Provenance-Based Reproducibility in the Semantic Web

Luc Moreau

Electronics and Computer Science,
University of Southampton, Southampton, SO17 1BJ UK

Abstract

Reproducibility is a crucial property of data since it allows users to understand and verify how data was derived, and therefore al-
lows them to put their trust in such data. Reproducibility is essential for science, because the reproducibility of experimental results
is a tenet of the scientific method, but reproducibility is also beneficial in many other fields, including automated decision making,
visualization, and automated data feeds. To achieve the vision of reproducibility, the workflow-based community has strongly ad-
vocated the use of provenance as an underpinning mechanism for reproducibility, since a rich representation of provenance allows
steps to be reproduced and all intermediary and final results checked and validated. Concurrently, multiple ontology-based repre-
sentations of provenance have been devised, to be able to describe past computations, uniformly across a variety of technologies.
However, such Semantic Web representations of provenance do not have any formal link with execution. Even assuming a faithful
and non-malicious environment, how can we claim that an ontology-based representation of provenance enables reproducibility,
since it has not been given any execution semantics, and therefore has no formal way of expressing the reproduction of compu-
tations? This is the problem that this paper tackles by defining a denotational semantics for the Open Provenance Model, which
is referred to as the reproducibility semantics. This semantics is used to implement a reproducibility service, leveraging multiple
Semantic Web technologies, and offering a variety of reproducibility approaches, found in the literature. A series of empirical
experiments were designed to exhibit the range of reproducibility capabilities of our approach; in particular, we demonstrate the
ability to reproduce computations involving multiple technologies, as is commonly found on the Web.

Keywords: provenance, reproducibility, denotational semantics, primitive environment

1. Introduction calls for more transparency in climate science have been is-
sued; specifically, a parliament committee called for the release

. L . i 4
The envisaged applications of science and technology are far of both the raw data and the computer code used in research®.

reaching, from Government personalised services for the cit-
izen' to personalised medicine?, from understanding climate
change, to its tackling by smart energy usage [1]. Technology
is revolutionising the way scientists undertake science, as il-
lustrated by Grid Computing [2], e-Science [3], or the Fourth
Paradigm [4]. While science is becoming computation and
data intensive, the fundamental tenet of the scientific method
remains unchanged: experimental results need to be repro-
ducible [5].

The fundamental principle of reproducibility is particularly
important given the importance of science in our life. This im-
portance is illustrated by the scientific advice on climate change
that has helped shape governmental policies. The mail contro-
versy of the Climatic Research Unit “Climate-Gate™? highlights
how global the impact of science has become. As a result,

Email address: 1 .moreau@ecs.soton.ac.uk (Luc Moreau)
"http://www.telegraph.co.uk/technology/news/7484600/
Every-citizen-to-have-personal-webpage.html
2http://www.futuremedicine.com/doi/abs/10.2217/17410541.
5.1.55
Shttp://en.wikipedia.org/wiki/Climatic_Research_Unit_
email_controversy

Preprint submitted to a journal for publication

This is in no way limited to climate science: in social science,
evidence-based policy refers to public policy that is informed
by rigorously established objective evidence [6]. Similar calls
exist for transparency in clinical trial results used in drug ap-
proval®. It is no surprise that novel initiatives [7] and recom-
mendations [8] that encourage the publication of data sets are
emerging. These are steps in the right direction, but by them-
selves, they do not ensure reproducibility of scientific results.
Provenance refers to the source or origin of something. In a
computational setting, provenance of a data item is an explicit
representation of the processes that led to that data item [9].
The workflow-based scientific community has strongly advo-
cated the use of provenance as an underpinning mechanism for
reproducibility: “reproducibility requires rich provenance in-
formation, so that researchers can repeat techniques and anal-
ysis methods to obtain scientifically similar results ... In order
to support reproducibility, workflow management systems must
capture and generate provenance information as a critical part
of the workflow-generated data.”[10]. The strong belief that

“http://blogs.nature.com/news/thegreatbeyond/2010/03/
parliament_committee_calls_for.html
Shttp://www.sciencebasedmedicine.org/?p=215

February 9, 2011

http://www.telegraph.co.uk/technology/news/7484600/Every-citizen-to-have-personal-webpage.html
http://www.telegraph.co.uk/technology/news/7484600/Every-citizen-to-have-personal-webpage.html
http://www.futuremedicine.com/doi/abs/10.2217/17410541.5.1.55
http://www.futuremedicine.com/doi/abs/10.2217/17410541.5.1.55
http://en.wikipedia.org/wiki/Climatic_Research_Unit_email_controversy
http://en.wikipedia.org/wiki/Climatic_Research_Unit_email_controversy
http://blogs.nature.com/news/thegreatbeyond/2010/03/parliament_committee_calls_for.html
http://blogs.nature.com/news/thegreatbeyond/2010/03/parliament_committee_calls_for.html
http://www.sciencebasedmedicine.org/?p=215

provenance can support reproducibility is also echoed by the
provenance community, with more than twenty papers cited by
a recent survey on provenance [11] mentioning reproducibility
in their abstract.

To relate reproducibility to provenance, various approaches
have emerged in which provenance is defined in the context
of specific execution semantics. Why-provenance [12] and lin-
eage [13] identify source tuples that “contributed” to a result re-
turned by a database query (within the relational and xml mod-
els). By applying the same query to such source tuples, the re-
sult could be reproduced. Souilah et al. [14] define a denotation
of provenance in the context of a w-calculus variant: this deno-
tation can replay the sending and receiving of data values across
processes. Cheney et al. [15] define a notion of traces faithful
to a program if they record enough information to recompute
the program when the inputs change; this definition is proposed
in the context of the Nested Relational Calculus, which is a
core database query language, also capturing aspects of func-
tional languages, and distributed programming systems such as
MapReduce [16]. Similarly, Acar et al. [17] assume the exis-
tence of “a common language that can express both database
queries and workflows”, and in this context, define a prove-
nance graph to be consistent with a program if it matches the
evaluation traces generated by the program. In workflow sys-
tems, the Virtual Data Systems [18] views provenance as con-
sisting of two components: all the aspects of the procedure or
workflow for creating a data object (referred to as prospective
provenance), and the information about the runtime environ-
ment in which these procedures were executed (retrospective
provenance), the combination of both offering reproducibility.
By means of a translation from provenance to its workflow lan-
guage [19], Taverna is also able to reproduce past results.

All of these approaches have in common that they make
strong assumptions on the execution environment(s) in which
the application is executed: they assume it is a given database
engine, workflow system, or distributed programming environ-
ment. But such assumptions are not aligned with the reality
of Web applications, which typically involve multiple different
technologies, with different underpinning semantics, hosted by
different providers.

In a previous paper [11], the author articulated the Open
Provenance Vision, consisting of architectural guidelines to
support provenance inter-operability on the Web, by means of
open models, open serialization formats and open APIs. As en-
visaged in the Open Provenance Vision, the provenance from
individual systems or components can be expressed, connected
in a coherent fashion, and queried seamlessly. Several mod-
els for provenance have emerged to tackle this vision, includ-
ing Provenir [20, 21], the Provenance Vocabulary [22], PA-
SOA [23], OPMV [24], PML [25] and the Open Provenance
Model [26]. All rely on Semantic Web definitions, consist-
ing of ontologies, vocabularies or abstract models. Assuming
that provenance based on these models was generated faithfully
and non-maliciously, how can it be claimed that provenance en-
ables reproducibility, given that there is no execution semantics
attached to these models? This is precisely the problem that
this paper tackles, offering a definition of reproducibility for

the Open Provenance Model (OPM) [26].

Several provenance approaches (by Cheney et al. [15],
Souilah et al. [14], Acar et al. [17], and Missier and Goble [19])
have in common the idea that provenance can be seen as a
program, for which an executable semantics can be defined.
Hence, using provenance as a program, one can re-execute past
computations, and reproduce results. In this paper, we lever-
age this idea and formalize it for OPM, while still ensuring that
OPM remains independent of any technology used in the appli-
cation execution environment.

To address this problem, this paper offers the following con-
tributions:

1. Adopting a Semantic Web perspective to the problem, we
extend the Open Provenance Model with minimum execu-
tional information and assumptions related to execution.
In particular, we introduce the class of primitive proce-
dures and the notion of primitive environment that maps
such primitive procedures to something that can be exe-
cuted. OPM processes are themselves caused by primitive
procedure invocations.

2. We present the reproducibility semantics, a denotational
semantics for OPM graphs. This mathematical (and there-
fore technology independent) definition formulates how an
OPM graph can be seen as a mathematical function, taking
some inputs and a primitive environment, and resulting in
another OPM graph. This semantics is novel because it
tackles a substantial subset of OPM, and in particular, its
notion of account. With this semantics, we also identify a
class of OPM graphs that are reproducible, and at the same
time recognize that not all OPM graphs are by default re-
producible. Specifically, we define a provenance graph as
“reproducible”, if combined with a primitive environment,
it contains enough information to be interpreted as a pro-
gram (or workflow) whose execution can yield an isomor-
phic provenance graph. Furthermore, this mathematical
formulation also allows us to specify variants of repro-
ducibility, which help us provide formal groundings for
other reproducibility proposals found in the literature.

3. We propose a Semantic Web based architecture for a re-
producibility service, which can take OPM graphs and
check their reproducibility. This architecture, which relies
on an extended OWL ontology for OPM, SWRL rules, and
a set of SPARQL queries, is intended to act as a reference
implementation for the reproducibility service.

4. We provide an evaluation of the approach by demonstrat-
ing: (i) how the reproducibility service is capable
of reproducing the results of the first provenance chal-
lenge [27]; (ii) how the reproducibility service can easily
be customized to invoke multiple execution technologies,
such as command line and web services, simply by chang-
ing its primitive environment; (iii) how it can be used with
different inputs.

This work is significant for several reasons. First, Semantic
Web provenance languages are defined in terms of an ontology,
but do not have an execution semantics; with this work, we es-
tablish that such provenance data models can and should also

be interpreted as executable programs. Second, from a prove-
nance perspective, approaches such as OPM have been criti-
cised as lacking formal foundations, and therefore, leading to
incompatibility and misinterpretation [28]; the formal seman-
tics presented in this paper addresses these concerns head on.
Third, OPM, itself, contains original features, such as accounts,
which have never been formalised. This paper provides an orig-
inal way of formalizing them; in particular, it identifies a set of
conditions required to be met for provenance claims in different
accounts to be consistent.

There is no strong consensus on what reproducibility means,
and how it can be achieved. Hence, we start by surveying re-
lated work, by providing several definitions of reproducibil-
ity, and explain how this work compares against them (Sec-
tion 3). We then introduce the reproducibility semantics in
Section 4, first considering account-less OPM graphs, and then
multi-account OPM graphs. Next, we study the idea of a repro-
ducibility service in the context of the Semantic Web, overview
its architecture, and discuss the Semantic Web techniques that
we leveraged for its implementation (Section 5). We then un-
dertake a range of empirical evaluations aiming to demonstrate
the capability of the reproducibility service, and its suitability
for deployment in a multi-technology environment such as the
Web (Section 6). This is followed by a discussion of the ap-
proach (Section 7) before we conclude the paper and summa-
rize possible future work (Section 8). Beforehand, we summa-
rize the OPM terminology.

2. OPM Terminology in One Paragraph and Figure

We assume that the reader is familiar with the OPM spec-
ification [26]; a tutorial on OPM is also available from
openprovenance.org/tutorial. The following example
acts as a reminder for the OPM terminology. Figure 1 illustrates
an OPM graph describing the evaluation of a numeric expres-
sion (10+20) x 30/9 resulting in value 100. Ovals represent ar-
tifacts and are here associated with numeric values; black rect-
angles denote processes. Plain edges represent data derivations
(referred to as was-derived-from dependencies); dotted edges
represent the dependencies between processes and artifacts, de-
noting the consumption of the latter by the former (used edges)
or the generation of the latter by the former (was-generated-by
edges); they are annotated by their roles in bracket. Gray “post-
it” rectangles are annotations. The OPM specification [26] also
introduces a notion of inference by which novel edges can be
inferred from existing edges of an OPM graph. For instance,
p3 used ag, which itself was derived from as, itself also derived
from a; and a,. So, we can infer that p3 used a; and a, in-
directly. Likewise, it can be inferred that ag was derived from
a; and a, indirectly. Finally, OPM edges that have not been
inferred are said to be asserted.

3. Related Work

In this section, we first review several definitions of repro-
ducibility. We then discuss work on reproducibility that is not

type: Integer
value: 10

type: Integer
value: 20

prim:sum

“. (factor2) ,{factor1)

type: Integer
value: 30

type: Integer
value: 30

prim: mult

type: Integer
value: 900

type: Integer
value: 9

prim: div

type: Integer
value: 100

Figure 1: OPM graph for Numeric Expression

provenance specific, before focusing on provenance based ap-
proaches. Finally, given that our work consists of a novel for-
malization of OPM, we review extant efforts in that field.

3.1. What is reproducibility?

There is no strong consensus on what reproducibility means
in the context of computational science or computer-based sys-
tems. Wikipedia defines reproducibility® generally as follows:
“Reproducibility is one of the main principles of the scientific
method, and refers to the ability of a test or experiment to be
accurately reproduced, or replicated, by someone else working
independently to see if the reproduced experiments gives simi-
lar results to those originally reported”. Wikipedia further con-
trasts reproducibility from repeatability’, which measures the
success rate in successive experiments, possibly conducted by
the same experimenters. Reproducibility relates to the agree-
ment of test results with different operators, test apparatus, and
laboratory locations.

In computer systems, experiments are encoded as programs
or workflows [10] that, like recipes, describe the various steps
of execution, and can be executed time and time again. In com-
puter systems, however, extensive logs of past activities, which
we will refer to as provenance, can provide an accurate descrip-
tion of what occurred in the past, and can be used to reproduce
experiments: the difference is that reproduction can be based
on the logs, rather than the recipe.

Bechhofer et al. [29] see the need for a framework that fa-
cilitates the reuse and exchange of digital knowledge. They put

®http://en.wikipedia.org/wiki/Reproducibility
"http://en.wikipedia.org/wiki/Repeatability

openprovenance.org/tutorial
http://en.wikipedia.org/wiki/Reproducibility
http://en.wikipedia.org/wiki/Repeatability

forward the idea of Research Objects as containers for a princi-
pled aggregation of resources, produced and consumed by com-
mon services and shareable between scientists. In this context,
they distinguish the following terms:

e Repeatability: relies on sufficient information for the orig-
inal researchers or others to be able to repeat the study.
This may involve access to data or execution of services.

e Reproducibility of a result consists of starting with the
same materials and methods and checking if a prior re-
sult can be confirmed. It is a special case of repeatability,
since it contains complete information such that a final or
intermediate result can be verified.

e Replayability allows the investigator to “go back and see
what happened”. It does not necessarily involve execution
or enactment of processes and services. It places a require-
ment on provenance of data.

From the above definitions, it is not entirely clear whether
Bechhofer’s repeatability and reproducibility draw on the orig-
inal recipe or provenance of a past execution, or a combination
of both. On the other hand, replayability seems to rely explic-
itly on provenance.

In their classification of provenance requirements, Miles et
al. [30] identify a use case (Use Case 17) that distinguishes
reenactment, i.e. performing the same experiment, but using
contemporary data and services, from repetition, which means
performing the same experiment with the same data and ser-
vices as before, e.g. to test that the results can be reproduced.
Whilst framed in the context of provenance, reenactment seems
to apply equally to provenance and workflows.

So, reproducibility is a multi-dimensional problem, where
several issues need to be taken into consideration: (i) which
scripts?: is this workflow or provenance based reproducibility?
(ii) which inputs?: is the experiment reproduced with the same
inputs or others? (by inputs, we include not only experimental
data, but also parameters) (iii) which primitives?: are the origi-
nal primitives or services invoked? (iv) which results?: are in-
termediary and final results comparable to the original ones? In
this paper, we fix the first dimension, focusing on provenance-
based reproducibility, while considering all other dimensions of
the problem.

