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Abstract—The ear is a maturing biometric with qualities
that give it superiority over other biometrics in a number of
situations; in particular the ear is relatively immune to variation
due to ageing. Successful ear biometrics rely upon a well
enrolled dataset, with ears normalised for position, scale and
rotation. We present a novel ear enrolment technique using the
image ray transform, based upon an analogy to light rays. The
transform is capable of highlighting tubular structures such as
the helix of the ear and spectacle frames and, by exploiting the
elliptical shape of the helix, can be used as the basis of a method
for enrolment for ear biometrics. The presented technique
achieves 99.6% success at enrolment across 252 images of
the XM2VTS database, displaying a resistance to confusion
with hair and spectacles. These results show great potential
for enhancing many other already existing enrolment methods
through use of the image ray transform at a preprocessing
stage.

I. INTRODUCTION

Ears are a promising avenue for biometrics research and
have been found to be able to identify subjects with simi-
lar performance to face recognition [1]. The ear biometric
problem (as with all biometrics) is split between enrolment
and recognition. Enrolment is the discovery, localisation and
normalisation of the ear image, whilst recognition deals with
identification of a subject by ears. Currently, most enrolment
for experiments is done manually, but in any real world test
of ear biometrics, enrolment is just as important a problem
as recognition. Enrolment has not seen the same amount
of research as recognition but there is some development
in the area. Alvarez [2] used active contours and an ovoid
model to find the ear, and in a similar vein Arbab-Zavar and
Nixon [3] used an elliptical Hough transform. Bustard and
Nixon [4] developed a method of transforming SIFT feature
points from an image of an ear to a model, and then used
the distance to create a biometric that was resilient to pose
variation and occlusion. Islam et al. [5] used weak classifiers
based upon Haar wavelets combined using AdaBoost to
create a very successful ear detection method. Prakash et al.
[6] used both colour and shape to achieve 95.2% enrolment
success in a database of 150 side view images, suggesting
that colour can indeed augment the enrolment process.

Physical analogies are an exciting paradigm in computer
vision that enable the creation of novel techniques that
approach the problems of feature extraction from entirely
different angles [7]. These analogy based techniques have the
advantage of being based on physical properties of natural
phenomena such as water, heat or force fields and so are
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more easily understood by those using them. In addition to
the intuitive nature of the algorithms, the parameters that
are used have meanings that are clear and have real world
analogues. Although analogy operators are heavily based
upon a well defined physical concept, the analogies can be
adapted outside this definition to increase their effectiveness
and flexibility whilst maintaining the strengths provided by
the analogy. These properties are a clear advantage over
many standard techniques for which the mechanics can be
hard to grasp and parameter selection is not clear.

Heat flow has been used as an analogy due to its smooth-
ing properties. Anisotropic diffusion [8] is an edge-aware
smoothing technique that allows heat to flow across areas
of low but not high edge strength allowing Gaussian noise
to be eliminated whilst maintaining important edge features.
This is one of the earliest examples of a principled vision
technique based upon an analogy.

Hurley’s force field transform [9] generates a force field
from an image that is analogous to a gravitational or mag-
netic field. Each pixel is assumed to attract every other
pixel with a force dependent on its intensity and the inverse
square law. The sum of these forces generates a vector
field representing an image. This force field can help in
feature extraction and was successfully used to create an ear
biometric. Xie and Mirmehdi [10] also used a force field
analogy, generated from magnetostatic theory and joined
with an active contour model to enable contour detection.
In their model, the image border and evolving contour are
assumed to have an electric current running through them
and the interaction of these currents generates a force field.
This field guides the development of the contour, changing
along with it to guide it to the image border.

We use the image ray transform, a transform based upon
an analogy to light rays, to enable ear enrolment. Previously
it has been used to enhance circle detection [11], but we
take advantage of its ability to highlight tubular features.
Other techniques have not used light in such a strongly
analogical sense; however, the Eikonal equation has been
used many times for vision techniques. The Eikonal equation
describes the time a ray takes to travel from the boundary
of an anisotropic medium to a point within it and has been
used in a number of applications [12], none of which fully
take advantage of the possible analogical formulation and it
is most often used as a distance metric.

