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We consider the analysis and synthesis of discrete-time networked control systems (NCSs), where the plant has
additive uncertainty and the controller is updated with the sensor information at stochastic time intervals. It is
shown that the problem is linked to H..-control of linear discrete-time stochastic systems and a new small gain
theorem is established. Based on this result, sufficient conditions are given for ensuring mean square stability of
the NCS, and the genetic algorithm is utilised to design the controller of the NCS based on a linear matrix
inequality technique. An illustrative example is given to demonstrate the effectiveness of our proposed method.
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1. Introduction

Networked control systems (NCSs) are systems in
which a control loop is closed via a shared commu-
nication network. The use of a shared network in the
feedback path has several advantages, including low
installation cost, reducing system wiring, simple system
diagnosis and easy maintenance. However, some
inherent shortcomings, such as bandwidth constraints,
packet delays and packet dropout, will degrade
performance of NCSs or even cause instability. NCSs
have received much attention during the past decade;
see, for example, Tipsuwan and Chow (2003),
Antsaklis and Baillieul (2004), Matveev and Savkin
(2005), Antsaklis and Baillieul (2007), Hespanha,
Naghshtabrizi, and Xu (2007), Moyne and Tilbury
(2007), Schenato, Sinopoli, Franceschetti, Poolla, and
Sastry (2007), Zhang and Yu (2007), Ishii (2008) and
Yu, Wang, Chu, and Xie (2008) and the references
therein. Stability analysis of NCSs is investigated in
Walsh, Ye, and Bushnell (1999), Beldiman, Walsh,
and Bushnell (2000), Zhang, Branicky, and Phillips
(2001), Montestruque and Antsaklis (2003, 2004) and
Zhivoglyadov and Middleton (2003), and stabilising
controllers are designed in Nilsson, Bernhardsson, and
Wittenmark (1998) and Zhang, Shi, Chen, and Huang
(2005). In the literature, stochastic approaches are
typically adopted to deal with network packet dropout
and to establish the stability of the NCS in the sense
of mean square statistics (Ji, Chizeck, Feng, and

Loparo 1991; Costa and Fragoso 1993; Costa and do
Val 1996; Xiao, Hassibi, and How 2000; Seiler and
Sengupta 2005; Wu and Chen 2007). The works of
Seiler and Sengupta (2005), Elia (2005), Yue, Han, and
Lam (2005) and Hu and Yan (2007) adopt robust
control theory for the analysis and design of NCSs.
Most of the works in the NCS research utilise fixed
controllers. Some exceptions are Montestruque and
Antsaklis (2003, 2004) and Zhivoglyadov and
Middleton (2003), which utilise more flexible control-
lers for NCSs where a network is located between the
sensor and the controller. For NCSs, time periods
frequently appear during which the controller cannot
access sensor data due to network induced random
delay and packet dropout. During these periods
without sensor data, the underlying idea of
Montestruque and Antsaklis (2003, 2004) and
Zhivoglyadov and Middleton (2003) is that a nominal
plant model is employed at the controller side to
estimate the plant behaviour, and the estimated result
is provided to the controller to replace the real plant
behaviour information so that the computation of
control signal can be executed in time. During time
periods when the controller can access sensor data, the
networked controllers in Montestruque and Antsaklis
(2003, 2004) and Zhivoglyadov and Middleton (2003)
perform the same feedback control as standard closed-
loop control systems without network. This kind of
control scheme for NCSs is referred to as model-based
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networked control by Montestruque and Antsaklis
(2003, 2004), where a model-based networked state-
feedback control method and a model-based net-
worked observed-state-feedback control method are
presented. The so-called smart control of NCSs
addressed in Zhivoglyadov and Middleton (2003) is
another model-based networked observed-state-feed-
back control method. In the networked control
schemes of Montestruque and Antsaklis (2003, 2004),
the observer is included at the actuator side of the plant
to be controlled, while for the networked control
scheme of Zhivoglyadov and Middleton (2003) the
observer is located at the controller side.