3.2. Reproducibility without Provenance

Reproducibility has initially been researched without taking
provenance into consideration. We review some salient out-
comes, before focusing on provenance-based reproducibility.

Claerbout pioneered the concept of really reproducible re-
search, *“ An article about computational science in a scientific
publication is not the scholarship itself, it is merely advertis-
ing of the scholarship. The actual scholarship is the complete
software development environment and the complete set of in-
structions which generated the figures.” [31].

This pioneering approach has led to the more recent Re-
Doc [32], a system for reproducing scientific computations in

electronic documents. It consists of three components, make-
files, make rules and naming conventions. Such an environ-
ment is akin to a workflow system, where the workflow script
is a makefile, which can be executed over any input. It however
does not describe a past execution and how a past result was
achieved. But this shows that under the term “reproducibility”,
one can find two very different understandings: regenerate a re-
sult by applying a recipe on arbitrary inputs vs reproduce all the
steps found in an evidence of a past execution.

In forensic investigations, a key factor is reproducibility,
defined as the ability to achieve a consistent level of quality
throughout the investigative process, no matter how many times
it is repeated under the same conditions [33]. Pan and Bat-
ten [33] propose a model based on read and write operations,
and associated timestamps, allowing them to be ordered in a
linear time flow. This model is targeted to forensic investiga-
tions and is not aimed to generic computations. An alternative
approach, which is provenance-based, is proposed by Levine
and Liberatore [34] and discussed in Section 3.3.

Similar ideas, though not referred to as reproducibility, have
already been developed in the context of digital preservation
formalization [35]; for instance, rerunning past programs over
past data over different machines, with potentially different
hardware, can be achieved by means of emulators.

Stodden [36] defines reproducibility as the ability of others
to recreate and verify computational results, given appropriate
software and computing resources. Stodden investigates the le-
gal impediment to scientific reproducibility, and proposes a re-
producible research standard. We do not denigrate the impor-
tance of legal issues, but this article only focuses on the techni-
cal aspects of reproducibility.

3.3. Provenance-based Reproducibility

Davidson and Freire explain that a key benefit for maintain-
ing provenance of computational results is reproducibility: a
detailed record of the steps followed to produce a result allows
others to reproduce and validate these results [37]. Specifically,
with an explicit representation of provenance, so-called prove-
nance queries can be expressed to identify all the data objects
and the sequence of steps that have been used to produce a re-
sult [38].

Levine and Liberatore [34] seek to improve the reproducibil-
ity and comparison of digital forensic evidence. They propose
a simple canonical description of digital evidence provenance
that explicitly states the set of tools and transformations that
led from acquired raw data to the resulting product. This prove-
nance representation allows for the comparison and the repro-
duction of results. Inspired by the principle of N-version pro-
gramming, their approach allows multiple tools/libraries to be
used to reproduce a result, thereby increasing the confidence
that can be put in investigations.

Silva et al. [39] argue about the importance of reproducibil-
ity in visualization. Leveraging the Vistrails systems, they ex-
ploit the provenance it generates to ensure that users will be
able to reproduce the visualizations and let them easily navi-
gate through the space of visualization pipelines created for a

given exploration task. Vistrails adopts an action-based prove-
nance model, intended to help reproducibility. We conjecture
that the reproducibility capability is based on replaying such
actions, but the authors do not include an explicit description
of how such functionality can be achieved outside the context
of Vistrails itself. Koop et al. [40] discuss the problem of man-
aging upgrades of tools and libraries, while still being able to
run a previous computation in a new environment; this work is
specifically focused on the Vistrails system and methods neces-
sary to automatically update workflows and provenance.

Mesirov [5] proposes a Reproducible Research System
(RRS), consisting of two components. The first is the Repro-
ducible Research Environment (RRE), which provides compu-
tational tools together with the ability to automatically track
the provenance of data, analyses, and results and to package
them (or pointers to persistent versions of them) for redistribu-
tion. The second element is a Reproducible Research Publisher
(RRP), which is a document-preparation system, such as stan-
dard word-processing software, that provides an easy link to the
RRE.

Cheney et al. [15] provide an operational semantics for the
Nested Relational Calculus (NRC) that generate traces, in-
tented to capture the execution history of a query. Such a notion
of trace is a representation of provenance which is directly in-
spired by the syntax of NRC constructs. They define properties
of such traces and NRC programs, such as consistency and fi-
delity. A trace is said to be consistent to a program, if it is
an explanation of what happened when the program was evalu-
ated. Fidelity is the property that holds when the trace records
enough information to recompute a program when the inputs
change.

The provenance approaches that have been reviewed in this
section are all grounded in a specific execution environment.
Hence, because of their dependencies to a specific technol-
ogy or execution semantics, they fail to meet a key require-
ment of the Open Provenance Vision [11] for provenance on
the Web. Alternative provenance definitions are ontology-based
and not specific to an execution technology: Provenir [20, 21],
the Provenance Vocabulary [22], PASOA [23], OPMV [24],
PML [25], and the Open Provenance Model [26]. None of
them, however, has been given a semantics that is suitable for
reproducibility purpose. This is a shortcoming that we address
for OPM in this paper. This work complements other endeav-
ours aiming to provide a formal underpinning to OPM, which
we survey in the following section.

3.4. Formal definitions of OPM

Moreau et al. [41] provide a set-theoretic definition of OPM,
as well as an illustration of how an abstract machine execution
can generate OPM-based provenance traces. The mapping from
execution to OPM graphs is not formally characterized, and no
attempt is made to provide a converse mapping. In the sub-
sequent version, Kwasnikowska et al. [42] provide a temporal
interpretation of OPM graphs, defined as the set of temporal in-
equalities implied by its edges. OPM inferences combined with
graph patterns are shown to be sound and complete with respect
to inferences that can be made over graph interpretations. This

temporal interpretation does not provide an understanding of
OPM from an execution perspective either.

Cheney [43] investigates the use of structural causal models
as a semantics for provenance graphs, and relates some OPM
concepts to notions of actual cause and explanation proposed
by Halpern and Pearl [44, 45]. At some level, the semantics
we propose here bears some similarity to Cheney’s since it is
also a denotation of a provenance graph, i.e., it sees a graph as
a mathematical function, resulting in a new provenance graph.
In practice, they differ for several reasons: (i) our seman-
tics conforms to OPM v1.1 and in particular handles OPM ac-
counts, whereas Cheney’s is account-less and regards single-
step derivation edges as inferrable, when they can only be as-
serted in OPM; (ii) our semantics builds on the Semantic Web
philosophy, where globally unique names are meant to capture
well understood concepts (in this case, primitives), which are
explicitly captured within a notion of primitive environment;
(iii) Cheney’s semantics attempts the more ambitious goal of
providing a global approximation (using the predictive nature
of causal models) for the program being executed (without hav-
ing its explicit code), so that its behaviour can be repeated for
any arbitrary input; (iv) our semantics allows us to explore and
characterize variants of reproducibility.

Missier and Goble [19] address the question of whether, for
any OPM graph, there exists a plausible workflow in the Tav-
erna workflow language, which could have generated the graph.
To this end, they identify the extra information that should be
captured as part of an OPM graph so that the mapping from
OPM to a workflow representation can be derived. Whilst this
work focuses on some specificities of the Taverna workflow lan-
guage, such as the implicit iterator semantics, it is similar in
spirit to ours, since it derives an executable semantics for OPM.
In their case, it is obtained by composing their translation to the
Taverna semantics [46]. It however does not tackle OPM in full,
ignoring accounts, and does not define reproducibility itself.

Various ontological definitions of the Open Provenance
Model have emerged. The OPM toolbox® supports bidirec-
tional conversions between XML and RDF serializations, re-
spectively defined according to an XML schema and an OWL
ontology [47]. This ontology was inspired by the OWL defini-
tion compatible with the OPM implementation of Tupelo’ [48].
During the third provenance challenge, the Tetherless team also
defined an OPM OWL ontology'’.

As part of the W3C Provenance Incubator activity [49], map-
pings of multiple provenance ontologies to OPM were de-
fined [50]. These mappings showed that concepts such as pro-
cesses, artifacts, and agents can be mapped quite naturally be-
tween the models. The mappings however do not characterize
the computational implications associated with those models,
and do establish whether reproducibility is preserved during
translation across models.

$http://openprovenance.org

http://twiki.ipaw.info/pub/Challenge/
OpenProvenanceModelBindings/opm.owl

Ohttp://twiki.ipaw.info/bin/view/Challenge/TetherlessPC3

http://openprovenance.org
http://twiki.ipaw.info/pub/Challenge/OpenProvenanceModelBindings/opm.owl
http://twiki.ipaw.info/pub/Challenge/OpenProvenanceModelBindings/opm.owl
http://twiki.ipaw.info/bin/view/Challenge/TetherlessPC3

4. Reproducibility Semantics

In this section, we specify the reproducibility semantics for
OPM graphs, which we define as the mathematical meaning of
an OPM graph, seen as a program and whose execution results
in anew OPM graph. First, we study reproducibility in account-
less OPM graphs (Sections 4.2, 4.3 and 4.4) and then in multi-
account graphs (Sections 4.5 and 4.6).

4.1. Intuition of the Reproducibility Semantics

Before delving into the technical details of a denotational se-
mantics, we provide some intuition of how we propose to re-
produce the execution on an OPM graph. We assume that each
process in an OPM graph is annotated with the name of a prim-
itive, and that there is a primitive environment that maps prim-
itive names to actual functions, which in a first approximation
take some inputs and produce some outputs. Here, function ar-
guments are not identified by their position in a sequence of
arguments but by their roles; likewise, outputs can be multiple
and are identified by their role.

The inputs of an OPM graph are all the artifacts for which
there is no was-generated-by edge; its outputs are all the arti-
facts that are not adjacent to a used edge; intermediary artifacts
are those that are not inputs or outputs. Given an acyclic OPM
graph, we assume the existence of a function that returns a list
of all its processes, sorted by order of execution: by this, we
mean that a process in the sorted list does not use any artifact
generated by a process that is subsequent in the list.

Reproducibility is formalized by a recursive function that tra-
verses the sorted list of processes, executing each of them in
turn. Execution of a process is achieved by invoking its asso-
ciated primitive function on the values of artifacts (paired with
roles) it uses, and results in values (also paired with roles), for
which new artifacts are created. The reproducibility function
constructs a new OPM graph at the same time, describing the
re-execution of the graph. The new graph is initialized with
the set of input artifacts (with the same value as in the origi-
nal graphs, or different values, depending on the kind of repro-
ducibility one wants to achieve). Each process execution adds
the process and the output artifacts it generated, and all asso-
ciated edges with roles, where appropriate. Each function of
the primitive environment not only results in artifacts for given
inputs, but also in a set of was-derived-from edges, which are
added to the newly produced graph.

For comparing the original graph and the new graph, but also
for book-keeping, a mapping from nodes of the original graph
to those of the new graph is constructed. It allows us to check
whether all nodes have been mapped, and whether they have
the same associated values. Furthermore, in the case of multi-
account OPM graphs, the mapping allows us to decide whether
we are processing a node that has already been encountered.

So, in summary, the reproducibility semantics is expressed
by a function that takes a set of input artifacts (with their as-
sociated values), a primitive environment, and an input graph,
and returns a mapping and a new OPM graph, which describes
the reexecution of the input graph, and a mapping. We now
formalize this semantics.

4.2. Preliminary Definitions

First, an account-less OPM graph is defined in terms of its
constituents in Figure 2, before its semantics is formalized in
Section 4.3. An account-less OPM graph consists of a set
of nodes and a set of edges. Nodes can be artifacts or pro-
cesses'!, whereas edges are of four permitted types. Artifacts
and processes respectively belong to primitive sets Artifact and
Process. Figure 2 and following figures are a stylised represen-
tation of a Standard ML encoding of the reproducibility func-
tion available for download'?.

Artifact = primitive set of artifacts
Process = primitive set of processes
Role = primitive set of roles
Value = primitive set of values
PrimitiveName = primitive set of primitive names
Node = art of Artifact | proc of Process
Edge = used of (Process X Role X Artifact)
| wgb of (Artifact X Role X Process)
| wdf of (Artifact X Artifact)
| wtb of (Process X Process)
OPMGraph = P(Node)xP(Edge)
AResolver = Artifact — Value
PResolver = Process — PrimitiveName
FullOPMGraph = OPMGraph x AResolver X PResolver

Figure 2: Account-Less OPM Graph

Artifacts are associated with values (belonging to a prim-
itive set of values), whereas each process is associated with
the name of a primitive, whose invocation resulted in this pro-
cess. The association is defined by the mappings AResolver and
PResolver. A FullOPMGraph then refers to an OPMGraph
accompanied by the artifact and the process resolvers.

The OPM graph of Figure 1 can be formalized by G¥ =
(G, V?,VP) as follows:

G = (la1,a2,a3,a4,0as,0a6,a7,p1,p2,p3}, {used(pi,summandi,ay),
used(p;, summandz, a;), wgb(as, out, py), used(py, factor1, az),
used(p», factor2, as), wgb(ag, product, ps), used(ps, divisor, as),
used(ps, dividend, ag), wgb(a7, quotient, p3), wdf(as,a;), wdf(as,as),
wdf(ag, a3), wdf(ag, as), wdf(ay, as), wdf(a, ag)}).

V¢ = {(a1,10), (a2, 20), (a3, 30), (a4, 9), (as, 30), (as, 900), (a7, 100)}

VP ={(p1,prim : sum), (p, prim: mult), (p3, prim: div)}.

In this graph, a;,a»,as,as are inputs and a7 is an output,
whereas the other artifacts as and a¢ are intermediary artifacts.

In order to define a reproducibility function, some topologi-
cal constraints are introduced on OPM graphs. Ways of relaxing
these constraints are discussed further in Section 7.

Definition 1 (Reproducibility Graph Constraints).

1. Well formed: OPM graphs are supposed to be well-formed
as per OPM vli.1 [26]: an artifact can be generated by at
most one process, and there exists no cycle formed of edges
of type was-derived-from.

T As in [41], we ignore agents in this paper, since their role as catalyst does
not directly affect computational reproducibility.
Zhttp://eprints.ecs.soton.ac.uk/21992/

http://eprints.ecs.soton.ac.uk/21992/

2. Acyclic: For the purpose of the reproducibility semantics,
we assume that an OPM graph is fully acyclic, i.e., no
cycle can be formed with any edge.

3. Sortable: From the acyclicity property, we can derive an
ordered list of processes such that the invocation of a pro-
cess in the list does not require the outputs of any sub-
sequent processes in the list. Furthmore, we assume the
existence of sortProcesses, a function'> that can returns
this ordered list of processes.

4. No was-triggered-by: We assume that there is no edge
was-triggered-by.

5. Role unicity: We also assume that inputs and outputs are
uniquely identified by a role, for a given process: for any
edges used(p, r,a),used(p, r,a), then a; = ay, likewise,
for any edges wgb(ay, r, p), wgb(as, r, p), then a; = as.

]

Our formalization relies on partial maps, mapping roles to
some set (e.g., role-values or role-artifacts). For instance rv* €
Role — Value. Given arole r € DOM(rv*), then rv*(r) denotes
the value associated with r. For convenience, our notation also
allows for such a partial map to be seen as a finite sequence
of role-value pairs P(RoleValue), over which we can perform a
map operation. Finite sequences are represented with the SML
list notation x :: x™.

4.3. Reproducibility of an Account-Less OPM Graph

Key to reproducibility is a definition for each of the primi-
tives referred to by processes of an OPM graph. To this end,
we introduce the concept of a primitive environment associat-
ing primitive names with primitives, which essentially produce
some output values for some input values. In OPM, values
(whether input or output of a process) are associated with a role.
Hence, primitives take sets of role-value pairs, and produce sets
of role-value pairs (cf. Figure 3, line 2).