This paper describes an ear enrolment technique using
the image ray transform. Section II describes the image
ray transform and its properties. Section III describes work
into applying the transform for ear biometric enrolment,
showing how its properties are well matched to the ear’s
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Fig. 1. Refraction and reflection of light.

structure. Finally section IV draws conclusions and describes
future work: both expanding on the applications previously
described and others that have yet to be investigated.

II. THE IMAGE RAY TRANSFORM

The image ray transform is a novel technique for extract-
ing tubular and circular features that are not often found by
other methods. It uses a pixel based ray tracing technique and
a subset of the laws of optics to trace rays through an image.
These then react to certain structural features to emphasise
them. Whilst the transform is based on the principles of
optics, the details of the technique can be adjusted to suit
successful feature extraction rather than accurate simulation
of the natural phenomenon. The implementation capitalises
only on the basis of the analogy; we do not simulate intricate
details of light propagation.

A. Laws of Optics

Rays are a method of modelling the propagation of waves,
most often light, with specific regard for the direction of the
wave as it interacts with its environment and ignoring wave-
like interactions such as diffraction. The path of a light ray
will be altered when it crosses the boundary with a medium
of different refractive index, refracting and/or reflecting (see
figure 1). Light crosses the boundary between the media at
an angle of 6; between the light direction and the normal
of the boundary (the dotted line). If reflection occurs, then
0, = ;. If refraction occurs, the light refracts at an angle of
0, to the normal where 6, is calculated from the refractive
indices of nq and ny of the media m; and ms. Refractive
indices are the ratio of the speed of light in a vacuum to the
speed of light within the media, and in nature 1 < n $ 4.
The angle of the refracted light 6, is found by Snell’s Law
as

sin 91‘ - na
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If ny < ng, then light bends towards the normal, so 6, < ;.
If n1 > no, then light bends away from the normal, as long as
it is below the critical angle .. This is the angle for which
0, would be greater than 90° and is therefore physically
impossible and is calculated as

0, = sin~! (Zj) )

In this case, the light is totally internally reflected in an
identical manner to normal reflection. In the natural world,
the amount of refraction and reflection that occurs depends
on the media and in most cases is a combination of the two,
some part passing through, and some being reflected back.
These rules form the basis of the image ray transform.

B. The Image Ray Transform

The image ray transform takes the laws of optics described
previously and applies them to the problem of feature ex-
traction. The transform operates by tracing a number of rays
through an image. The paths of these rays are then used
generate a new image, with tubular and circular features
emphasised. The image is analogised to a matrix of two
dimensional glass blocks, each representing a pixel whose
refractive index is related to the intensity of the pixel in the
image. One method to assign a refractive index to a pixel
with intensity ¢ is shown in equation 3, where n,,x defines
the maximum possible refractive index. The indices are then
spaced evenly between 1 and Ny ax.

1
n; = 1 + (255> ° (nmax - 1) (3)

The splitting of rays into reflected and refracted parts is not
considered in order to reduce computational complexity.

In this matrix of blocks, a ray is created with the position
(x and y) and the direction (¢) drawn from a uniform
distribution (U). For an image of size w X h,

€T~ U[O,’LU), Yy~ U[Oa h)v QS ~ U[OaQ’/T) 4

¢ is converted into a unit vector, V, representing the direction
of the ray (this is more convenient for calculations, but
cannot be directly generated from a uniform distribution):

V = (cos ¢, sin )7 (5)

The ray function r traces the course of the ray and updates
an accumulator A. I is the image from which refractive
indices and the normals at each pixel are derived. d is the
maximum number of reflections or refractions which the ray
can undergo before tracing ceases, also known as the depth.