We notice that all the parameters of the plant are
assumed to be known in the works of Montestruque
and Antsaklis (2003, 2004) while the plant is assumed
to be uncertainty free in Zhivoglyadov and Middleton
(2003). But these assumptions on the plant are not met
in most control practice. It is of great practical
significance to remove these strict assumptions on the
plant and to study model-based networked control
with robustness considerations. We also notice that the
study by Zhivoglyadov and Middleton (2003) on smart
control does not consider the networks of random
transmission with known probability, which belong to
a most important class of networks in NCSs. The novel
contribution of this article is that we study smart
control for NCSs where discrete-time plants have
additive perturbations and networks induce random
delay and packet dropout. To our best knowledge, our
key result, Theorem 4.4 which establishes a small gain
theorem for linear discrete-time stochastic systems, was
not seen previously in the literature. The remainder of
this article is organised as follows. Section 2 gives
notations and preliminary results, while the NCS
problem is formulated in Section 3. Section 4 provides
sufficient conditions for the NCS design solution based
on linear stochastic system theory, and addresses the
control synthesis method. A numerical design example
is included in Section 5, and our conclusions are
offered in Section 6.

2. Notations and preliminary results

We adopt the standard notation of R for real numbers
and N for non-negative integers. I, denotes the n x n
identity matrix, while I and 0 represent the identity and
zero matrices of appropriate dimensions, respectively.
For M € R"*" and positive integer p > m, denote

M € R, p=m,

HP(M) = |:1:)/I:| c [Rpxn’ p>m. (1)

Similarly, for M eR" " and positive integer ¢>n,
denote

M e [Rqu’ q=n,
W,M) = 2
! [M O]ERqu, q > n.

For square matrix SeR”*”, S > 0 (S >0) indicates

that S is a positive definite (semidefinite) matrix. For

symmetric matrices S; € R”*” and S, e R, S; > S,
means that S; —S, > 0.

For a discrete-time signal r={r(¢t)},en Wwith

r(r) e R, define
el = [y FT@Or() - 3)
=0

Let ¢4 be the set of rs with |[r|, <oo. A finite-
dimensional linear time-invariant discrete-time system
G can be written as

{ Xg(1 + 1) = AgX,(7) + Bouy(1),

teN, 4)
Yg(t) = CyXg(1) + Dgug(2),

where xg(t)eIRb, u,(1)eR" and yg(t)ele are state,

input and output, respectively; A,, B,, C, and D,

are constant real matrices of appropriate dimen-

sions. The system G given by (4) with ug(r)=0 is

said to be stable if ng(O)eth, lim x;(t)xg(t)zo.
11— 00

Define

¥l

ugew llug >
\Iug\h#O
xg(0)=0

1G o =

&)

as the Hoo-norm of G which is stable with ug(r) =0. For
0 < peR, denote IDdX’ as the set of Gs which are stable
with u,(1) =0 and ||G||oO < 1/p.

Lemma 2.1 (Zhou, Doyle, and Glover 1995): The
system GGIDZX" if and only if there exists a
0 < PeR" such that

L A, B, '[P 0][A, B,
1 - > 0.

0 51 C, D, | |0 ]lc D,
(6)

For a discrete-time stochastic signal ¥ = {¥(¢)},en
with 1(7) a R"-valued random variable, define

Il = ‘/ZE(mer(r)) ()

where E(-) denotes the expectation. Let ¢4, be the set of
rs with |r],, < co. For positive integer M, denote
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M={1,...,.M}. ansider the following stochastic
system, denoted as F:
xr(t+ 1) = Ar(@)x, (1) + By (0)uy (2),

N 8
¥,(1) = C 6%, (1) + Dy (6,)uy (1), =N ®

where 6,5 are independently identically distributed

(i.i.d.) M-valued random variables; A; B; C;and Dy

are mappings from M to R”*”, R”*", R*" and R,
respectively. The probability mass function of 6, is given
by g;="Pr(6,=j) with j € M. Clearly, 6, can be regarded
as a special Markov chain (Karlin and Taylor 1975).
The following results from Ji et al. (1991) and Seiler
and Sengupta (2005) define the stochastic stability of F.