Furthermore, edges of type was-derived-from (wdf) need to
be asserted and cannot be inferred (cf. OPM specification [26]
for the definition of OPM inference and [42] for its characteri-
zation). The only component that has knowledge of such depen-
dencies is the primitive itself. So we expect a primitive not only
to return a set of role-value pairs, but also which was-derived-
from dependency exists between which output (identified by its
role) and which input (similarly identified). Such a pair of roles,
an element of EdgeSpec (cf. Figure 3, line 4), can be used to
reconstruct the appropriate was-derived-from edge in the result-
ing graph. The intent of the type InvocationResult is similar,
except that it refers to role-artifact pairs rather than role-value
pairs (cf. Figure 3, line 5).

Reproducing an OPM graph results in a new OPM graph.
There is some mundane activity involved in constructing such
a new OPM graph: how should artifacts and processes be cre-
ated? Hence, we assume the presence of factories: given a node
from the old graph and the current new graph that we are in the

13The function sortProcesses selects a deterministic order of processes, when
it does not exist in the graph.

process of building, such a factory results in a new node and
a new OPM graph containing that node (line 8-10). Parame-
terizing the reproducibility function by such factories allows us
to consider a range of options, such as the resulting graph has
the same nodes as the original or the resulting graph has fresh
nodes.

Finally, to be able to compare the results of the reproduced
computation and the original results (whether final or interme-
diary), we introduce a mapping function that maps nodes of
the original graph to nodes of the resulting graph. The pair of
mappers AMapper and PMapper is conveniently referred to as
Mappers (cf. Figure 3, lines 1-3).

The reproducibility function has a signature of type
Reproduce (cf. Figure 3, lines 16-18). Given a graph fac-
tory (i.e. how we construct nodes), a primitive environment,
an input OPM graph and some input artifacts, a reproducibility
function must produce a resulting OPM graph and mappings
from the input graph to the output graph. Such a reproducibil-
ity function recursively traverses the input graph, reproducing
the invocation of every primitive; to this end, it relies on an aux-
iliary function of type Execute, reproducing the invocation of a
single process (cf. Figure 3, lines 12-14).

Having defined all the necessary sets, the reproducibility-
semantics can be expressed as in Figure 4. The reproducibility-
semantics is captured by function reproduce; of type
Reproduce, which relies on the auxiliary function reproduce,
to recursively execute each process of its input graph GJ.

The auxiliary function reproduce, relies on execute to invoke
primitives, and for each such invocation, ensures that new edges
of the appropriated type are accumulated in the graph G.

The auxiliary function execute of type Execute invokes a
primitive, as per defined in the primitive environment & and
extends its input graph G” with new artifacts and processes,
created with the respective factories. It also ensures that the
mappers are suitably extended with new mappings and valua-
tions for the process and its output artifacts.

4.4. A Definition of Reproducibility

In this section, we show that the reproducibility function can
be applied to any OPM graph, but it does not always terminate,
or it results in a different graph. Hence, we define here what we
mean by a reproducible graph. First, we define role-value map
equality.

Definition 2 (Role-Value Map Equality). Two role-value
maps rvy and rv; are equal if DOM(rv}) = DOM(rv}) and
rvi(r) = rvi(r) for any r € DOM(rvy). O

Graph equality “up to mapping” is satisfied if graphs are iso-
morphic and have the same values for corresponding nodes. For
completeness, formalization is provided as follows.

Definition 3 (Graph Equality “up to mapping”). Let G| =
(Gy, (V‘I’,(Vf) and Gy = (Ga, ”Vg,(Vg) be two full OPM graphs.
Let M be a pair (M, MP) of bijections such that their domains
are the nodes in Gy and their range the nodes in G,. Two graphs
G\, G} are equal “up to mapping M”, noted

v M v
G MG,

1 PrimitiveEnv = PrimitiveName — Primitive AMapper = Artifact — Artifact
2 Primitive = P(RoleValue) — (P(RoleValue) x P(EdgeSpec)) PMapper = Process — Process
3 RoleValue = Role x Value Mappers = (AMapper x PMapper)
4 EdgeSpec = Role X Role

5 InvocationResult = P(Role X Artifact) X P(EdgeSpec) InputArtifacts = AResolver

6 Invocation = PrimitiveName X P(Role X Artifact) X P(Role X Artifact)

7

8 ArtifactFactory = Artifact > OPMGraph — Artifact x OPMGraph

9 ProcessFactory = Process — OPMGraph — Process X OPMGraph

10 GraphFactory = ArtifactFactory X ProcessFactory

11

12 Execute = GraphFactory — PrimitiveEnv

13 — Invocation — Process — FullOPMGraph — Mappers

14 — InvocationResult X FullOPMGraph X Mappers

15

16 Reproduce = GraphFactory — PrimitiveEnv

17 — FullOPMGraph — InputArtifacts

18 — Mappers x FullOPMGraph

Figure 3: Reproducibility in a single Account

if the following conditions hold:
e Forany a € G, Vi(a) = V5(M*(a)).
e Forany p € G\, V/(p) = Vi(MP(p)).

e For any edge (n;,ny)y € G (or {(n;,r,m) € Gy),
(M(ny), M(n)y € Gy (or (M(my), r, M(n2)) € Gy).

o For every edge (n|,n}) € Gy, there exists (n;,ny) € Gy
such that {M(n;), M(n2)) = (n},n}) (and likewise, for
edges with roles).

O

Graph equality up to mapping implies that graphs have the
same artifacts and processes (up to naming), the same used and
was-generated-by edges connecting processes and artifacts, and
similar was-derived-from edges linking artifacts.

Having specified a reproducibility function in Figure 4, we
can now define the notion of a reproducible graph as follows. A
graph is reproducible if, given the same inputs, the reproducibil-
ity function produces another graph that is equal “up to the
mapping” between nodes, for a given primitive environment. In
other words, we define a provenance graph as reproducible, if
combined with a primitive environment, it contains enough in-
formation to be interpreted as a program whose execution can
yield an isomorphic provenance graph.

Definition 4 (Reproducible Graph). Let G| be an OPM
graph. Let (F°,F7P) be artifact/process factories; let & be a
primitive environment, let in(GY) be the values of input artifacts
in GY. Let (My, Gy) = reproduce, (F¢, F7) & G in(G)).

The graph G\ is reproducible in &, if the following holds:

v My v
G, M G,

We observe that the reproducibility function may not be de-
fined, for different reasons, which we now discuss and illustrate
with simple examples pertaining to Figure 1. (i) An incom-
plete set of inputs is provided: e.g., {(a, 10), (az, 20), (a3, 30)}.
(ii) Inputs or intermediary results are not in the domain of some
primitives: e.g., {(a;, 10), (a2, 20), (as, 30), (a4, 0)}. (iii) Incor-
rect number of inputs, incorrect roles or incorrect types are pro-
vided to a primitive; e.g., for primitive environment mapping
prim:sum to the unary log function. We note that some of these
failure reasons can be checked statically without re-executing
primitives, if primitive signature and arity are available.

Based on Definition 4, for given factories and primitive envi-
ronment, we can identify the class of reproducible OPM graphs.
We note that not all graphs are reproducible. For instance,
the OPM graph of Figure 1 is no longer reproducible with a
primitive environment associating ps to the addition operation,
since the graph output would be 909 instead of 100. Likewise,
if a primitive returns different was-derived-from edges, the
graph is not reproducible either. If the primitive environment
maps p; to prim:sum defined as { A rv*.{out, rv*(summand,) +
rv*(summand,)), {{out, summand,), {out, summand,)}), or to
the primitive ignoring its arguments { A rv*.{out, 30), {}), gener-
ated artifacts will have the same values as their original counter-
parts, but graph topologies will differ. Hence, with the latter
primitive environment, the graph is not reproducible for such
primitive definition.

Definition 4 is related to Cheney’s pointwise approxima-
tion [43]; a pointwise approximation of a graph is a function
that returns the same outputs (and intermediary results) when
provided with the same inputs. Definition 4 generalizes this no-
tion by mandating that the graph topology be preserved. It as-
sumes that a same primitive environment is used to compute the
original graph and the reproduced graph (hence, performing a
consistency check [15]). The reproducibility function however
allows other primitive environments to be used to reproduce

reproduce, : Reproduce
reproduce; (F°, ¥7)E G| 0 =

let (My, G3)) = initGraphForInputs 7 (graphlnputs(GY)) My 6

in reproduce, (F¢, ¥7) & (sortProcesses G\) G| M, G}
end

reproduce, ¥ & [1 G} M, G5 = (M1, G)
reproduce, ¥ & (p :: 1) G M1 G, =

let inv = extracllnvocatlon pGi M,
G ru,) = inv
((rg*, sp "), G5, My) = execute ¥ & inv p Gy M,
Gs. V5. VD) = G
P2 = Mp
used” = map (A(r,a). used(p,, r,a)) ru’

wgb* = map (A(r,a). wgb(a, r, py)) rg*
wdf* = map (A(ry, ry). wdf(rg*(r1), ru*(r2))) sp*
G = (Gs U wdf* U wgb" U used", Vi, V%)

in reproducez FEIG] Mz G,
end

execute : Execute
execute (F*,77) & inv po (G, V*, VP) (M, MP) =

let (n,ru*,rg*) = inv
pr = &mn
(rv*, sp*) = pr(map (A(r,a). (r,'V*(a))) ru*)
(rg5,G1) = mapWithGraph (A(r,v).AG. let (a,G) =
in ((r,a),G)
end)
' G
(p2,G2) = FP py G)
V3 = Vrg; =" ']
VvV = VPlpy—n]
M = Mg~ g
Mp M [py — p2]
in ((rgz,SP), (Gz,(VZ,(V”) (M5, M)
end
initGraphForInputs ¥ a* (M, MP) V* =
let (a5,G) = mapWithGraph ¥ a* Gy
Mg - Mﬂ[a* _)* az]
Vs = Vi.la =" (map V a*)]
in (M5, MP), (G, V5, V))
end

extractInvocation p (G, V*,VP) (M¢, MP) : Invocation =

let used” = getUsed(p,G)
at = map (lused(p, r,a).a) used”
a; = map M*a*
i = map, (A(used(p,r,a), a).(r,a»)) used” a;
rgs = map (A(wgb(a,r, p)).(r,a)) getGeneratedBy(p, G)

in (VP(p), ruz, rg5)
end

p € Process process
a € Artifact artifact
a € P(Artifact) artifact set
G € OPMGraph OPM graph
G" € FullOPMGraph Full OPM graph
& € PrimitiveEny primitive env.
pr € Primitive primitive
F* € ArtifactFactory artifact factory
FP € ProcessFactory process factory
F € GraphFactory graph factory
sp € EdgeSpec edge specification
rv € RoleValue role-value pair
" € Role — Value role value map
rg € Role x Artifact role-generated artifact pair
rg" € Role — Artifact role generated artifact map
ru € Role X Artifact role-used artifact pair
ru* € Role — Artifact role used artifact map
V* € AResolver artifact resolver
VP e PResolver process resolver
M* € AMapper artifact mapper
MP € PMapper process mapper
€

InputArtifacts input artifacts

f[X—>Y] = Av. ifV=XIhenyelsef(v)
flxmxr =Tyuyl = flx =yl =7yl
-1 = f

extension by role

) 2 =7y = flx oy Ol = y]
f -yl = f

mapWithGraph : (@ = 8 — y =) = P(a) — g — P(y) X
mapWithGraph f [1G = ([],G)
mapWithGraph f (x :: x*) G =

let (y,G)) = [fxG

", G3) = mapWithGraph f x* G,
in(y:y",Gs)
end

getUsed(p, G) = {used(p,r, a) € G}
getGeneratedBy(p, G) = {wgb(a, r, p) € G}
sortProcesses : FullOPMGraph — list(Process)

Gruir = {0, 0}
(V?mt = /la 1
v =Ap.L

graphlnputs(G) = {a € G | wgb(a, r, p) ¢ G, for any r, p}
graphOutputs(G) = {a € G |used(p,r,a) ¢ G, for any r, p}
graphlnterm(G) = {a € G}\

(graphInputs(G) U graphOutputs(G))

Figure 4: Reproducibility Semantics

computation (such as upgraded libraries [40]); we discuss the
opportunities these present in Section 6.

In Section 5, we investigate the implementation of this se-
mantics in a reproducibility service. Beforehand, we focus on
reproducibility in the more general multi-account graphs. In
this context, we establish a property of reproducible graphs.

4.5. Multi-Account OPM Graphs

So far, we have tackled account-less OPM graphs. In
this section, we provide a definition of multi-account graphs
with a view of defining the associated reproducibility seman-
tics. Figure 5 displays a definition of a multi-account graph
MAccOPMGraph. 1t is a triple consisting of a set of accounts,
a partial function mapping an account to an OPM graph, and a
refinement function.

Account = primitive set
Refinement = Account — Process — Account
MAccOPMGraph = P(Account)
X(Account - OPMGraph)
XRefinement
FullMAccOPMGraph = MAccOPMGraph X AResolver
XPResolver

Figure 5: Multi-Account OPM Graph

With this definition, the set of accounts known to a
MAccOPMGraph is given by the first component of the triple.
For each account, the multi-account OPM graph provides us
with one OPM graph.

The third component of a MAccOPMGraph is a refinement
function, which is a partial function capturing a specific form
of refinement, corresponding to process nesting due to proce-
dural abstraction. A process is allowed to be refined into a sub-
graph (itself consisting of processes and artifact and associated
edges); if p is the process, @ the account in which p occurs, the
subgraph must correspond to an account, say @’. In that case,
the refinement function p is such thatp @ p = o’

To be well-formed, a multi-account graph needs to satisfy
some constraints, as follows:

Definition 5 (Well Formed Multi-Account Graph). Let G €
MAccOPMGraph be the triple (a*,T, p). The graph G is well-
formed, if the following constraints hold:

e for any account a € o, then I'(@) is defined;

e for any account a € a* and process p, if p « p is defined,
then p is a process in graph I'(@).

We note that p is not necessarily defined for all processes in
all accounts, meaning that some processes are not refined into
subgraphs. [

A FullMAccOPMGraph includes artifact and process re-
solvers, mapping them to values and primitive names, respec-
tively. Two OPM graphs in a multi-account OPM graph overlap

if they share some artifact or process. We note that these re-
solvers are defined for a FullMAccOPMGraph, meaning that
an artifact or a process is associated with a single value for all
the accounts of the graph. The reason for this design decision
is that we seek to define a reproducibility function, and we see
accounts as a mechanism that provides multiple levels of details
about a same execution.

To enable the definition of a reproducibility function, we set
some strict constraints on the refinement function. To help their
formulation, we introduce a relation between accounts.

Definition 6 (Descendant). Let G € MAccOPMGraph be the
triple (a*, T, p). Let ay, as be two accounts of G, the account a
is said to be a descendant of ay, noted o <lay, if p @) p = a, for
some p belonging to I'(a;). We use <* to denote the reflexive,
transitive closure of <. [J

Beyond well-formedness, a graph must satisfy constraints to
ensure that it can be “evaluated” by the reproducibility func-
tion. These constraints do not exist in the original OPM speci-
fication. Instead, they reflect the view that each account can be
interpreted like a detailed execution trace of a single process.

Definition 7 (Account Refinement Constraints). Letr G €
MAccOPMGraph be (a*,T,p). Account refinements form a
hierarchy, without sharing, that satisfies the following con-
straints:

e Acyclic: there is no sequence «y,...,a, where a; < iy
(fori=0,...,n—1)and a, = a, for any process p; and
n>1

e No Account Sharing: let p a1 p1 = @y and p @z p, = ay.
We have that ay = a4 if and only if @) = a3 and p; = p».

e No Process Sharing: for any distinct accounts ay,a; in
a*, I'(ay) and T'(ay) do not have any common processes.

e Consistent generation: if there are edges wgb(a,ry, p1) in
I'(ay) andwgb(a, ry, p2) inT(ay), then ay <" ap or a, < a.

e Sortable: for any account a in G, let {(po,...,Pn-1) =
sortProcesses(I'()), then if p a p; = «a and
pap; = «ajifi < j, then (graphOutputs(I'(a;)) U
graphinterm(I'(«;))) N graphinputs(I'(a;)) = 0

e Input Preserving: for any account «; in G, an input ar-
tifact a in graphinputs(I'(«;)) cannot be generated in an
account aj, where a; 1" a;.

e QOutput preserving: outputs of a process that is refined in
an account must be generated in a refinement of that pro-
cess.