A =r(A L 2,y,V,d Nmax) (6)
The position vector p initialises the ray at:
p<” = (z,y)" (7)
and at iteration i
p<itl> — p<i> Ly (8)

At each pixel through which the ray passes, A is updated to
show that the ray has passed through:

A/(p<i+l>) _ A(p<i+1>) +1 (9)

A(p) is only increased once per ray, so as to prevent
small loops in the ray’s path repeatedly increasing a single
pixel and excessively emphasising noise or other undesirable
features. When crossing a pixel boundary between media of
differing refractive indices, a new path must be calculated
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The normals that could be used to calculate reflections and

using a vector formation of the laws described in section
II-A.

If N is the normal and n; and no are the refractive indices
of the first and second media respectively, then the angle of

incidence ,0;, can be found:.
cos#; =N-V (10)

If n1 > ns, we have to test whether we should internally
reflect or refract. The critical angle 6, is found from equation
2 and if ng > ny or f; < 6. and assigning n = Z—; then the
direction of refraction R, is, from [13]:

R, =nV+ (n(N-V) —cos6,)N (11)

where cos 0, is

cosf, = /1 —n2(1-N-V)

(12)

If ny > no and 6; > 6., then the ray totally internally
reflects. The direction of reflection R; is then

R, =V-2(N-V)N (13)
R; or R, are then assigned to V
R, if ANO; > 0.
V= 1 1t ng >.n2 > (14)
R, otherwise

The ray is traced in this manner until it has either undergone
d reflections or refractions, or the ray exits the image. This
is repeated for IV rays or until a stopping condition (section
II-C.2) is reached, and the normalised accumulator gives the
transformed image. The values of the normals (IN) used to
calculate the new directions of rays are always set to the
normal of the edge direction found by the Sobel operator
at that point. In figure 2, this normal is shown orthogonal
to the edge direction E, as well as the normals of the pixel
boundaries B; and Bs. N is used rather than B; or B» as it
is more representative of the information within the image.

Fig. 3. An example of the course a ray might take in a simple 4x4 image.

Currently, we only perform refraction when moving from
higher to lower refractive indices as this tends to improve
the quality of the transform result, and we are working to
improve this further.

Figure 3 shows the path of a ray as it travels through a
simple image. The edge direction at each pixel is horizontal,
and hence the normal at each point is vertical. The ray
is initialised at position A with a random direction and
advances to position B. The intensity of the pixels indicates
their refractive index. At B, the refractive indices of the
current and next pixel are compared (n; and ns respectively),
and as my; = no the ray continues with no change in
direction. At C, n; < ng, and so the ray bends towards the
normal, whereas at D ny > ns so the ray bends away from
the normal. At E, total internal reflection occurs, because
ny > no and 6; > 6.. At F and G, the occurrences at C and
D are repeated in reverse order, whilst at H the ray exits the
image and the trace terminates.

C. Refinements

In addition to the basic transform, a number of additional
parameters and processes can be performed with the trans-
form to give a wider range of results and to extend the range
of circumstances in which the transform is useful.

1) Intensity and Refractive Index: The transform will
only extract features that have larger refractive indices than
the surrounding area because total internal reflection only
prevents rays from passing from materials with higher to
lower refractive indices, and not vice versa. As the refractive
index is proportional to intensity, this has the effect of
extracting features that are lighter than their surrounding
area. Depending on what is known about the properties of
the features to be extracted different measures can be taken
to improve the result of the transform.

If the approximate intensity of the desired features is
known then the image can be easily transformed to make



the target intensity have the largest value. This can be done
by finding the difference from the target intensity ¢ to the
original intensity ¢, for each pixel, as in equation 15.

iy = |io — t| (15)

If the expected intensity is not known then the ray trans-
form can be performed multiple times, with different target
intensities, and the largest value at each pixel used. This is
shown in equation 16 where I’ is the final image and I,
are the results of different transforms with different target
intensities.

I/ = maX(I(),Il, . 7Iy)

2) Automatic Stopping Condition: Finding the optimal
number of rays that should be traced in order to ensure
the result of the transform is of sufficient quality is a
challenge that must be met. Rather than use fixed values
of NN, an improved method for automatically deciding when
the transform should cease is to monitor the resultant image
and stop when it no longer changes significantly between
iterations.