Definition 1: The system F given by (8) with u/(¢) =
is said to be stochastically stable if Vx/(0)e IR
1% 113, < oo

Lemma 2.2: The system F with u/(1)=0 is stochasti-
cally  stable if and only if  Vx(0)e R,
zllglo E(x} (%7 (1)) = 0.

Definition 2: The matrix A/(f,) in (8) is said to be
stochastically stable if there exists a 0 < P € R”*? such
that P — 3", AT (j)PAs(j) > 0.

Lemma 2.3: The system F with u(1) =0 is stochasti-
cally stable if and only if As(0,) is stochastically stable.

Definition 3: (C/(0,), A/(6,)) is said to be stochasti-
cally detectable if there exists an H/(#,) mapping from
M to R such that As(0,) —H/(0,)C(6)) is stochas-
tically stable.

From Theorem 4.8 in Dragan and Morozan (2006),
we have the following lemma.

Lemma 2.4:  Suppose that (Cs(0,), As(0,)) is stochasti-
cally detectable. Then the following are equivalent:

(1) Ay(0,) is stochastically stable.
(2) The discrete-time backward difference equations

M
X() = AL ()Y aXii(DA() + CF(HC (). 9)
=1

where teN and Jj€ M, have a bounded solution
[X (1) - X )t Vien  such  that VteN,
Vje M,

0<X,(j) e R, (10)
Replacing the backward difference equations with

algebraic equations and further applying Theorem 3.5
in Dragan and Morozan (2006) lead to Corollary 2.5.

Corollary 2.5:  Suppose that (C,(6,), As(6,)) is stochas-
tically detectable. Then the following are equivalent:

(1) Ag(0,) is stochastically stable.

(2) There exist 0 <X(j) e R?*?, je M, satisfying

M
X(/) = AF() Y aiX(DA () + CT(HC (). (1)
=1

Define

Y7 llas
u,ee' llug [l (12)

HII/H%#O
x/(() =0
gpeM

~ A
1 Flloos =

as the H-norm of F which is stochastically stable with
u/(1)=0. For 0 < peR, denote ID‘IX’ as the set of Fs
which are stochastically stable w1th u(1)=0 and

1Flloes < 1/p.

Lemma 2.6 (Seiler and Sengupta 2005):  The system
Fe IDZXX’ if there exists a 0 < P e R”" such that

by _iq[Af(j) B;(j)T
0 S F7LG0) D)

X[P 0][Af(.]:) Bf(.]'.)]>0. (13)
0 I;JLCr(j) Dr(j)

Consider a special case of F described by

Xy (14 1) = Ay (6)x7 (1) + By1(6)uy1 (1)
+ B2 (0)uy2(2), teN,
¥ (1) = Cr 0%y (1) + Dy 1 (61)uy1 (1),
(14)
where B/, B/, and D/, are mappings from M to R,
R”*" and R", respectively. Set

uri (1) = —Kp1(0)x (1), (15)

where Ky is a mapping from M to R" b A closed-
loop stochastic system F. is formed as

xr(t+ 1) = (Ar(0)) — Br1(0)Ks1(0,))x/ (1)
+ Bra(0)uy(2), reN.
Y (1) = (Cr(6)) — Dr1(0)Ks1(0,))x/ (1),
(16)

The following result for F. is due to the main
theorem in Costa and do Val (1996).

Lemma 2.7:  Assume that there exist feedback gains
Ky1(0,) such that the corresponding closed-loop system
F. lies in [[Ddx”, (Cr(8).,A/(0,) is stochastically
detectable and

C/(j/)Dn(j) =0,

e M. (17)
D/, (/)Ds(j) =L,
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Then there exist 0 <X e R”*? with j e M, which satisfy,
Vje M,
(D) 1= p"B()) X2 4XiBy2()) > O
() X, = CL(HC () + RYG) X, aXiRa()) +
sz(] R/2(j) — Ri3(j)Ry3()) and
(3) Ryu(0)) is stochastically stable

where

M
R/i(j) =1 - 9*Bp(/)BLG) Y aX.,
=1

M -1
Ryy(j) = <I +B() D aXR(j )Bfl(j))