O

The above properties are purely syntactic, constraining the
topology of a multi-account OPM graph. In addition, the fol-
lowing property refers to the primitive environment.

Definition 8 (Refinement consistency). An artifact generated
by two processes in different accounts requires the correspond-
ing primitive to produce the same value. []

Taken together, Definitions 7 and 8 provide a set of condi-
tions that OPM graphs need to satisfy, for provenance claims
in different accounts to be consistent, in the context of a given
primitive environment.

Figure 6 contains a multi-account graph, with a toplevel ac-
count a represented in black. Process p; is refined into ac-
count a, represented in red, whereas process p; is refined into
account a; represented in blue. In other words, @y < @; and
ao < a,. This graph satisfies the account refinement constraints
of Definition 7. Indeed, the descendant relationship is acyclic
and forms a tree strictly. The graphs I'(ay), I'(a;), I'(a2) over-
lap over artifacts but not processes. Artifact a, was generated
by p; in I'(ap) and by p3 in I'(@;), with @y < @) (and similarly
for az). Processes in I'(ag) can be sorted as {(pi, p»), and inputs
of I'(ay) (i.e., aj, a4) are not outputs or intermediaries of I'(a;).
Artifact a; is an input in I'(@() and in the refinement I'(a;). Fi-
nally, artifacts a, and a3, generated respectively by p; and p; in
I'(ap), are also generated in the refinements «; and ;.

type: Integer
value: 3

type: Integer

L am - tdiidens

value: 14
" (quotient)

primitive: div

. i .~ et

s{remainden) . (quotient)

type: Integer
value: 2

type: Integer
value: 4

primitive:div. ~ { a6 — 7777 primitive: minus2

type: Integer
value: 0

type: Integer
value: 2

P @y p1 = a1, p @y pa = ay wWith ag: black, a;: red, a;: blue.

Figure 6: A Multi-Account OPM Graph (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

In this graph, we see that the refinement I'(«;) can have more
inputs than process p;: this is the essence of abstraction, in
I'(ay), details of the computation can be revealed, when they
were hidden in (. Likewise, I'(|) can have more outputs than
process p;. Furthemore, as, an output of I'(a) is allowed to be
used as input of ['(a;), despite being absent in graph I'(a).

So far, our discussion of this graph has been independent of
the primitive environment. We can see that the graph satisfies
Definition 8: if p; and p, are associated with primitives sub-
tracting 10 and 2 respectively, and p3; and p4 are both associ-
ated with the division primitive, then we see that for the input
values (a; = 14,a4 = 3), p; and p3 both assign value 4 to a,
(and similarly, for a3).

11

4.6. Reproducibility of a Multi-Account OPM Graph

Figure 7 displays the reproducibility semantics for multi-
account OPM graphs, expressed by a function of type MAc-
cReproduce. Provided with the appropriate graph factories and
a primitive environment, for a given account and input artifacts,
it takes a FullMAccOPMGraph and returns another FullMAc-
cOPMGraph and a set of mapper functions. The account pro-
vided as input is the account in which computation needs to
be reproduced. Mappers can now map accounts of the original
graph to accounts in the resulting graph; account mappings are
noted M. Likewise, factories comprise a factory for accounts;
account factories are noted 7.

The reproducibility semantics is expressed by function
reproduce,, invoking the recursive function reproduce; after
initializing a FullMAccOPMGraph acting as an accumula-
tor. The function reproduce; uses a breadth-first strategy to
reproduce a multi-account graph. Its third argument lists all
accounts, at the current level, which need to be reproduced,
whereas its fourth argument enumerates all direct descendant
accounts, which will be iterated over, at the next level. The
function reproduce; relies on reproduce, (defined in Figure 4)
iteratively reproducing each account (and its refinements).

To ensure that nodes are properly shared across accounts in
the resulting graph, we rely on the following operator, defining
a factory function that creates a new artifact only for those that
have not been mapped yet.

Mex, {Mx}UG) if M%x # L,

F* x G otherwise .

FN M =AxG.

We also introduce a combining operator, that takes the
“union” of two functions, preferring the first over the second.

Oix ifOx# L

6, W 0, = Ax. .
! 2 * 6,x otherwise.

After reproducing the current account a, the function
reproduce; ensures that all accounts that are direct descendant
of @, noted a*, are also given the current set of artifact values,
(V4§ o M3), as a way of resolving the refinements’ inputs; like-
wise, any remaining accounts at the same level have their inputs
extended in the same way. Referring to the example of Figure 6,
this ensure that as is a provided as an input to account a;, after
completion of evaluation of account «;.

We note that the reproducibility function may be provided
with inputs that differ from those that were used in the original
execution. For instance, the graph of Figure 6 may be executed
with inputs (a; 100,a4 = 10) and the same primitive en-
vironment, but would result in a, being assigned two different
values. Hence, the reproducibility function is not defined for
such a graph, these inputs and primitive environment. How-
ever, if p; (and likewise p,) was assigned to primitive “div10”,
dividing its input by 10, then this inconsistency would not oc-
cur.

The following lemma summarizes a key property of the re-
producibility function. If a graph G, is the result of the re-
producibility function for a given primitive environment, G, is
itself reproducible in that environment.

AccMapper = Account — Account

AccountFactory = Account - MAccOPMGraph — Account Xx MAccOPMGraph
MAccGraphFactory = GraphFactory X AccountFactory
MAccMapper = Mappers X AccMapper
MAccReproducelter = MAccGraphFactory — PrimitiveEnv — P(Account X InputArtifacts) — P(Account X InputArtifacts)
— FullMAccOPMGraph — MAccMapper — FullMAccOPMGraph
— MAccMapper X FullMAccOPMGraph
MAccReproduce = MAccGraphFactory — PrimitiveEnv — (Account X InputArtifacts) — FullMAccOPMGraph

— MAccMapper X FullMAccOPMGraph

reproduce; : MAccReproducelter
reproduces ¥ E [1 [1(G, V', VP) M (G1, Vi, V]) = (M, (G1, V], V)

reproduces F & [] next (G, V°, VP) M (G, V4, V?) = reproduces F & next [1 (G, V, VP) M (G, V4, V)

reproduce; ¥ & ((a, 0) ::) next (G, V*, VP) M (G, VY, (Vp) =

let @Tp) = G
G = Ta
(2,G2) = (F*\ M) a G /Jmapaccount

MS M®a - ay] / extend map
p* sortProcesses(G, V¢, VP)
(Mg, Mg), Gy initGraphForInputs (F¢ \ M*) (graphinputs(G)) (M*, MP) 6
(M, M), (Ga, V5, V) reproduce, (F* \ M, F7)Ep* (G, V,VP) (Mg, Mg) G,

ap* = map (Ap.(p @, p)) p* [get process-subaccount pairs
(25.G3) = mapWithGraph F* (map (A(a, p).a) ap*) G, [map subaccounts
M = Milmap (Aa, p).a) ap™ =" a;] [extend map
6, = 609 (V5 o M) / extend inputs with current resolver
I = (map (Aa,0). (,0; O (V5 o M) D) /update current level
next = (next@(map (Aa. (@, 0,)) @) / update next level
(-p1) = Q3
P = U {(a, pi, apla;p; € ap*} /] extend refinement
in reproduce; & E I next’ (G, (V” (Vp) (M5, M), MS) (Gslar = Gall= p2], V§ & V5,V W V)

end

reproduce, : MAccReproduce
reproduce, F & (@, 0) (G, V*,VP) =
reproduce; F & [(a, 0)] (G, V, V) Muic (Gnits Vo Vi)

F € ArtifactFactory artifact factory p € Refinement refinement
FP € ProcessFactory process factory I' € Account - OPMGraph account graph map
F* € AccountFactory account factory 0 € InputArtifacts input artifacts

¥ € GraphFactory graph factory M* e AccMapper account mapping

Figure 7: Reproducibility of a Multi-Account OPM Graph

12

Lemma 1. For any primitive environment &, for any factory F,
.o P
for any multi-account graph G, for any resolvers V¢{, V|, and
for any input 0y, if
reproduce, F & (a,6) (G1, V{, V) = My, (G2, V5,V3))

and

reproducey ¥ & (M{(@),6:) (G2, V5, V3) = (Mo, (G, V5, V5)),

where ,(M{(x)) = V{(v) if 01(x, v), then
G M G

Sketch of proof: we proceed by induction on the ordered list
of processes in G,, and the current level of refinement. At
each step, we can establish that the same primitive is applied
to the same inputs, generating new output artifacts and edges
G which correspond to those in G,. Furthermore, given that G,
was itself generated by reproduce,, it does not contain any edge
that was not produced by application of a primitive. Hence, the
resulting graph G is equal to the original graph G, “up to map-

ping”.

5. Semantic Web and Reproducibility

In this section, we investigate how to leverage the repro-
ducibility semantics of Section 4 in order to define a repro-
ducibility service for the Semantic Web. First, we outline an ar-
chitecture for a reference implementation of this service. Then,
we survey the Semantic Web techniques that are exploited in
this implementation. Finally, we summarize the assumptions
underlying OPM graphs for reproducibility in the Semantic
Web.

5.1. Reproducibility Service Architecture

Figure 8 displays the architecture of a reproducibility service.
It consists of four key components: (i) the reproducibility en-
gine, which implements the reproducibility semantics of Sec-
tion 4; (ii) a triple store containing representations of the OPM
graph to reproduce, and of the OPM graph being generated, and
semantic declarations of primitives (iii) the primitive environ-
ment, which maps primitive names to actual primitives; (iv) the
execution engines, which are implementations of the primitive.
We now discuss them below.

The reproducibility engine implements the reproducibility
semantics. Given an OPM graph, it extracts processes in their
invocation order (as specified by dependencies). Each process
is annotated with a primitive name.

For instance, in the First Provenance Challenge [27] work-
flow (discussed in Section 6), process p1 results from the acti-
vation of the primitive prim:align_warp.

13

input graph

Reproducibility

reproduced graph Eng ine
and mapping
<
Execution
Engines
Triple Primitive
Store Environment|

Figure 8: Reproducibility Architecture

@prefix opm: http://openprovenance.org/ontology#
@prefix prim: http://openprovenance.org/primitives#
@prefix pcl: http://www.ipaw.info/pcl/

pcl:pl opm:annotation pcl:anl_pl .
pcl:anl_pl a opm:Annotation;

opm:property pcl:pr_9 .
pcl:pr_9 a opm:Property ;

opm:uri prim:primitive;
opm:value prim:align_warp.

Each primitive name is associated with an imple-
mentation of that primitive by the primitive environ-
ment. For instance, the default environment con-
tains a mapping from prim:align warp to the name
http://openprovenance.org/reproducibility/swift#align warp,
which is itself mapped to an implementation procedure in the
execution engine. We have developed two types of execution
engines, inline in the Java virtual machine, or delegated to the
command line by means of the Swift workflow engine [51].

Swift encompasses Swift script, a declarative language al-
lowing the type of procedures to be declared, as well as the nec-
essary “plumbing” to invoke the executable on the command
line. Figure 9 illustrates a Swift declaration for align warp
specified as taking four inputs (i1, i2, i3, i4) and producing
an output (o). Each input/output element is associated with its
OPM role, unique for this primitive. For instance, the output o
has role out, whereas the anatomy image i1 has role img. We
note that the actual invocation makes explicit use of the image
files i1 and i2. On the other hand, the header files are ex-
plicitly declared with roles hdr and hdrRef, but are not passed
explicitly to the executable align_warp since it derives them
automatically by replacing the extension img by hdr.

So far, within an OPM graph that we wish to reproduce, we
find an explicit representation of processes and annotations in-
dicating which primitives caused their executions. These prim-
itives are represented by URIs that are mapped to procedure
definitions executable by a specific execution engine. These
executables need to be fed with the relevant inputs.

In order to illustrate how actual inputs are identified at re-
execution time, let us examine an original OPM graph that

<procedure name="align_warp">

<output name="o" type="WarpParameters" opr:role="out"/>
<input name="il" type="AnatomyImage"
<input name="i2" type="ReferenceIlmage" opr:role="imgRef"/>
<input name="i3" type="AnatomyHeader" opr:role="hdr"/>

<input name="i4" type="ReferenceHeader" opr:role="hdrRef"/>

opr:role="img"/>

<binding>
<application>
<executable>align_warp</executable>
<function name="filename">
<variableReference>il</variableReference>
</function>
<function name="filename">
<variableReference>i2</variableReference>
</function>
<function name="filename">
<variableReference>o</variableReference>
</function>
<stringConstant>-m</stringConstant>
<stringConstant>12</stringConstant>
<stringConstant>-q</stringConstant>
</application>
</binding>
</procedure>

Figure 9: Swift Script for align_warp

we wish to reexecute. For the sake of illustration, the graph
contains pcl:al an input artifact with type File, at location
/home/pcl/reference. img, all of this expressed in RDF as
follows.

pcl:al a opm:Artifact ;
opm:account pcl:black ;
opm:label "Reference Image" ;
opm:type prim:File.

pcl:al opm:annotation pcl:anl_al .

pcl:anl_al a opm:Annotation;
opm:property pcl:pr_23 .

pcl:pr_23 a opm:Property ;
opm:uri prim:path ;
opm:value "/home/pcl/reference.img" .

The reproducibility engine identifies all input artifacts, and
uses them to reproduce the original OPM graph. In practice, for
each input artifact such as pc1:al, we may want to use its ex-
act file or another one, possibly at an alternative location (since
the machine we reproduce may not have the same file system
as the one in which the original graph was produced). The re-
producibility engine allows for a novel location to be specified,
by making use of engine-specific configuration files. For in-
stance, with Swift, a configuration indicates the path where the
file must be retrieved from.

<variable name="var_il" type="ReferenceImage">
<file name="//home/user/pcl/reference.img"/>
</variable>

Likewise, we do not necessarily want the reproducibility en-
gine to write output files at the same location, because we do

14

not want to overwrite existing files, or because we do not have
the rights to write at that location. So, engine-specific config-
uration files also specify the actual location where output files
must be stored into. In this example, they take place in the cur-
rent directory.

<variable name="var_o" type="WarpParameters">

<file name="./paramsl.warp"/>
</variable>

This kind of “plumbing” activity is taken care of automati-
cally by pre-defined artifact factories.

5.2. Semantic Web Techniques for Reproducibility Service

Multiple Semantic Web technologies have been exploited to
build a reference implementation of the reproducibility service.
Our baseline is a pre-existing OWL ontology for OPM [47].
We discuss the technologies that have been used, the purpose
for which they were used, and their limitations.

Queries. Having represented OPM graphs in RDF, it is natu-
ral to use SPARQL [52] to express provenance queries. This
use of SPARQL is well documented in the literature (e.g.,
MINDSWAP [53] and Wings [54] in the first Provenance Chal-
lenge, Tetherless [55] in the third Challenge). Two issues are
worth discussing. Identifying all inputs of an OPM graph re-
quires negation by failure, which can be encoded in SPARQL
as illustrated in Figure 10. Querying transitive properties is dis-
cussed next in this section.

SELECT 7a

WHERE
7a a opm:Artifact
OPTIONAL {?7a opm:_wasGeneratedBy 7p}
FILTER (!bound(?p))

Figure 10: SPARQL query: Inputs to an OPM Graph

Transitive Closures. When multiple or disconnected OPM
graphs co-exist in a triple store, and we wish to reproduce a
specific result, the above query return all graph inputs, includ-
ing some that may not have affected the result. Instead, tran-
sitive closures are useful to identify the inputs that indirectly
cause some specific outputs. Figure 11 displays a possible def-
inition of the multi-step edge WasDerivedFrom* as a transi-
tive property in OWL. In the baseline OPM ontology [47], a
WasDerivedFrom OPM edge is expressed as an OWL class
and not an OWL property, since such an encoding facilitates
the expressiveness of other OPM properties, such as account
membership, time information, and OPM annotations.