The best method that has been found to do this is to
measure the difference in the normalised accumulator image
between iterations. We use the root mean squared (RMS)
difference between the intensities:

t 1 . 7>\ 2
D> T) = \/II’ > (I’<t>(2) -t T>(z))
i€l

a7)
where 7' is the number of iterations between each compar-
ison. Rather than using successive images, the operation of
a transform is sufficiently fast that large intervals should be
used, that is, 7" > 1. The results produced by this method are
consistent with the observed resultant images, with the size
of D accurately reflecting the change that can be observed
in the successive images.

The RMS difference measure is also cheap to calculate
when T is set high enough, as expensive accumulator nor-
malisations are calculated infrequently. It can be used as a
stopping condition by setting a minimum value (Dg) to stop
the process. From experimentation it has been found that a
value for Dg of 1 when 17" = 1000 allows termination with
a stable result.

(16)

D. Properties of the Transform

The ray transform is capable of emphasising tubular fea-
tures within an image. It is able to do this because tubular
features in the image which have larger refractive indices
than the surrounding area can act like waveguides (such
as an optical fibre), guiding rays along the length of the
structure via total internal reflection. Rays that enter tubes
at shallow angles are likely to reflect along the length and
concentrate rays inside it. Evidence of this can be seen in
figure 4. The transform is also adept at highlighting circles
through repeated shallow reflections off the edges, and this
has previously been used to enhance circle detection with the
Hough Transform [11]. Figure 4(b) shows a single ray as it
passes through an image with the original image faintly in

(a) Original

(b) Single Ray (c) Ray Transform

Fig. 4. The application of the ray transform to a 480x640 image with a
tubular feature. For 4(c) N = 10000, d = 256 and nmax = 2.

the background. The ray is initialized above the circle, and
travels towards the curve (approximately 10 pixels wide),
entering it. On reaching the far edge of the curve, it reflects,
as the angle of incidence is above the critical angle. This
continues until it exits the curve and, subsequently, the
image. The final image can be seen in figure 4(c), where
the curve and the circle are more heavily emphasised than
the box.

Tubular structures are found in many real images. One
example that clearly shows the ray transform’s strength at
extracting tubular features is the helix of the human ear. The
helix is the outer section of the ear, which appears from a
profile view as a curved, tubular structure. By applying the
ray transform to such images, it is possible to extract the
helix of the ear and aid enrolment for ear biometrics.

III. EAR ENROLMENT WITH THE IMAGE RAY
TRANSFORM

The image ray transform’s propensity for highlighting
tubular features such as the helix of the ear can be exploited
to create an enrolment technique. This technique uses the
transform to create an image in which enrolment is consid-
erably easier than in any edge or intensity image. Enrolment
then occurs using a simple template matching technique, but
it should be noted that many other enrolment techniques
could be enhanced through use of the image ray transform
as a preprocessing step on the original ear image.

A. Enrolment Technique

The technique used here exploits the image ray transform’s
strength at extracting tubular features to highlight the helix
of the ear and then uses a series of simple steps to extract
and normalise the ear. It should be noted that the main
contribution of this work is the application of the image
ray transform: without doubt more complex techniques (in-
cluding some of the alternative enrolment methods described
above) could be used to increase the success of the enrolment
process.

The initial step is to apply the image ray transform to the
ear image with the parameters Dg = 1, nyax = 40, d = 256.
These parameters are standard values that produce an image
that has had enough rays of sufficient length traced to reduce
the noise to an manageable level, and the high value of 1,.x
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(d) Threshold

(e) Detection (f) Extraction

Fig. 5. Example of the steps taken to achieve successful ear enrolment.

makes rays conform strongly to structural features within the
image. This produces an image in which the helix of the
ear is highlighted (figure 5(b))(in addition to other tubular
features such as spectacles). Due to the non-deterministic
nature of the transform, it is then necessary to apply Gaussian
smoothing to the result (figure 5(c)) to reduce noise. The
image is then thresholded (figure 5(d)) to produce an image
with a strong helix as its focus. Histogram equalisation is
used to allow a consistent threshold (of 249) across all
images to be used. Simple template matching is then used
with an elliptical template across a range of rotations and
scales (figure 5(e)) and then the matched section is then
normalised and extracted (figure 5(f)).