=1

M
< B ()) Y aiXiR (A (/).
=1

M -1
Ry3(j) = (l —P"BL()D leB/z(j))

=1

M
x OB (1) Y X1 (Ar () = Br()R())),
=1
Ru(/) = Ar(j) = Bri(/)Rp2(j) + pBr2(J)Ry3()).
Finally, consider F e IDZSX" with D/(6,) =0, which is
obviously equivalent to the system

Xy (1 4+ 1) = Ar(01)x/ (1) + By (0,)us (1),
t Cr (0
[Oyfo]:[ o ’)]xfa),
Xy (1) 01,
The latter system belongs to Dgﬁ*b)x", as it can be
viewed as

teN. (18)

Xr(t+1) = Ar(0,)x7(1) + 0L, wy (1) + By (6, )us (1),

¥,(0) } - [Cf(e,)] |:0Cf(91):| reN,
[wf(r) Loy YOy, MO
(19)

by connecting w,(1) = —K(8,)x,(r) with K,(6,) =01,. It
is easy to check

[c_f(eoﬁocf(@z)] 0 (20)
01, L, |
0C/(6)7"[0C 67 _
T e

Moreover, F e IDdX' implies A,(@,) is stochastically
stable and hence ([CT(G,) 01,]" ,Ar(6)) is stochastically
detectable. Thus, dpplylng Lemma 2.7 to (18) leads to
the following corollary.

Corollary 2.8: Suppose that Fe ID"X’ with Dy(6,) = 0.
Then there exists 0<X;e RO*0 mth jeM, which
satisfy, Vje M,

() T— "B () XM, aXBy(j) > 0;
) X;=C[()NC () +ST) XL aXiSr(j) -

Rf(])R/‘(l) and
(3) Sy(0,) is stochastically stable

where

M —1
R/ (j) = (I — "B (/)Y qu/Bf(j)>

=1

M
< pB[ (/)Y aXiAr (), (22)
=1
Sr(j) = Ar(j) + pBr(/)R/ (). (23)

3. Problem formulation

The NCS P of Figure 1 contains a linear time-
invariant discrete-time plant P P and a discrete-time
controller K. The plant P consists of a nominal plant
model P, and an additive perturbation A as shown in
Figure 1. Py is described by

{ x(t + 1) = Ax(7) + Bu(?),
Yo(1) = Cx(7) + Du(7),

where A eR", Be R, Ce R and De R"*" a
given matrices. A e D) with a given 0 < y e R. A and
Po have the same mput u(?) which is also the input of P
The output of A is w(t) which is added with y(?) to
form the output of P

¥(@) = yo(1) + w(0). (25)

The plant P and the controller K are connected via a
shared communication network through which the
sensor transmits data to the controller. The controller
is collocated with the actuator. At each instant re N,
the sensor tries to transmit y(¢) to K. After the attempt,
y(?) is discarded by the sensor. Each transmission has

eN, (24)

p Yo 1+ y
1o |

u D

Xe N
K ¢ | Estimator

K

Figure 1. Networked control system Py.
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two alternative outcomes: one is that the transmission
succeeds and K receives y(?) at t; the other is that the
transmission fails due to packet dropout by the
network and thus K misses y(7). A successful packet
transmission time through the network is assumed to
be negligible. Note that a packet arriving late due to
network induced random delay has the same effect as
packet dropout and is treated as a transmission failure.
Those instants at which transmissions succeed are
denoted by #, k€N, in ascending order, and 7y=0 is
assumed without loss of generality. The time instant #,
is referred to as update instant. After #;, y(¢;) remains
to be the newest information for K until try1 wWhen
y(2541) arrives.

It is clear that Py is in the mode of open loop when
t#1t, and in the mode of closed loop when =1, A
smart control mechanism, similar to the one in
Zhivoglyadov and Middleton (2003), is adopted for
K as

X.(t + 1) = Ax.(t) + Bu(?) + L(Cx,.(?)