We then define an OWL property, _wasDerivedFrom with
Artifact as domain and range. Such a property can be in-
ferred'* by OWL by means of a property chain: if there is

4In the process of defining this ontology, it was necessary to sacrifice el-
egance for consistency. Indeed, instead of defining properties effect and
cause from Edge to Node, we had to define effectWasDerivedFrom and
causeWasDerivedFrom from Wasderivedfrom to Node; similar properties
were also defined for other OPM edges. Such a kind of definition ensured the
ontology was consistent.

// Class: http://openprovenance.org/ontology#WasDerivedFrom

SubClass0f (WasDerivedFrom
SubClass0f (WasDerivedFrom
SubClass0f (WasDerivedFrom
SubClass0f (WasDerivedFrom
SubClass0f (WasDerivedFrom

Edge)

ObjectSomeValuesFrom(effectWasDerivedFrom Artifact))
ObjectSomeValuesFrom(causeWasDerivedFrom Artifact))
ObjectAllValuesFrom(effectWasDerivedFrom Artifact))
ObjectAllValuesFrom(causeWasDerivedFrom Artifact))

// Object property: http://openprovenance.org/ontology#effectWasDerivedFrom-1

InverseObjectProperties(effectWasDerivedFrom-1 effectWasDerivedFrom)

InverseFunctionalObjectProperty(effectWasDerivedFrom-1)
ObjectPropertyDomain(effectWasDerivedFrom-1 Artifact)
ObjectPropertyRange (effectWasDerivedFrom-1 WasDerivedFrom)

// Object property: http://openprovenance.org/ontology#_wasDerivedFrom

SubObjectProperty0f (_wasDerivedFrom _wasDerivedFrom_star)
ObjectPropertyDomain(_wasDerivedFrom Artifact)
ObjectPropertyRange (_wasDerivedFrom Artifact)

// Sub property chain axiom

Sub0ObjectProperty0f (SubObjectPropertyChain(effectWasDerivedFrom-1 causeWasDerivedFrom) _wasDerivedFrom)

// Object property: http://openprovenance.org/ontology#_wasDerivedFrom_star

TransitiveObjectProperty(_wasDerivedFrom_star)
ObjectPropertyDomain(_wasDerivedFrom_star Artifact)
ObjectPropertyRange (_wasDerivedFrom_star Artifact)

Figure 11: Transitive _wasDerivedFrom_star

an artifact that is the effect of a WasDerivedFrom edge, itself
with another artifact as its cause, then we can infer a property
_wasDerivedFrom between these two artifacts.

Then, property _wasDerivedFrom_star is defined as tran-
sitive, with _wasDerivedFrom declared as a subproperty of
_wasDerivedFrom_star. Similar definitions can be adopted
for all multi-step inferences permitted by OPM.

Using OWL to encode OPM inferences (as described in [26])
presents some further challenges. First, we note that OPM
completion rules (artifact and process introductions) are not
expressible’> in OWL 2 since they require the inference of
novel individuals and properties between novel and existing in-
dividuals; encoding these would require us to declare a prop-
erty as a subproperty of a property chain, which is explic-
itly forbidden by OWL 2 [56]. Second, the transitive clo-
sure defined in Figure 11 ignores accounts: it could infer a
_wasDerivedFrom_star property by composing (properties
inferred from) edges declared in two separate accounts, which
is not a legal inference in OPM. A solution to this problem is
to consider named graphs [57] to capture assertions related to
an account, and ensure that OWL inferences are limited to a
graph [58].

Ontological Definitions. We crafted an ontology for repro-
ducibility that is being used at design time. Here, design time
refers to the moment a system with reproducibility capabilities
is being designed; it is to be contrasted with runtime, which
denotes the moment when the reproducibility function is being
executed.

15This problem was also observed by McGrath and Futrelle [48].

15

The ontology allows us to express core concepts, such as
common artifacts (files with their path, numbers, collections),
processes (with a reference to a primitive name), and kinds of
primitives. This ontology (with prefix prim) extends the OPM
OWL ontology, by subclassing its core classes artifacts and pro-
cesses. It allows designers to check for consistency of the vari-
ous concepts and to express primitive signatures.

Furthermore, still at design time, the ontology allows us to
define common derivations, corresponding to EdgeSpec in the
reproducibility semantics, and corresponding subtypes of the
WasDerivedFrom relation, and associate them with the cor-
responding primitives. For instance, the addition primitive
PrimitivePlus has two derivations SummandODerivation
and SummandiDerivation from its output (identified by role
out0) to its respective inputs identified by roles summandO and
summandl. Figure 12 illustrate an excerpt of the Primitive on-
tology.

Hence, the use of ontologies facilitates the typing of primi-
tives (seen as functions operating over typed role-value pairs)
and their associated typed derivations. The kind of static type
checking of OPM graphs discussed in Section 4.4 can be im-
plemented by means of this ontology, and was referred to as
semantic validity by Miles ez al. [59]. We note that execution
of primitives is not modelled by the ontology, but instead relies
on the execution engines (cf. Figure 8).

Runtime Rules. The reproducibility semantics expresses how
OPM edges can be constructed for every enacted process. Such

DivisorQuotientDerivation

ransfarmationDerivation

ransfermationDerivation
\,-wasarReiDerivat\o'n_ >

DividendQuotientDerivation

¢ Summand1Derivation

v -:-;urivrba]deDEirlviaéwiqn]
is-,sf'/) HV""‘E)]\;_d{an_;RestD;_ri\;a:t\io'h ;
7:‘:Pjrri.n’7\it\urel.3i_.'::.

_ _:_'_'P_H_mtitwajplus',
— :i:frilfnltlvagi%\if_
A i).iPIEAGr:a[-J.h.
'_A.%rﬁtaﬁ;_ﬁ)
T
—{ NodEI
= .A\}Elé.le.
T RnIeP
G
—a
N 'l_’iréne:rty_'
T Annntame

< ConditionalActivationRecord ~

Figure 12: Primitive Ontology

edges can be asserted by new SWRL rules'®. For instance, in
Figure 13, a new edge _wasDerivedFrom is added to an OPM
graph by means of a SWRL rule that checks the existence of
an input artifact a2 and an output artifact a1, respectively used
and generated by a process under some roles; this process is
associated with a primitive, declared to produce a derivation
between those roles.

5.3. Semantic Web Assumptions for Reproducibility

In this section, we summarize the assumption that underpin
OPM graphs for reproducibility in the Semantic Web.

o Well defined global names: Primitive names should be de-
fined by a global unique name, with a precise meaning.
Likewise, their implementations must be uniquely identi-
fied. In the Semantic Web tradition, such primitive names

161t is important to note that OPM provides no inference rule to infer
WasDerivedFrom edges; instead, they must be asserted [26]. By construct-
ing WasDerivedFrom edges by SWRL rules, we are not misinterpreting OPM
semantics. Indeed, these edges are constructed according to an ontological
definition of primitives, characterizing their signatures and their dependen-
cies. We note that the current version of this ontology only supports static
WasDerivedFrom edges, always between the same outputs and inputs (iden-
tified by their roles), for whatever invocation of the primitive. An alternative
design supports conditional edges, according to the inputs to the primitive.

Artifact(?al),
Artifact(?7a2),
_wasGeneratedBy(?al,?p),
_used(?p,7a2),
effectWasGeneratedBy-1(?7a1,?g),
cause(?g,7p),
role(?g,?rl),

isKindOf (?r1,7rt1),
effectUsed-1(7p,7u),
cause(?u,?a2),
role(?u,?r2),

isKindOf (7r2,7rt2),
isKind0f (?p, 7pt),
hasDerivation(?7pt,?d),
effects(?d,?rtl),
causedBy(?d, ?rt2)

-> _wasDerivedFrom(?7al,?7a2)

Figure 13: SWRL rule to construct derivations according to the semantics of
primitives

and implementations can be identified by URIs. For in-
stance, we previously named the primitive align warp
with the URI prim:align_warp.

e Explicit representation of information: Each execution en-
gine may itself be configurable, and such configurations
need to be made explicit. For instance, Figure 9 displays
the Swift script for the implementation of align warp.
Furthermore, the Swift engine relies on a file tc.data to
map executable name to a specific executable in the file
system; this file must also be made explicit.

6. Evaluation

We have undertaken three empirical evaluations aiming to
demonstrate the capability of the reproducibility service, and its
suitability for deployment in a multi-technology environment
such as the Web. We discuss them in turn.

1. Feasibility: First Provenance Challenge. Our first experi-
ence is designed to demonstrate that the reproducibility service
is capable of reproducing the results of a significant computa-
tion. We used the First Provenance Challenge workflow [27],
which has become a de-facto benchmark in the provenance
community.

By hand, we constructed pcitrace!’, an OPM provenance
trace of the First Provenance Challenge (see Figure A.18, in
Appendix). The trace pcltrace is minimal in the sense that
it is not annotated or decorated with any information that is
not required for reproducibility. We applied the reproducibility
function to pcltrace, and obtained the following:

1

e an output trace with the same structure as pcltrace;

e a precise mapping of pcltrace node ids to the output
trace ids;

17The OPM graph had to be created after the facts since the first Provenance
Challenge predates OPM.

e aset of intermediary and final output files.

We have checked that the resulting trace is identical up to the
node ids, the locations of produced files, and the file contents.

Figure 14 summarizes the outcome of this experiment. The
input artifacts were chosen to be the same files (at a location
of our choice). The intermediary artifacts all to a24 were
shown to be the same. We however observe that the artifacts
following the slicer stage differed. For instance, the artifact
atlas-x.pgm had 8 bytes that differed by one unit. This differ-
ence is due to a more recent version of the £s1 library'® (version
4.1.6. which was prevailing in 2010), whereas the original ar-
tifact was generated by version 3.3.1 of £s1 in 2006.

artifact id success? comments
inputs al,...,al0 v copies of originals
dated 2006-05-31
intermediaries all, ..., 24 (4 checked to be the same as
originals of 2006-05-31
intermediaries/ a25, ..., 30 b 4 different
outputs

Figure 14: Experiment 1: Result Comparability

The outcome of this experiment highlights the benefits of this
approach. By keeping explicit provenance and intermediary re-
sults (which in this example were four years old), we were able
to rerun the experiment and compare results. Reproducing the
experiment allowed us to identify a specific library as the cause
of the divergent results. The installed version was found to be
more recent than in the original execution; reverting to the older
version of the library, we were then able to reproduce all arti-
facts.

2. Reproducibility Variants. In the second experiment, we es-
tablish that the reproducibility service can easily be customized
to invoke multiple execution technologies, such as command
line and Java code, simply by changing its primitive environ-
ment. Furthermore, the reproducibility service can be parame-
terized with different graph factories, to customize execution or
to ensure the uniqueness of the generated graph.

Java Inline Execution v demonstrated with numeric wflow
WebService Execution X implementation in progress

Swift Execution v demonstrated with PC1 workflow
Replayability [29] v PC1 mock up with dummy primitives
Multi Technology v demonstrated with PC1 workflow
Graph factory variant v output graph with different artifact ids
Graph factory variant v output with different file locations

Figure 15: Experiment 2: Reproducibility Variants

The results of this experiment are summarized in Figure 15.
The “Java Inline” execution refers to the ability to invoke Java

Bnttp://www.fmrib.ox.ac.uk/fsl/

17

code directly. This was achieved by reproducing the OPM
graph of Figure 1, where the invoked primitives were imple-
mented in Java directly. Alternatively, the PC1 OPM graph
(Figure A.18) was reproduced using primitives implemented in
Swift, invoking command lines. Work is in progress to support
Web Services implementations of primitives; to this end, we are
planning to make use of the D-Profile [60] to minimize the size
of the OPM graph. We have also demonstrated that the repro-
ducibility service can be configured with mock-up implementa-
tion of primitives, which are hardwired and return specific out-
puts for specific inputs (similarly to Bechhofer’s [29] replaya-
bility). Such replayability was demonstrated for the PC1 OPM
graph, with primitives returning directly the URLSs as per speci-
fied in the First Challenge; such primitives were then described
as “dummies” [27].

A driver for this paper is to provide a reproducibility seman-
tics for an ontology-based representation of provenance, allow-
ing a uniform representation of provenance, despite multiple
execution technologies being involved in executions across the
Web. To demonstrate this capability, we have configured the
reproducibility service, with implementation of PC1 primitives
using different technologies, e.g. Swift and Java, and have suc-
cessfully reproduced the experiment.

The second part of Figure 15 demonstrates how the repro-
ducibility service can be configured with various graph facto-
ries. The graph factory can be used to generate new ids for
nodes (and edges), but also to change the location of files to
be generated by the command line executables, so that they do
not overwrite previously existing files. Both were successfully
demonstrated using the PC1 OPM graph.

3. Other Inputs. In the third experiment, we establish that the
reproducibility service can be used to reproduce experiments
with inputs that differ from those used in the original experi-
ment.

v demonstrated with numeric wflow
v demonstrated with numeric wilow
v Provenance Challenge 1

New inputs
Differently encoded inputs
Change of parameters

Figure 16: Experiment 3: Other Inputs

One should note that in this experiment we do not have the
original workflow but just a trace of its past execution. Given
the numeric expression OPM graph (Figure 1), one can recom-
pute the expression with alternate inputs. When the original
process makes decisions on its inputs, the outcome of such
decision-making may differ when new inputs are provided. In
that case, the provenance trace may not contain enough infor-
mation to reproduce the original process (essentially alternate
branches may be missing). This is an issue that Cheney et
al. tackle under their “fidelity property” [15], which relies on
a form of “continuation” [61], a data structure that combines
computational state and program structure, to allow computa-
tions to be resumed and continued.

OPM requires the encoding of artifact values to be made ex-
plicit. Hence, alternate encodings of a same input can be sup-

http://www.fmrib.ox.ac.uk/fsl/

ported (e.g., an integer passed by reference in a file, instead
of by value). We note that this type of conversion, referred to
a “shim” by Duncan et al. [62], can be handled automatically
and systematically in a number of cases using appropriate type
declarations [63].

Finally, parameter sweeps are possible by changing work-
flow parameters, considered as an “input” by the reproducibility
service.

7. Discussion

7.1. OPM

This paper is the first to provide an executable semantics
for a substantial subset of OPM, independently of a given
execution technology. This formalization complements the
ones discussed in Section 3.4: Cheney’s causal perspective of
OPM [43], Moreau et al.’s set-theoretic definition of OPM [41],
Kwasnikowska et al.’s temporal interpretation of OPM [42],
and Missier and Goble’s translation of OPM to a workflow lan-
guage [19]. The fact that each formalization covers a different
subset of OPM, and that no equivalence between formalizations
has been established yet, is indicative of a lack of a “grand the-
ory of OPM”.

OPM introduced interesting features, such as the notions of
accounts and refinements. This paper has proposed a novel def-
inition for these, which corresponds to the nested invocation of
procedures in programming languages: a process can be refined
into a subaccount. Alternate definitions have been proposed,
and their implication for reproducibility need to be investigated.
Kwasnikowska and Van Den Bussche [64] propose a method-
ology to accommodate hierarchical refinements in OPM. Their
notion of refinement allows for an OPM subgraph to be refined
into another OPM subgraph. Groth and Moreau [60] propose
the D-profile, a profile to express details of execution in dis-
tributed systems, such as communication and messages; the D-
profile introduces an alternative form of refinement, where an
artifact is refined into a subgraph. Whilst the notions of re-
finement defined in these proposals are more general than the
one presented here, no reproducibility semantics of such refine-
ments has been proposed.

This paper has introduced constraints on the topology of
OPM graphs to enable the definition of a reproducibility func-
tion (cf. Definition 1). It is our belief that the acyclicity con-
straint could be relaxed whilst still preserving reproducibility,
for networks of processes exchanging artifacts. Indeed, pro-
vided that there is no cycle with was-derived-from edges, we
can identify processes in subaccounts that exchange such ar-
tifacts. The current semantics would have to be extended in
two different ways to support these: procedures would have to
be called by “name” and no longer “by value”, and processes
would have to be ordered across multiple accounts. A number
of edges have been ignored in the reproducibility semantics, be-
cause they hide execution “details”, such as wtb and all multi-
step edges. It would be interesting to investigate how their tem-
poral interpretation [42] can be folded into the reproducibility
semantics.

