 2006, LNCS 4024, pp. 261281, 2006.,
page 261281, 2006.

[16] J. Ronkainen and P. Abrahamsson. Software development
under stringent hardware constraints: Do agile methods have
a chance? eXtreme Programming Conference, 2003.

[17] N. V. Schooenderwoert and N. Morsicato. Taming the
embedded tiger - agile test techniques for embedded soft-
ware. Proceedings of the Agile Development Conference
(ADC’04), 2004.

[18] K. Schwaber and M. Beedle. Agile Software Development
with Scrum. First Edition, Series in Agile Software Devel-
opment, Prentice Hall, 2002.

[19] P. Semiconductors. The I2C-bus and how to use it. Available
at http://www.mcc-us.com/i2chowto.htm. Last visit on 22th
October, 2007.

[20] SourceForge. C and C++ Code Counter. Available at
http://sourceforge.net/projects/cccc. Last visit on 18th Oc-
tober, 2007.

[21] SourceForge. embUnit: Unit Test Framework for Embedded
C Systems. Available at http://embunit.sourceforge.net/. Last
visit on 18th October, 2007.

[22] V. D. Toro. Basic Electric Machines. Prentice Hall, Inc.,
1990.

[23] A. S. Vicentelli and G. Martin. Platform-based design and
software design methodology for embedded systems. IEEE
Design and Test of Computers, 18(6):23–33, 2001.