+ Du(1) — y(1)), 1= tg,

X (1 + 1) = Ax,(1) + Bu(?), t # 1y,

u(r) = Kx,(2), reN,
(26)

where the state feedback gain matrix K € R"*" and the
observer gain matrix L € R"*?. Clearly, K expressed by
(26) is an estimator-based controller. When y(7) is
available at r=1¢,, a standard observer law is employed
to estimate x(f) using x.(¢), while when y(¢) is
unavailable at ¢+ #;, an imitation law is employed to
estimate x(7) with x.(7). Define the update interval

he 2 ter — t, k € N. 27)

Let the maximal update interval be N, and denote
N ={1,...,N}. The value of N can be viewed as a
network service quality measure. When the network is
very busy, experiencing long delay and a large number
of packet dropouts, N will be very large. By contrast, a
small N shows that the network is offering good-
quality service. The update intervals /s are assumed to
be i.i.d. M -valued random variables. The probability
mass function of /i is denoted by p;=Pr(/=1i) with
i€ N. Let the order of A be g. Then A can be described
in a state-space form as

{ Xg(l + 1) = Ang(l) + Bg;ll(l),
w(r) = Csx5(1) + Dsu(2),

where the matrices As; € R, By € R”" Cs e R”*? and
D; e R”*™. Define the state of Pk as

eN, (28)

2(0) = [x" () x] (1) x] ()] (29)

As {h;} is a sequence of random variables, z(f) is
actually a random process. For Pg, we define the
stability in the sense of mean square statistics.

Definition 4: Py is mean square stable if Vz(0)e
R, lim,_, oo E(z"(1)z(1)) = 0.

Our NCS design problem can now be stated: given
A,B,C,D, y, Nand p,; Vie N, determine K and L such
that VA € [D’;X’”, Py is mean square stable.

4. Theoretical analysis and design method

We now study the dynamic response of Py by
oversampling it at each update instant. Since /i is a
N -valued random variable, the dimension of the input
(output) of the oversampled system is also random. To
tackle this difficulty, we use the auxiliary systems of
Py, A and K by augmenting them up to the constant
dimension Nm. The auxiliary system Py, of Py is
constructed as

{i(k + 1) = AR + Wi ((A" B BUG).

Yo(k) = CX(k) + Wym(D)u(k),
(30)

The auxiliary system AS of A is constructed as

Xo(k + 1) = AJX;(k)
+ Wan([AF'B; - -
W(k) - Céié(k) + WNm(DS)ﬁ(k)a

B;u(k), keN.

(31
The auxiliary system K, of K is constructed as
Relk+1)= Ag ™ A% (k) — Ag Ly (k)
— AP 'Liw(k), keN,
u(k) = Y1 (7)Xe(k) = Yo (hi)¥o (k) — Yo (hi)W(k),

(32)
where Ag=A +BK, A=A +BK+ LC+LDK,
HNm(K)a h/\» = 1,
Yi(h) = B
1) {HNmQKT (KA - (KA AT, he> 1,
(33)
Yo (hy)
[ Hym(OKL), b =1,
~ | Hum([(OKL)" (KL)T - (KAg°L)T"), 7y > 1.
(34)

Combining }303‘, AAS and I%s forms the auxiliziry
stochastic system Pg;, depicted in Figure 2, of Pk.
Define the state of Pk, as

z(k) = [x" (k) X (k) X; (b)]". (35)
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As
_ w
u _
Yo
Pys
ks V

Figure 2. Auxiliary system Py, for Py.

From (24) to (35), it is easy to see the following
relationships between Pg, and Pg. Given 7,=0 and
7(0) = z(ty), Vk e N,

z(k) = (1), (36)
Yo(k) = ¥o(x), (37)
w(k) = w(t), (38)

u(k) = Hm([u' (1) - '+ = DI (39)

These results imply that lim_, EZ (k)z(k)) =0 if
lim,_ o E(z'()z(t)) = 0. On the other hand, as A is
bounded by N, there exists a constant real scalar n
independent of k and t such that VkeN, z" (7, + 1) x
2t +1) <nz' (t)x(t)  for any  te{l,... k).
Then (36) implies that lim,_ . E@z"(0)z(t)) =0 if
limy_, o E(Z'(k)z(k)) = 0. Thus, we have the following
proposition.