18

7.2. OPM and Semantic Web Technologies

McGrath and Futrelle [48] show limitations of SWRL and
OWL in expressing OPM inferences. They did not consider
property chains as we did in this paper. They propose a hy-
brid approach combining OWL, SWRL, RDF with extra tools
to handle all OPM requirements. We are following a similar ap-
proach here. We note that our encoding of OPM graphs differs
from the encoding of structured objects by description graphs,
as described by Motik et al. [65] and Hastings et al. [66]. In-
deed, as valid OPM graphs are assumed to be acyclic, we did
not have to encode such topological constraints in the ontology.
However, we share with these approaches the combined use of
ontological descriptions and rules.

Zhao’s Open Provenance Model Vocabulary (OPMV) [67]
aims to encode OPM in RDF, attempting to leverage existing
vocabularies and ontologies such as Dublin Core, FOAF, and
the Provenance Vocabulary [68], its predecessor. OPMV is
work in progress, and does not support the full expressivity of
OPM yet. It may benefit from some of the encoding of relations
introduced by this paper.

A challenge brought by this work was putting Semantic Web
technologies into action in order to implement the reproducibil-
ity service. The challenge was both conceptual and implemen-
tational. First, there is not a single Semantic Web technology
that allows us, today, to tackle all the issues we have encoun-
tered: (i) SPARQL does not support recursive queries over
multi-step OPM edges; (ii) Multi-step edges can be inferred
by SWRL rules or OWL property chains; (iii) OPM n-ary re-
lations are not naturally encoded in RDF; (iv) RDF Named
graphs go some way capturing OPM features [58] such as ac-
count; (v) OPM completion rules require the inference of indi-
viduals, which can only be supported by some non-standardized
extensions. Adopting all these technologies together result in a
framework, whose semantics are not clear, and good properties
such as inference decidability are lost. From a practical point of
view, at the time of writing, only a few reasoner could support
the property chains described in this paper (TROWL and Pel-
let were successful, whilst FACT++ and HermiT failed). Pellet
supported many of the above technologies, and was comple-
mented by Java code, but performance of the overall approach
remains a serious concern.

7.3. Reproducibility

In this paper, we have essentially regarded an OPM graph as a
workflow, interpretable according to the reproducibility seman-
tics. Therefore, this work bears relation with the workflow lit-
erature [69]. Techniques such a workflow abstraction and elab-
oration [70], scheduling [69], and collection-support are also
applicable here [70].

The reproducibility semantics has been implemented using
the OPM toolbox!®. Its wrapping as a reproducibility service
remains to be undertaken. We envisage this service of being ca-
pable of taking OPM graphs, and reproducing their execution,
timestamping and signing the resulting provenance trace, hence

Yhttp://github.com/lucmoreau/OpenProvenanceModel

http://github.com/lucmoreau/OpenProvenanceModel

confirming, in a non-forgeable way, that it is reproducible. Such
a service would need to be scalable, and is obviously a good
candidate for parallelization.

In Section 3.1, we introduced dimensions to the problem of
reproducibility: inputs, primitives, and results. They are cap-
tured by 6 (inputs), &, VP (primitives), and V¢ (results) in the
reproducibility semantics. Figure 17 categorizes the various
kinds of provenance-based reproducibility found in the litera-
ture according to these dimensions.

Inputs Primitives ~ Results

same same same repetition (Miles et al. [30])
different different different reenactment (Miles et al. [30])

same same — repeatability (Bechhofer et al. [29])

same same same reproducibilty (Bechhofer et al. [29])

same mockup same replayability (Bechhofer et al. [29])

same multiple same N-version reproducibility

variants (Levince et al. [34])
— different — upgrades (Koop et al. [40])

same same same consistency (Cheney et al. [15])

different different different fidelity (Cheney et al. [15])

Figure 17: Classification of Reproducibility Approaches

In multiple publications [9, 23, 11], our preferred definition
of provenance stated that it is an “explicit representation of the
processes that /ed to that data item”. In particular, we used the
past tense to indicate that some processes produced a data item.
In this paper, we looked at provenance as a program, which can
be executed in the future. Hence, to accomodate this new per-
spective on provenance, we propose the following revised def-
inition: provenance of a data item is an explicit representation
of a computational activity, which in the past led to that data
item, and which can be seen as a program and reexecuted in the
future, possibly to derive similar new data items. We are not the
first to consider an OPM graph as a program. Cheney [43] con-
siders a subset of OPM as a series of nested let expressions,
and Miles [71] introduces POEM, a textual notation to create
OPM graphs.

Davidson et al. [72] study the problem of providing work-
flow data provenance without revealing the functionality of any
module. To this end, they focus on the Secure View problem,
which consists in ensuring privacy of all modules in a work-
flow, by hiding the smallest amount of data. The problem is
established to be NP-hard, and they propose a polynomial-time
approximation. We conjecture that there is a trade-off between
full-reproducibility and full-privacy, since the reproducibility
semantics expects primitive names (and implementations) to be
shared. However, there may be a useful class of reproducibil-
ity behaviour, possibly similar to replayability [29], that can be
performed on privacy-preserving provenance. Such an inves-
tigation has also to take into account the specific OPM graph
structure, including was-derived-from edges, which partially re-
veal the private behaviour of processes.

Our assumption in this paper has been that we operate in a
non-malicious environment, in which provenance is an authen-
tic record of past execution. If this assumption no longer holds,
one needs to identify the trusted base in the execution environ-
ment, and possibly exploit cryptographic techniques to be able
to attribute provenance claims and check their integrity. Some

19

of these techniques are reviewed elsewhere [11]. Furthermore,
one may wonder how faithful a provenance record is to some
original computation. Two different approaches should be con-
sidered to answer this question. First, with the reproducibil-
ity semantics, we have provided a precise meaning for OPM
graphs; notions of fidelity [15] can now be adapted to OPM
traces. Second, since the meaning of primitives still needs to
be defined, the Semantic Web approach plays an important role
in specifying ontologies, making their concepts globally refer-
enceable by means of URIs, and standardizing them.

8. Conclusion

Results reproducibility is crucial in scientific and non-
scientific contexts to gain confidence in results and ensure their
quality. It is particularly important when such results are de-
rived from computations that make use of third-party services
across the Web. In this context, ontology-based representa-
tions of provenance offer a uniform description of past execu-
tions across such services. Provenance is usually considered
as a strong foundation for ensuring reproducibility, since its
rich representation encompasses the necessary details to repro-
duce execution steps, and check all results, whether intermedi-
ary or final. However, ontology-based representations of prove-
nance lack any formal link with execution, which makes it un-
clear why provenance is a sound foundation for reproducibility.
We have tackled this problem by providing the reproducibil-
ity semantics for the Open Provenance Model; this semantics
takes the form of a denotational semantics, which assigns well-
formed OPM graphs to a function, which for some inputs, pro-
duces an OPM graph describing the reproduction of the result.

The benefits of the reproducibility semantics are multifold.

1. It provides a strong, technology-neutral, understanding
of provenance by defining the mathematical meaning of
OPM graphs. It allows us to define reproducibility for-
mally, and classes of reproducible graphs, for given prim-
itive environments. It is therefore the basis of a theory of
provenance-based reproducibility.

2. It is a specification of a reproducibility service, which we
envision as deployable on the Web or on Intranets. It al-
lows users who publish results and their provenance, to
check that their results are reproducible, and users who
discover data, to verify how they were produced. Hence,
it permits users to increase their confidence in such data.

3. From a methodological viewpoint, one always wonders
what should be included in provenance. The semantics
provides an algorithmic way to decide what needs to be
recorded in provenance to ensure past computation repro-
ducibility.

Our future work will address several concerns. From a the-
oretical perspective, we will aim to relax the topological con-
straints that we set on OPM graphs, and define a broader class
of reproducible OPM graphs. Better and more scalable Seman-
tic Web reasoning techniques are required to support the OPM
specific inferences, and the necessary inferences required for

reproducibility. Finally, we will seek to deploy a reproducibil-
ity service in the context of the Fourth Provenance Challenge,
as a means to validate, automatically, the provenance traces pro-
duced by the participating teams.

9. Acknowledgement

A particular thanks to James Cheney for his constructive
comments on the paper. Also, thanks to Jan Van den Buss-
che and Simon Miles for their feedback on an early draft of
the paper, and to Jeff Pan and Nick Gibbins for discussions on
ontologies.

References

[1] P. Vytelingum, T. D. Voice, S. D. Ramchurn, A. Rogers, N. R. Jen-
nings, Agent-based micro-storage management for the smart grid, in: Au-
tonomous Agents And MultiAgent Systems (AAMAS 2010), 2010.
URL http://eprints.ecs.soton.ac.uk/18360/

I. Foster, C. Kesselman (Eds.), The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufman Publishers, 1998.

T. Hey, A. Trefethen, Cyberinfrastructure for e-science,
308 (5723) (2005) 817-821.

T. Hey, S. Tansley, K. Tolle (Eds.), The Fourth Paradigm: Data-Intensive
Scientific Discovery, Microsoft Research, Redmond, Washington, 2009.
URL http://research.microsoft.com/en-us/collaboration/
fourthparadigm/

J. P. Mesirov, Accessible reproducible research, Science 327 (5964)
(2010) 415-416. doi:10.1126/science.1179653.

L. Philip, A. Chorley, J. Farrington, P. Edwards, Data provenance,
evidence-based policy assessment, and e-social science, in: Third Inter-
national Conference on e-Social Science, 2007.

URL http://www.scientificcommons.org/40739576

Nature Editorial, Illuminating the black box, Nature 6. doi:10.1038/
442001a.

J. Rees, Recommendations for independent scholarly publication of data
sets, Tech. rep., Creative Commons Working Paper (Mar. 2010).

URL http://neurocommons.org/report/data-publication.
pdf

L. Moreau, P. Groth, S. Miles, J. Vazquez, J. Ibbotson, S. Jiang,
S. Munroe, O. Rana, A. Schreiber, V. Tan, L. Varga, The Provenance
of Electronic Data, Communications of the ACM 51 (4) (2008) 52-58.
URL http://www.ecs.soton.ac.uk/~lavm/papers/cacm08.pdf
Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon,
C. Goble, M. Livny, L. Moreau, J. Myers, Examining the chal-
lenges of scientific workflows, IEEE Computer 40 (12) (2007) 26-34.
doi:10.1109/MC.2007.421.

URL http://www.ecs.soton.ac.uk/~lavm/papers/
computer07.pdf

L. Moreau, The foundations for provenance on the web, Foundations and
Trends in Web Science. doi:10.1561/1800000010.

URL http://eprints.ecs.soton.ac.uk/21691/

P. Buneman, S. Khanna, W.-C. Tan, Why and Where: A Characteri-
zation of Data Provenance, in: Proceedings of 8th International Con-
ference on Database Theory (ICDT’01), Vol. 1973 of Lecture Notes in
Computer Science, Springer, London, UK, 2001, pp. 316-330. doi:
10.1007/3-540-44503-X_20.

URL http://db.cis.upenn.edu/DL/whywhere.pdf

Y. Cui, J. Widom, Practical lineage tracing in data warehouses, in:
Proceedings of the 16th International Conference on Data Engineering
(ICDE’00), San Diego, California, 2000, pp. 367-378. doi:10.1109/
ICDE.2000.839437.

URL http://www-db.stanford.edu/pub/papers/trace.ps

1. Souilah, A. Francalanza, V. Sassone, A formal model of provenance
in distributed systems, in: J. Cheney (Ed.), TAPP’09: First workshop
on on Theory and practice of provenance, USENIX Association, San
Francisco, CA, 2009.

[2]

Science

[3]
[4]

[3]
[6]

[7]
[8]

[9]

(10]

(11]

[12]

[13]

(14]

20

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

URL http://www.usenix.org/event/tapp09/tech/full_
papers/souilah/souilah.pdf

J. Cheney, U. A. Acar, A. Ahmed, Provenance traces (extended report),
Tech. Rep. http://arxiv.org/abs/0812.0564v1, University of Edinburgh
(Dec. 2008).

URL http://homepages.inf.ed.ac.uk/jcheney/
publications/drafts/provenance-traces-tr.pdf

J. Dean, S. Ghemawat, Mapreduce: simplified data processing on
large clusters, in: Proceedings of the 6th conference on Symposium
on Operating Systems Design & Implementation - Volume 6, USENIX
Association, Berkeley, CA, USA, 2004, pp. 10-10.

URL http://portal.acm.org/citation.cfm?id=1251254.
1251264

U. Acar, P. Buneman, J. Cheney, J. Van Den Bussche, N. Kwasnikowska,
S. Vansummeren, A graph model of data and workflow provenance, in:
Proceedings of the 2nd conference on Theory and practice of provenance,
TAPP’ 10, USENIX Association, Berkeley, CA, USA, 2010, pp. 8-8.
URL http://portal.acm.org/citation.cfm?id=1855795.
1855803

Y. Zhao, M. Wilde, 1. Foster, Applying the virtual data provenance
model, in: L. Moreau, 1. Foster (Eds.), Proceedings of the International
Provenance and Annotation Workshop 2006 (IPAW’2006), Vol. 4145
of Lecture Notes in Computer Science, Springer, 2006, pp. 148-161.
doi:10.1007/11890850_16.

URL http://www.springerlink.com/content/
33p526mtu3025h01/7p=cd8c59e856bf4becb50bb7816dc56465&pi=
15

P. Missier, C. Goble, Workflows to open provenance graphs, round-
trip, Future Generation Computer Systems. In Press. doi:10.1016/j.
future.2010.10.012.

S. S. Sahoo, R. S. Barga, J. Goldstein, A. P. Sheth, Provenance algebra
and materialized view-based provenance management, Tech. Rep.
76523/tr-2008-170, Microsoft Research (2008).

URL http://research.microsoft.com/pubs/76523/
tr-2008-170.pdf

S. S. Sahoo, A. Sheth, C. Henson, Semantic provenance for escience:
Managing the deluge of scientific data, Internet Computing, IEEE 12 (4)
(2008) 46-54. doi:10.1109/MIC.2008.86.

O. Hartig, Provenance information in the web of data, in: Proceedings
of the Linked Data on the Web Workshop (LDOW’09), Madrid, Spain,
2009.

URL http://events.linkeddata.org/1ldow2009/papers/
1dow2009_paper18.pdf

P. Groth, S. Miles, L. Moreau, A Model of Process Documentation to
Determine Provenance in Mash-ups, Transactions on Internet Technology
(TOIT) 9 (1) (2009) 1-31. doi:10.1145/1462159.1462162.

URL http://www.ecs.soton.ac.uk/~lavm/papers/toit09.pdf
J. Zhao, Open provenance model vocabulary specification, Tech. rep.,
University of Oxford (2010).

URL http://open-biomed.sourceforge.net/opmv/ns.html

P. P. da Silva, D. L. McGuinness, R. Fikes, A proof markup language for
semantic web services, Inf. Syst. 31 (2006) 381-395. doi:10.1016/j.
is.2005.02.003.

L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwas-
nikowska, S. Miles, P. Missier, J. Myers, B. Plale, Y. Simmhan,
E. Stephan, J. Van den Bussche, The open provenance model core speci-
fication (v1.1), Future Generation Computer Systems doi:10.1016/j.
future.2010.07.005.