B. Results

Enrolment was performed on 252 images (4 per subject)
from the XM2VTS database [14] using the technique above.
This is a section of the database that has been used earlier,
and provides basis for comparison. The mean computation
time for each ear for the entire technique was 5.45s, whilst
the ray transform alone took only 1.47s and required approxi-
mately 19000 rays to be traced. In figure 6, a range of images
after the thresholding stage are shown. The propensity of the
technique to extract the helix strongly in all images is shown,
as well as cases where spectacle frames (figures 6(a),(b) and
(c))or other features are highlighted (light hair in figure 6(a)
and part of the forehead in figure 6(d)). The extent to which
features are highlighted depends strongly upon their intensity
(as discussed in section II-C.1), primarily highlighting ear
helices due to their high intensity skin surrounded by low
intensity shadows. Other structures such as some spectacle
frames, and, more rarely, hair, are highlighted through this
mechanism as well. In general it was found that these extra
features retained through smoothing and thresholding do not
affect the enrolment results in most cases, because they are
rarely of an elliptical shape of the type that would be found
in the template matching stage.

The results of the extraction were encouraging. Out of
252 images, 99.6% of extracted images contained the subject
ear. 98.4% of these images had the ear correctly normalised,
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Fig. 6. Selection of transformed images before and after smoothing and
thresholding.

with the incorrectly normalised images having small scale or
rotation errors. This is a performance similar to that achieved
earlier [3]. It is possible that the enrolment process is more
refined by our new approach, but certainly it appears that
the preprocessing here could be of advantage in the other
technique, which used edge detection.

The successful performance of the technique and small
number of failed enrolments has prevented meaningful ROC
analysis. Further experiments in which peaks which were not
the maximal value in images were extracted and classified
would allow the discriminatory power of the technique to be
more accurately characterised.

Shown in figure 8 is the image in which ear extraction
failed completely. The ear was extracted perfectly in all other
images of this subject. The ear has not been extracted due
to both a streak of white hair and the subject’s spectacle
frames being strongly extracted in addition to the ear. The
combination of these features has created a structure that
responds more strongly in the template matching phase than
the ear. This situation could be successfully prevented by
filtering out straight features that are very unlikely to be part
of the ear, such as the spectacle frames, before matching
occurs.

IV. DISCUSSION AND FUTURE WORK

We have shown how the image ray transform is a novel
and powerful technique that can be used to enhance detection
of structural features. In particular, the transform’s aptitude
for highlighting tubular features has been employed in order
to create an effective technique for ear enrolment. Further,



Fig. 7. Extracted and normalised ears for a selection of subjects

Fig. 8.

The ear image that failed to be extracted correctly

the computational complexity is such that it appears to be an
interesting contender for a choice as a preprocessing stage.
The transform has an inherent ability to strongly highlight the
helix of the ear in all cases, and only rarely highlights other
facial features in similar ways, making extraction simple and
reliable. Clearly, we have a low-level feature extraction tech-
nique, which can be specifically tuned to ear extraction. The
technique shown here concentrates on exhibiting the potential
of the image ray transform for enhancing enrolment and
relies only upon simple thresholding and template matching.
It is likely that through use of a more complex elliptical
Hough transform, such as the one utilised by Arbab-Zavar
and Nixon [3], these results could be improved upon further.

There are many directions in which the image ray trans-
form and its application to ear biometrics could be ex-
panded. The transform itself could be improved with more

targeted ray initialisations; drawing initial ray positions from
a probability distribution with peaks at likely ear positions.
Further work could be done on enhancing enrolment with
an improved matching algorithm, or, alternatively, creating
a recognition technique based upon the transformed ear.
The ray transform may also be appropriate for use in gait
biometrics, as legs act as tubular features that the transform
is adept at extracting. The transform could also be extended
to work upon 3D images, both spatial and spatio-temporal,
for 3D biometrics or object tracking.
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