Proposition 4.1: Py is mean square stable if and only if
13]@ is stochastically stable.

Next, we discuss the relationship between A and As.

Proposition 4.2: For any AEIDI’X’”, its auxiliary
system A, € IDPX(NW)

Proof: From A e [D’;X"’ and Lemma 2.1, there exist
0 < P; € R?* such that

P; 0 A; B;1'TP; 07[A; B,
1 — > 0.

0 G Dy |0 1| ¢ by
(40)

Noticing (28), inequality (40) means that Vze N and
VIxi(n u'(n]" e R,

T (OPsxs(1) + %uT(z)u(r)

> wi(OwW() +x; (t + DPsxs(1+ 1), (41)

Equality holds in (41) if and only if [x] (1) u(?) "=
Now VreN, VieN and V[x{(n)u'() ---
ul(t+i— )" e ReHm

i—1
ORI+ 53 e Dute 1)
> wT(t)w(t) + x}(r + DPsxs(r + 1)

s ZuT(t +Du(r+1)

i—1
> ZWT(I + DW(t 4 1) + X1 (1 + )Psxs(7 + i)
1=0

> wH (WD) + x; (£ + )Psxs(t + i). (42)

Equality holds in (42) if and only if [x}(¢) u™(z) ---
ul(r4+i—1)]" = 0. Since

x;5(1)
[x,;(zjui)}_ Al AC'B; .. Bg u(?)
wi) | | Cs Ds 0 : ’
u(t+i—1)
(43)
inequality (42) means that Vie N,
(AY  C§
P; 0 B/(A)~' DI
1 _
0 ?Iim 0
B;
P 071[ Al i~1 .
x|: ’ } As A B Bils o @
0 LG D 0
Hence
Ps 0 7] 0
1 - @ >0 (45
0 _2]N’” ZP |: lp:| *3)
y i
with
Ai - i—1 .
o — | Wam([ Ay "B B;D | (46)
CS WNm(DzS)

Applying Lemma 2.6 to (45) completes the proof. []

From Propositions 4.1 and 4.2, it is easy to see the
following proposition.

Proposition 4.3:  Suppose that VA, e ID”X(N’”) Py, is
stochastically stable. Then VA € IDPX”’, PK is mean
square stable.

The above proposition shows that our NCS design
problem can be tackled by solving the corresponding
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probl;m for }A’K‘Y. Let I‘A’KY be divided into an unknown
part Ay and a known part ¥, as shown in Figure 2. Vis
the closed-loop system formed by 1305 and I%S, and is
described as

[ X(k+1) } - Av(hk)l: X® ] + B, (h)w(k),

X (k+1) X (k) keN
_ x(k) _ '
(k) = cm[x) (k)} D, (W k),
47)
where
A BK71"'r A BK
— 48
Al [0 Ao] [—LC A0+LC}’ (48)
A BK71%'T o
() — 49
Boo=ly v] [ 5] @
Cy(h) = [ =Y2(h)C  Y3(hy) ], (50)
Dv(hk) = _YZ(hk)9 (51)
with
Hym(K), he =1,

Y3() = { Hum(K" (K(Ag +LC)" -
(KAB2(Ag +LOYTD, Iy > 1.
(52)

Let £=1/y. Then our main result can be presented.

Theorem 4.4: Suppose that Ve ngm) *P Then
VA € I]])fj_f(Nm), Py is stochastically stable.

Proof: See the Appendix. O

We refer to Theorem 4.4 as the small gain
theorem of discrete-time stochastic systems. This
result has not been presented previously in the
literature. Note that the small gain theorem of Zhou
et al. (1995) is valid for deterministic systems while
the small gain theorem of Dragan, Halanay, and
Stoica (1997) is derived for continuous-time stochastic
systems.