URL http://eprints.ecs.soton.ac.uk/21449/

L. Moreau, B. Ludaescher, 1. Altintas, R. S. Barga, S. Bowers, S. Calla-
han, G. Chin Jr., B. Clifford, S. Cohen, S. Cohen-Boulakia, S. Davidson,
E. Deelman, L. Digiampietri, 1. Foster, J. Freire, J. Frew, J. Futrelle,
T. Gibson, Y. Gil, C. Goble, J. Golbeck, P. Groth, D. A. Holland,
S. Jiang, J. Kim, D. Koop, A. Krenek, T. McPhillips, G. Mehta,
S. Miles, D. Metzger, S. Munroe, J. Myers, B. Plale, N. Podhorszki,
V. Ratnakar, E. Santos, C. Scheidegger, K. Schuchardt, M. Seltzer, Y. L.
Simmbhan, C. Silva, P. Slaughter, E. Stephan, R. Stevens, D. Turi, H. Vo,
M. Wilde, J. Zhao, Y. Zhao, The first provenance challenge, Concurrency
and Computation: Practice and Experience 20 (5) (2008) 409-418.
doi:10.1002/cpe.1233.

URL http://www.ecs.soton.ac.uk/~lavm/papers/

http://eprints.ecs.soton.ac.uk/18360/
http://eprints.ecs.soton.ac.uk/18360/
http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://dx.doi.org/10.1126/science.1179653
http://dx.doi.org/10.1126/science.1179653
http://www.scientificcommons.org/40739576
http://www.scientificcommons.org/40739576
http://www.scientificcommons.org/40739576
http://dx.doi.org/10.1038/442001a
http://dx.doi.org/10.1038/442001a
http://dx.doi.org/10.1038/442001a
http://neurocommons.org/report/data-publication.pdf
http://neurocommons.org/report/data-publication.pdf
http://neurocommons.org/report/data-publication.pdf
http://neurocommons.org/report/data-publication.pdf
http://www.ecs.soton.ac.uk/~lavm/papers/cacm08.pdf
http://www.ecs.soton.ac.uk/~lavm/papers/cacm08.pdf
http://www.ecs.soton.ac.uk/~lavm/papers/cacm08.pdf
http://www.ecs.soton.ac.uk/~lavm/papers/computer07.pdf
http://www.ecs.soton.ac.uk/~lavm/papers/computer07.pdf
http://dx.doi.org/10.1109/MC.2007.421
http://www.ecs.soton.ac.uk/~lavm/papers/computer07.pdf
http://www.ecs.soton.ac.uk/~lavm/papers/computer07.pdf
http://eprints.ecs.soton.ac.uk/21691/
http://dx.doi.org/10.1561/1800000010
http://eprints.ecs.soton.ac.uk/21691/
http://db.cis.upenn.edu/DL/whywhere.pdf
http://db.cis.upenn.edu/DL/whywhere.pdf
http://dx.doi.org/10.1007/3-540-44503-X_20
http://dx.doi.org/10.1007/3-540-44503-X_20
http://db.cis.upenn.edu/DL/whywhere.pdf
http://www-db.stanford.edu/pub/papers/trace.ps
http://dx.doi.org/10.1109/ICDE.2000.839437
http://dx.doi.org/10.1109/ICDE.2000.839437
http://www-db.stanford.edu/pub/papers/trace.ps
http://www.usenix.org/event/tapp09/tech/full_papers/souilah/souilah.pdf
http://www.usenix.org/event/tapp09/tech/full_papers/souilah/souilah.pdf
http://www.usenix.org/event/tapp09/tech/full_papers/souilah/souilah.pdf
http://www.usenix.org/event/tapp09/tech/full_papers/souilah/souilah.pdf
http://homepages.inf.ed.ac.uk/jcheney/publications/drafts/provenance-traces-tr.pdf
http://homepages.inf.ed.ac.uk/jcheney/publications/drafts/provenance-traces-tr.pdf
http://homepages.inf.ed.ac.uk/jcheney/publications/drafts/provenance-traces-tr.pdf
http://portal.acm.org/citation.cfm?id=1251254.1251264
http://portal.acm.org/citation.cfm?id=1251254.1251264
http://portal.acm.org/citation.cfm?id=1251254.1251264
http://portal.acm.org/citation.cfm?id=1251254.1251264
http://portal.acm.org/citation.cfm?id=1855795.1855803
http://portal.acm.org/citation.cfm?id=1855795.1855803
http://portal.acm.org/citation.cfm?id=1855795.1855803
http://www.springerlink.com/content/33p526mtu3025h01/?p=cd8c59e856bf4becb50bb7816dc56465&pi=15
http://www.springerlink.com/content/33p526mtu3025h01/?p=cd8c59e856bf4becb50bb7816dc56465&pi=15
http://dx.doi.org/10.1007/11890850_16
http://www.springerlink.com/content/33p526mtu3025h01/?p=cd8c59e856bf4becb50bb7816dc56465&pi=15
http://www.springerlink.com/content/33p526mtu3025h01/?p=cd8c59e856bf4becb50bb7816dc56465&pi=15
http://www.springerlink.com/content/33p526mtu3025h01/?p=cd8c59e856bf4becb50bb7816dc56465&pi=15
http://dx.doi.org/10.1016/j.future.2010.10.012
http://dx.doi.org/10.1016/j.future.2010.10.012
http://research.microsoft.com/pubs/76523/tr-2008-170.pdf
http://research.microsoft.com/pubs/76523/tr-2008-170.pdf
http://research.microsoft.com/pubs/76523/tr-2008-170.pdf
http://research.microsoft.com/pubs/76523/tr-2008-170.pdf
http://dx.doi.org/10.1109/MIC.2008.86
http://events.linkeddata.org/ldow2009/papers/ldow2009_paper18.pdf
http://events.linkeddata.org/ldow2009/papers/ldow2009_paper18.pdf
http://events.linkeddata.org/ldow2009/papers/ldow2009_paper18.pdf
http://www.ecs.soton.ac.uk/~lavm/papers/toit09.pdf
http://www.ecs.soton.ac.uk/~lavm/papers/toit09.pdf
http://dx.doi.org/10.1145/1462159.1462162
http://www.ecs.soton.ac.uk/~lavm/papers/toit09.pdf
http://open-biomed.sourceforge.net/opmv/ns.html
http://open-biomed.sourceforge.net/opmv/ns.html
http://dx.doi.org/10.1016/j.is.2005.02.003
http://dx.doi.org/10.1016/j.is.2005.02.003
http://eprints.ecs.soton.ac.uk/21449/
http://eprints.ecs.soton.ac.uk/21449/
http://dx.doi.org/10.1016/j.future.2010.07.005
http://dx.doi.org/10.1016/j.future.2010.07.005
http://eprints.ecs.soton.ac.uk/21449/
http://www.ecs.soton.ac.uk/~lavm/papers/challenge-editorial.pdf
http://dx.doi.org/10.1002/cpe.1233
http://www.ecs.soton.ac.uk/~lavm/papers/challenge-editorial.pdf

(28]

[29]

[30]

(31]

[34]

(35]

(36]

[37]

(38]

[39]

[40]

(41]

[42]

(43]

[44]

challenge-editorial.pdf

J. Cheney, S. Chong, N. Foster, M. Seltzer, S. Vansummeren, Provenance:
A future history, in: Companion to the 24th Annual ACM SIGPLAN
Conference on Object-Oriented Programming Languages, Systems, Lan-
guages, and Applications: Onward! Session, 2009, pp. 957-964.

S. Bechhofer, D. De Roure, M. Gamble, C. Goble, I. Buchan,
Research objects: Towards exchange and reuse of digital knowl-
edge, in: The Future of the Web for Collaborative Science, 2010.
doi:10.1038/npre.2010.4626.1.

URL http://precedings.nature.com/documents/4626/
version/1/files/npre20104626-1.pdf

S. Miles, P. Groth, M. Branco, L. Moreau, The requirements of using
provenance in e-science experiments, Journal of Grid Computing 5 (1)
(2007) 1-25. d0i:10.1007/s10723-006-9055-3.

URL http://eprints.ecs.soton.ac.uk/10269/

J. B. Buckheit, D. L. Donoho, Wavelap and reproducibile research, Tech.
rep., Stanford University (1995).

URL http://www-stat.stanford.edu/~wavelab/Wavelab_850/
wavelab.pdf

M. Schwab, M. Karrenbach, J. Claerbout, Making scientific computations
reproducible, Computing in Science and Engineering 2 (6) (2000) 61-67.
doi:10.1109/5992.881708.

L. Pan, L. M. Batten, Reproducibility of digital evidence in forensic
investigations, in: Digital Forensic Research Workshop (DFRWS’05),
2005.

URL http://wuw.dfrws.org/2005/proceedings/pan_
reproducibility.pdf

B. N. Levine, M. Liberatore, Dex: Digital evidence provenance
supporting reproducibility and comparison, in: Proceedings of
the Digital Forensic Research workshop(DFRWS’09), 2009.
d0i:10.1016/j.diin.2009.06.011.

URL http://www.dfrws.org/2009/proceedings/p48-levine.
pdf

J. Cheney, C. Lagoze, P. Botticelli, Towards a theory of information
preservation, Tech. Rep. TR2001-1841, Cornell University (May 2001).
URL http://hdl.handle.net/1813/5828

V. Stodden, Scientific reproducibility and software (Feb. 2010).

URL http://www.stanford.edu/~vcs/talks/
VictoriaStoddenICES-Austin-Feb2010.pdf

S. B. Davidson, J. Freire, Provenance and scientific workflows:
challenges and opportunities, in: SIGMOD Conference, 2008, pp.
1345-1350. doi:10.1145/1376616.1376772.

URL http://www.cs.utah.edu/~juliana/pub/
freire-tutorial-sigmod2008.pdf

O. Biton, S. Cohen-Boulakia, S. B. Davidson, C. S. Hara, Querying
and managing provenance through user views in scientific workflows,
in: International Conference Data Engineering (ICDE’08), IEEE Com-
puter Society, Los Alamitos, CA, USA, 2008, pp. 1072-1081. doi:
10.1109/ICDE.2008.4497516.

URL http://wuw.inf .ufpr.br/carmem/pub/icde08.pdf

C. Silva, J. Freire, S. P. Callahan, Provenance for visualizations: Re-
producibility and beyond, Computing in Science and Engineering 9 (5)
(2007) 82-89. doi:10.1109/MCSE.2007.106.

URL http://www.sci.utah.edu/publications/silva07/
Silva_ProvenanceForVis.pdf

D. Koop, C. E. Scheidegger, J. Freire, , C. T. Silva, The provenance of
workflow upgrades, in: International Provenance and Annotation Work-
shop (IPAW °10), 2010.

L. Moreau, N. Kwasnikowska, J. V. den Bussche, The foundations of
the open provenance model, Tech. rep., University of Southampton (Apr.
2009).

URL http://eprints.ecs.soton.ac.uk/17282/

N. Kwasnikowska, L. Moreau, J. Van den Bussche, A formal account of
the open provenance modelSubmitted for publication.

URL http://eprints.ecs.soton.ac.uk/21819/

J. Cheney, Causality and the semantics of provenance, in: S. B. Cooper,
P. Panangaden, E. Kashefi (Eds.), Proceedings Sixth Workshop on Devel-
opments in Computational Models: Causality, Computation, and Physics,
2010, pp. 63-74. doi:10.4204/EPTCS.26.6.

URL http://arxiv.org/abs/1006.1429

J. Y. Halpern, J. Pearl, Causes and Explanations: A Structural-Model

21

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Approach. Part I: Causes, Br J Philos Sci 56 (4) (2005) 843-887.
doi:10.1093/bjps/axi147.

URL http://bjps.oxfordjournals.org/cgi/content/
abstract/56/4/843

J. Y. Halpern, J. Pearl, Causes and Explanations: A Structural-Model
Approach. Part II: Explanations, Br J Philos Sci 56 (4) (2005) 889-911.
doi:10.1093/bjps/axil148.

URL http://bjps.oxfordjournals.org/cgi/content/
abstract/56/4/889

P. Missier, D. Turi, C. Goble, T. Oinn, D. De Roure, Taverna workflows:
Syntax and semantics, in: IEEE International Conference on e-Science
and Grid Computing, IEEE Press, 2007, pp. 441-448.

URL http://eprints.ecs.soton.ac.uk/14700/

L. Moreau, S. Miles, P. Missier, P. Groth. [link].

URL http://openprovenance.org/model/opm.owl

R. E. McGrath, J. Futrelle, Reasoning about provenance with owl and
swrl rules, in: AAAI Spring Symposium 2008 “Al Meets Business Rules
and Process Management”, 2008.

URL http://cet.ncsa.uiuc.edu/publications/
mcgrath-futrelle-rules.pdf

W3C Incubator Activity, Provenance incubator group charter (Sep. 2009).
URL http://wuw.w3.0rg/2005/Incubator/prov/charter

S. Sahoo, P. Groth, O. Hartig, S. Miles, S. Coppens, J. Myers, Y. Gil,
L. Moreau, J. Zhao, M. Panzer, D. Garijo, Provenance vocabulary
mappings, Tech. rep., W3C (2010).

URL http://www.w3.0rg/2005/Incubator/prov/wiki/
Provenance_Vocabulary_Mappings

Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski, V. Nefe-
dova, I. Raicu, T. Stef-Praun, M. Wilde, Swift: Fast, reliable, loosely
coupled parallel computation, in: IEEE Congress on Services, 2007, pp.
199 -206. doi:10.1109/SERVICES.2007.63.

E. Prud’hommeaux, A. Seaborne (Eds.), SPARQL Query Language for
RDF, http://www.w3.org/TR/rdf-sparql-query/ (Jan. 2008).

J. Golbeck, J. Hendler, A semantic web approach to the provenance chal-
lenge, Concurrency and Computation: Practice and Experience 20 (5)
(2008) 431-439. doi:10.1002/cpe.1238.

URL http://www.mindswap.org/~golbeck/downloads/pc.pdf

J. Kim, E. Deelman, Y. Gil, G. Mehta, V. Ratnakar, Provenance trails in
the wings/pegasus system, Concurrency and Computation: Practice and
Experience 20 (5) (2008) 587-597. doi:10.1002/cpe.1228.

URL http://twiki.ipaw.info/pub/Challenge/
FirstChallengeCCPEPapersPreview/CCPE-WingsPegasus-07.
pdf

L. Ding, J. Michaelis, J. McCusker, D. L. McGuinness, Linked prove-
nance data: A semantic web-based approach to interoperable workflow
traces, Future Generation Computer Systems. In Press. doi:10.1016/
j.future.2010.10.011.

B. Motik, P. F. Patel-Schneider, B. Parsia, C. Bock, A. Fokoue, P. Haase,
R. Hoekstra, I. Horrocks, A. Ruttenberg, U. Sattler, M. Smith, Owl 2
web ontology language structural specification and functional-style syn-
tax, Tech. rep., W3C (2009).

URL http://wuw.w3.org/TR/owl2-syntax/

J. J. Carroll, C. Bizer, P. Hayes, P. Stickler, Named graphs, provenance
and trust, in: WWW ’05: Proceedings of the 14th international confer-
ence on World Wide Web, ACM Press, New York, NY, USA, 2005, pp.
613-622. doi:10.1145/1060745.1060835.

URL http://www2005.0org/cdrom/docs/p613. pdf

T. Gibson, K. Schuchardt, E. Stephan, Application of named graphs
towards custom provenance views, in: J. Cheney (Ed.), TAPP’09:
First workshop on on Theory and practice of provenance, USENIX
Association, San Francisco, CA, 2009.

URL http://www.usenix.org/event/tapp09/tech/full_
papers/gibson/gibson.pdf

S. Miles, S. C. Wong, W. Fang, P. Groth, K.-P. Zauner, L. Moreau,
Provenance-based validation of e-science experiments, Web Semantics:
Science, Services and Agents on the World Wide Web 5 (1) (2007)
28-38. doi:10.1016/j.websem.2006.11.003.