According to Proposition 4.3 and Theorem 4.4, any
pair of K and L ensuring V € IDgY'")X” is a solution to
our NCS design problem. Since A, B, C, D, y, N and p;,
Vie N, are known, A, (i), B,(i), C,(i) and D,(i) with
ieN in (48) to (51) are functions of K and L.
Therefore, we can denote

A B,() ]

ai bl N Y

Fi(K: L) = |:

Further define
oK. L)= inf {a|aUQ,y)

0<QeRCM*(21)
acR

N
> Y pF (K, LSQF(K, L)} (54)
i=1

with

0 0
UQ.y) = [3 21 ] and S(Q) = [(02 I ]
P m

(55)

For given KeR"™" and LeR"”, o(K,L) can be
computed conveniently by a combination of linear
matrix inequality (LMI) technique (Boyd, El Ghaoui,
Feron, and Balakrishan 1994) and bisection
search (Quarteroni, Sacco, and Saleri 2000). From
Proposition 4.3 and Theorem 4.4 as well as Lemma 2.6,
the following result is plain.

Corollary 4.5: A pair of KeR™" and LeR"™”
guarantee that Pk is mean square stable for any
AeDV™, if o(K,L) < 1.

According to Corollary 4.5, we can design K and L
by solving the nonlinear optimisation problem
uw= inf o(K,L). (56)

KeRmxn
LeRn*p

We solve this optimisation problem using the genetic
algorithm (GA) (Goldberg 1989; Man, Tang, and
Kwong 1998) to obtain a pair of K* and L* such that
a(K*, L*) < 1. Note that in some cases we may be
unable to achieve «(K,L) < 1, even though the NCS
design problem does have solutions. This is because
Corollary 4.5 only provides a sufficient condition.
If K* and L* are not found by the GA to meet
a(K*, L*) < 1, we can rearrange some conditions of the
NCS design problem, for example by increasing the
value of y, to ease the design problem.

5. A numerical example

On the basis of the method presented in the previous
section, a MATLAB program for NCS design was
developed where the feasp and ga functions of
MATLAB were used to solve LMI and to implement
GA, respectively. We considered an unstable third-
order Py of (24) with the parameters

105 0 0 0.5
A=| =2 075 0|, B=| o0 [,
0 105 05 0.5

c=[1 1 0], D=02.
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Figure 3. (a)-(g): State trajectories of the plant Py for 50 simulations, and (h): E(z"(z(1)) calculated by averaging z'(£)z(7)

over these 50 simulations.

The value of N was set to N=10 and p,=0.1 were
assumed for ie A" 2 {1,...,10}, while y=0.4 was set.
Applying the MATLAB program to this NCS design
problem yielded

K* =[-02741 0.5791 0.0260],

L* =[0.2657 0.1480 —0.1718]"

with o¢(K*, L*)=0.9872 < 1.

The NCS with the designed K* and L* was
simulated in the MATLAB platform for 50 times. In
the simulation, a stable first-order A of (28) was
specified by A;=0.5833, B;=1, Cs=1 and Ds=0.1
with ||All = 2.4998 < 1/y. The initial state was
chosen to be

x(0) = [x1(0) x2(0) x3(0)]" =[1 1 1],

Xe(0) = [x1(0) x2(0) xe3(0)]" =[0 0 0",  x5(0) = 1.

Figure 3(a)—(g) depicts the 50 trajectories of each state
element, respectively. These trajectories display our
NCS behaviour under the 50 different realisations of
{hi}. For any ¢ € N, we obtained 50 observations of the
random variable z'(¢)z(¢). The first sample moment of
the observations, denoted by E.(z'(1)z(7)), was com-
puted. According to the standard statistics theory
(Devore 2000), E.(z"(1)z(7)) is a confident estimation of
E(z'(1)z(r)) when the observation number is large.

Figure 3(h) shows the trajectory of E.(z"(1)z()) where
it can be seen that E.(z' (1)z(r)) converged to zero.

6. Conclusions

We have studied discrete-time NCSs where the plant
has additive uncertainty and a smart controller is
updated with the sensor information at stochastic time
intervals. We have shown that the issue is linked to
H..-control of linear stochastic systems. Under the
condition that update intervals are ii.d. A -valued
random variables, a new small gain theorem has been
derived for discrete-time stochastic systems. Based on
this result, sufficient conditions have been established
for guaranteeing the mean square stability of NCSs
and a design method for smart controller has been
provided. A numerical example has been used to
illustrate the proposed design method.
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Appendix. Proof of Theorem 4.4

Based on J and AS, construct a stochastic system W as

{ Xn*(k + 1) - Alu Xw(k) + Bh/\,un‘(k)v keN (Al)
yw(k) = C/zk Xw(k) + th uw(k)» '
where
Ay — [Ag“ Wan([A}'By -+ Bi)C,(h) } “2)
0 Av(hk)
=1
B, [WNM([AS By - BB])DV(M} 43)
Bv(hk)
Chk = [C5 WNm(DB)CV(hk)]: (A4)
Dy, = Wyin(Ds)D, (/). (AS)

Since ¥ and AS are stochastically stable, from Definition 2
and Lemma 2.3, there exist 0<P,eR®*C"D  gpd
0 < P, e R7*? satisfying Vie N,

N
P, — Y piATOPALG) > 0, (A6)

i=1

N
P, — " pi(A)TPAL > 0. (A7)

i=1
It can be seen easily that for sufficiently large 0 < k€ R
P, 0 ul P, 0
‘ _ AT A; >0, VieN. (A8
[0 KPVi| i:ZIP '[0 KP‘,:| : (A8)
This implies that W is stochastically stable. Denoting
vi(k) = [0 Cy(he) X, (k) + Dy (i )uy(k), (A9)

it can be seen that I/Af/ is the tandem connection of ¥ and AS,
Le. v, = Ju,,y, = Ayv,. Therefore

» 1y ll2 1y ll2 Vi llog
” W”Om: sup Yo ll2s < su Yo llos wil2g
"“'E[Iz); ||Uw||2s w,‘euf;”’ ”Vw”2s u“e({;\ ”uw”2s
I 12570 Wirll 2570 12570
X (0)=0 Xy (0)=0 xiv(0)=0
hoeN hoeN hyeN

WA sVl < (%) @ — 1 (A10)

In addition, from (1), (2), (34), (51) and (AS5), D, =0.
Thus, applying Corollary 2.8 to W, there exist
0<Y,;eREHD*+0) with je N, which satisfy Vie N,

N
1-B Y pYB;>0, (A1)
=1

N
Y =CICi+ (A;+BR)" Y pY,(A; + BR) - R[R;,
=1
(A12)

N -1 N
R; = (I — Bl-T ZplYle) B;T ZplYlAi» (A13)

=1 =1

and A, +B, R, is stochastically stable.
Substituting (A13) into (A12), we get Vie N,

N N
Yi=CICi+ AT Y pYA+AT Y pYB
=1 =1

N -1 N
X (I - B/ ZP}YJB,) B/ ZPIYIAi

=1 =1
~ ~ ~ N ~
=CICi+Al Y pYA (A14)
=1
with

A=A +BC, (A15)

N

N -1/2
C = (I - B/ ZplYlBi> (B,T ZplYlAi - Ci)- (A16)

=1 =1

Let
N —1/2
ﬁi = _B[ (l - B;r ZPIYIB[) > i€ N (A17)

=1

Then,

=1

N
X <B;, ZP[YIAhk - Cm)

I=1

-1
N
= Ay +By, (I - B, ZpIY/Bm>

=1

_1
N
A/u - Hh/\ ChA = A/IA + BhA (l - ng ZplY/Bhk>

N
< By Y pYiAy,
=1

= Ay, +B, Ry, (A18)

is stochastically stable. Thus, (Ehk,ghk) is stochastically
detectable. Using Corollary 2.5, we conclude that A, is
stochastically stable. R L

Since Pg; is the closed-loop system of V" and Ay, Pk, can
be viewed as the unity-feedback control system of W which is
the tandem connection of V and A;. In other words, Pg, can
be written as (A1) with

u, (1) =y, (A19)

Combining (A1) and (A19) with D, =0, the system Pk,
which can be written as

X, (k + 1) = (A, + By, C)x,0(k) = A x,(k), k€N,
(A20)

is a stochastically stable system.