URL http://www.ecs.soton.ac.uk/~lavm/papers/WEBSEMO7.
pdf

P. Groth, L. Moreau, Representing distributed systems using opm, Fu-
ture Generation Computer Systems. In Press. doi:10.1016/j.future.

http://www.ecs.soton.ac.uk/~lavm/papers/challenge-editorial.pdf
http://precedings.nature.com/documents/4626/version/1/files/npre20104626-1.pdf
http://precedings.nature.com/documents/4626/version/1/files/npre20104626-1.pdf
http://dx.doi.org/10.1038/npre.2010.4626.1
http://precedings.nature.com/documents/4626/version/1/files/npre20104626-1.pdf
http://precedings.nature.com/documents/4626/version/1/files/npre20104626-1.pdf
http://eprints.ecs.soton.ac.uk/10269/
http://eprints.ecs.soton.ac.uk/10269/
http://dx.doi.org/10.1007/s10723-006-9055-3
http://eprints.ecs.soton.ac.uk/10269/
http://www-stat.stanford.edu/~wavelab/Wavelab_850/wavelab.pdf
http://www-stat.stanford.edu/~wavelab/Wavelab_850/wavelab.pdf
http://www-stat.stanford.edu/~wavelab/Wavelab_850/wavelab.pdf
http://dx.doi.org/10.1109/5992.881708
http://www.dfrws.org/2005/proceedings/pan_reproducibility.pdf
http://www.dfrws.org/2005/proceedings/pan_reproducibility.pdf
http://www.dfrws.org/2005/proceedings/pan_reproducibility.pdf
http://www.dfrws.org/2005/proceedings/pan_reproducibility.pdf
http://www.dfrws.org/2009/proceedings/p48-levine.pdf
http://www.dfrws.org/2009/proceedings/p48-levine.pdf
http://dx.doi.org/10.1016/j.diin.2009.06.011
http://www.dfrws.org/2009/proceedings/p48-levine.pdf
http://www.dfrws.org/2009/proceedings/p48-levine.pdf
http://hdl.handle.net/1813/5828
http://hdl.handle.net/1813/5828
http://hdl.handle.net/1813/5828
http://www.stanford.edu/~vcs/talks/VictoriaStoddenICES-Austin-Feb2010.pdf
http://www.stanford.edu/~vcs/talks/VictoriaStoddenICES-Austin-Feb2010.pdf
http://www.stanford.edu/~vcs/talks/VictoriaStoddenICES-Austin-Feb2010.pdf
http://www.cs.utah.edu/~juliana/pub/freire-tutorial-sigmod2008.pdf
http://www.cs.utah.edu/~juliana/pub/freire-tutorial-sigmod2008.pdf
http://dx.doi.org/10.1145/1376616.1376772
http://www.cs.utah.edu/~juliana/pub/freire-tutorial-sigmod2008.pdf
http://www.cs.utah.edu/~juliana/pub/freire-tutorial-sigmod2008.pdf
http://www.inf.ufpr.br/carmem/pub/icde08.pdf
http://www.inf.ufpr.br/carmem/pub/icde08.pdf
http://dx.doi.org/10.1109/ICDE.2008.4497516
http://dx.doi.org/10.1109/ICDE.2008.4497516
http://www.inf.ufpr.br/carmem/pub/icde08.pdf
http://www.sci.utah.edu/publications/silva07/Silva_ProvenanceForVis.pdf
http://www.sci.utah.edu/publications/silva07/Silva_ProvenanceForVis.pdf
http://dx.doi.org/10.1109/MCSE.2007.106
http://www.sci.utah.edu/publications/silva07/Silva_ProvenanceForVis.pdf
http://www.sci.utah.edu/publications/silva07/Silva_ProvenanceForVis.pdf
http://eprints.ecs.soton.ac.uk/17282/
http://eprints.ecs.soton.ac.uk/17282/
http://eprints.ecs.soton.ac.uk/17282/
http://eprints.ecs.soton.ac.uk/21819/
http://eprints.ecs.soton.ac.uk/21819/
http://eprints.ecs.soton.ac.uk/21819/
http://arxiv.org/abs/1006.1429
http://dx.doi.org/10.4204/EPTCS.26.6
http://arxiv.org/abs/1006.1429
http://bjps.oxfordjournals.org/cgi/content/abstract/56/4/843
http://bjps.oxfordjournals.org/cgi/content/abstract/56/4/843
http://dx.doi.org/10.1093/bjps/axi147
http://bjps.oxfordjournals.org/cgi/content/abstract/56/4/843
http://bjps.oxfordjournals.org/cgi/content/abstract/56/4/843
http://bjps.oxfordjournals.org/cgi/content/abstract/56/4/889
http://bjps.oxfordjournals.org/cgi/content/abstract/56/4/889
http://dx.doi.org/10.1093/bjps/axi148
http://bjps.oxfordjournals.org/cgi/content/abstract/56/4/889
http://bjps.oxfordjournals.org/cgi/content/abstract/56/4/889
http://eprints.ecs.soton.ac.uk/14700/
http://eprints.ecs.soton.ac.uk/14700/
http://eprints.ecs.soton.ac.uk/14700/
http://openprovenance.org/model/opm.owl
http://openprovenance.org/model/opm.owl
http://cet.ncsa.uiuc.edu/publications/mcgrath-futrelle-rules.pdf
http://cet.ncsa.uiuc.edu/publications/mcgrath-futrelle-rules.pdf
http://cet.ncsa.uiuc.edu/publications/mcgrath-futrelle-rules.pdf
http://cet.ncsa.uiuc.edu/publications/mcgrath-futrelle-rules.pdf
http://www.w3.org/2005/Incubator/prov/charter
http://www.w3.org/2005/Incubator/prov/charter
http://www.w3.org/2005/Incubator/prov/wiki/Provenance_Vocabulary_Mappings
http://www.w3.org/2005/Incubator/prov/wiki/Provenance_Vocabulary_Mappings
http://www.w3.org/2005/Incubator/prov/wiki/Provenance_Vocabulary_Mappings
http://www.w3.org/2005/Incubator/prov/wiki/Provenance_Vocabulary_Mappings
http://dx.doi.org/10.1109/SERVICES.2007.63
http://www.mindswap.org/~golbeck/downloads/pc.pdf
http://www.mindswap.org/~golbeck/downloads/pc.pdf
http://dx.doi.org/10.1002/cpe.1238
http://www.mindswap.org/~golbeck/downloads/pc.pdf
http://twiki.ipaw.info/pub/Challenge/FirstChallengeCCPEPapersPreview/CCPE-WingsPegasus-07.pdf
http://twiki.ipaw.info/pub/Challenge/FirstChallengeCCPEPapersPreview/CCPE-WingsPegasus-07.pdf
http://dx.doi.org/10.1002/cpe.1228
http://twiki.ipaw.info/pub/Challenge/FirstChallengeCCPEPapersPreview/CCPE-WingsPegasus-07.pdf
http://twiki.ipaw.info/pub/Challenge/FirstChallengeCCPEPapersPreview/CCPE-WingsPegasus-07.pdf
http://twiki.ipaw.info/pub/Challenge/FirstChallengeCCPEPapersPreview/CCPE-WingsPegasus-07.pdf
http://dx.doi.org/10.1016/j.future.2010.10.011
http://dx.doi.org/10.1016/j.future.2010.10.011
http://www.w3.org/TR/owl2-syntax/
http://www2005.org/cdrom/docs/p613.pdf
http://www2005.org/cdrom/docs/p613.pdf
http://dx.doi.org/10.1145/1060745.1060835
http://www2005.org/cdrom/docs/p613.pdf
http://www.usenix.org/event/tapp09/tech/full_papers/gibson/gibson.pdf
http://www.usenix.org/event/tapp09/tech/full_papers/gibson/gibson.pdf
http://www.usenix.org/event/tapp09/tech/full_papers/gibson/gibson.pdf
http://www.usenix.org/event/tapp09/tech/full_papers/gibson/gibson.pdf
http://www.ecs.soton.ac.uk/~lavm/papers/WEBSEM07.pdf
http://dx.doi.org/10.1016/j.websem.2006.11.003
http://www.ecs.soton.ac.uk/~lavm/papers/WEBSEM07.pdf
http://www.ecs.soton.ac.uk/~lavm/papers/WEBSEM07.pdf
http://dx.doi.org/10.1016/j.future.2010.10.001

[61]

(62]

[63]

[64]

[65]

[66]

[67]

(68]

[69]

[70]

(71]

[72]

2010.10.001.

J. C. Reynolds, The Discoveries of Continuations, Lisp and Symbolic and
Computation, Special Issue on Continuations 6 (3/4) (1993) 233-248.

D. Hull, R. Stevens, P. Lord, C. Wroe, C. Goble, Treating shimantic web
syndrome with ontologies, in: University, Milton Keynes, UK, 2004.
URL http://www.cs.man.ac.uk/~hulld/papers/shimantic_
web_syndrome.pdf

Y. Zhao, J. Dobson, 1. Foster, L. Moreau, M. Wilde, A Notation and
System for Expressing and Executing Cleanly Typed Workflows on
Messy Scientific Data, Sigmod Record 34 (3) (2005) 37-43.

URL http://www.ecs.soton.ac.uk/~lavm/papers/sigmod05.
pdf

N. Kwasnikowska, J. Van Den Bussche, Multiple and hierarchical
refinement in opm (Aug. 2009).

URL http://twiki.ipaw.info/bin/view/0PM/
ChangeProposalMultipleHierarchicalRefinement

B. Motik, B. C. Grau, I. Horrocks, U. Sattler, Representing ontologies
using description logics, description graphs, and rules, Artificial Intelli-
gence 173 (14) (2009) 1275 — 1309. doi:10.1016/j.artint.2009.
06.003.

J. Hastings, M. Dumontier, D. Hull, M. Horridge, C. Steinbeck, U. Sat-
tler, R. Stevens, T. Horne, K. Britz, Representing chemicals using owl,
description graphs and rules, 2010.

URL http://hdl.handle.net/10204/4065

J. Zhao, Open provenance model vocabulary specification (Oct. 2010).
URL http://open-biomed.sourceforge.net/opmv/ns.html

O. Hartig, J. Zhao, Guide to the provenance vocabulary (Jul. 2010).
URL http://sourceforge.net/apps/mediawiki/trdf/index.
php?title=Guide_to_the_Provenance_Vocabulary

I. Taylor, E. Deelman, D. Gannon, M. Shields (Eds.), Workflows for e-
Science, Vol. XXII, Springer, 2007.

Y. Gil, P. Groth, V. Ratnakar, C. Fritz, Expressive reusable workflow
templates, 2009, pp. 344 —351. doi:10.1109/e-Science.2009.55.
URL http://www.isi.edu/~gil/papers/
gil-etal-escience09.pdf

S. Miles, The poem format for opm (Sep. 2010).

URL http://twiki.ipaw.info/bin/view/0PM/POEMFormat

S. B. Davidson, S. Khanna, D. Panigrahi, S. Roy, Preserving Module
Privacy in Workflow Provenance, ArXiv e-prints arXiv:1005.5543.

Appendix A. Figure

22

http://dx.doi.org/10.1016/j.future.2010.10.001
http://www.cs.man.ac.uk/~hulld/papers/shimantic_web_syndrome.pdf
http://www.cs.man.ac.uk/~hulld/papers/shimantic_web_syndrome.pdf
http://www.cs.man.ac.uk/~hulld/papers/shimantic_web_syndrome.pdf
http://www.cs.man.ac.uk/~hulld/papers/shimantic_web_syndrome.pdf
http://www.ecs.soton.ac.uk/~lavm/papers/sigmod05.pdf
http://www.ecs.soton.ac.uk/~lavm/papers/sigmod05.pdf
http://www.ecs.soton.ac.uk/~lavm/papers/sigmod05.pdf
http://www.ecs.soton.ac.uk/~lavm/papers/sigmod05.pdf
http://www.ecs.soton.ac.uk/~lavm/papers/sigmod05.pdf
http://twiki.ipaw.info/bin/view/OPM/ChangeProposalMultipleHierarchicalRefinement
http://twiki.ipaw.info/bin/view/OPM/ChangeProposalMultipleHierarchicalRefinement
http://twiki.ipaw.info/bin/view/OPM/ChangeProposalMultipleHierarchicalRefinement
http://twiki.ipaw.info/bin/view/OPM/ChangeProposalMultipleHierarchicalRefinement
http://dx.doi.org/10.1016/j.artint.2009.06.003
http://dx.doi.org/10.1016/j.artint.2009.06.003
http://hdl.handle.net/10204/4065
http://hdl.handle.net/10204/4065
http://hdl.handle.net/10204/4065
http://open-biomed.sourceforge.net/opmv/ns.html
http://open-biomed.sourceforge.net/opmv/ns.html
http://sourceforge.net/apps/mediawiki/trdf/index.php?title=Guide_to_the_Provenance_Vocabulary
http://sourceforge.net/apps/mediawiki/trdf/index.php?title=Guide_to_the_Provenance_Vocabulary
http://sourceforge.net/apps/mediawiki/trdf/index.php?title=Guide_to_the_Provenance_Vocabulary
http://www.isi.edu/~gil/papers/gil-etal-escience09.pdf
http://www.isi.edu/~gil/papers/gil-etal-escience09.pdf
http://dx.doi.org/10.1109/e-Science.2009.55
http://www.isi.edu/~gil/papers/gil-etal-escience09.pdf
http://www.isi.edu/~gil/papers/gil-etal-escience09.pdf
http://twiki.ipaw.info/bin/view/OPM/POEMFormat
http://twiki.ipaw.info/bin/view/OPM/POEMFormat
http://arxiv.org/abs/1005.5543

1py'Zhwozee :pn
a113:004y

bwyzAwoleue :pn
31142043

y6z-sepe iun NBk-sepe :un J6x-sepe ipn
114 201 114001 al14:2dK)

é anU0> AL é 120> AL é wanuos ennIuLd
)14 :9dk)

s xseny > | ooy onaid

! bis 5060

—_—

120115 :2AIwILd

s3o11s senniwLd
buwrsepe :pn

G z-:anjea || Jpy'sepe iun . & A-:anjen
Bulns :adk} 51134:0041 E ‘ TIOUS | | puing adky 1140043
‘

JopeaH senvy é abew sepy

ueaunyos A ILd € weied 123115

IpyzpadNSa) n Bwrzpadyses un Bwrppadlisal un spuppaansas sun | [0 6w Tpadlisas un Iy TPAdIISRI (N Bwrgpadyses cpn IpyEpedIISsal tn
314120k 14 :2dA3 B114 :2dk3 adhy u 4 :9dAy si14:3dK3)14 :2dk) Sl14 :9dky
ZH pad1IsaY aoiisa1 oAU N_ uwu;mmx 11 padsay sase oA E podiisay €1 padiisoy aiisarannwLd m: padisay

diem Tdiem ipn
a114:0d4

emediem :pn
2114 :2dky

m ooysey | &

!_mwx

Hmeeg diem diem™uBije :aAnIwLd

Bwraduaiajes un
a113:904y

diemzdiem pn diempdiem :pn
1@_ S edky a114:2d4y

Zsweed diem diem™ubie amiwd || diemubije :aAnIWLG <mEE£ diem

diem™ubije :aAnIwLd £sweled Ems

=

6wy TAwozeue :n
a114:2dk3

by phworeue :pn
31142043

vH Awojeuy 1 Aworeuy

6; sduai3je) 1N

py vAworeue
o) A wa:

awmwx 8:28& wi 8:&2&

IpygAworeue ipn
o114 :0dky

buwrgAworeue

PC1 OPM grap%?%for illustrative purpose only)

Figure A.18

	Introduction
	OPM Terminology in One Paragraph and Figure
	Related Work
	What is reproducibility?
	Reproducibility without Provenance
	Provenance-based Reproducibility
	Formal definitions of OPM

	Reproducibility Semantics
	Intuition of the Reproducibility Semantics
	Preliminary Definitions
	Reproducibility of an Account-Less OPM Graph
	A Definition of Reproducibility
	Multi-Account OPM Graphs
	Reproducibility of a Multi-Account OPM Graph

	Semantic Web and Reproducibility
	Reproducibility Service Architecture
	Semantic Web Techniques for Reproducibility Service
	Semantic Web Assumptions for Reproducibility

	Evaluation
	Discussion
	OPM
	OPM and Semantic Web Technologies
	Reproducibility

	Conclusion
	Acknowledgement
	Figure

