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Abstract—We propose a novel class of protograph low-density
parity-check (LDPC) codes having a combinatorial rather than
a random structure, which are termed multilevel-structured
(MLS) LDPC codes. It is demonstrated that they posses a strik-
ingly simple structure and, thus, benefit from reduced storage
requirements, hardware-friendly implementations, and low-
complexity encoding. Our simulation results provided for both
additive white Gaussian noise (AWGN) and uncorrelated Rayleigh
(UR) channels demonstrate that these advantages accrue without
compromising the attainable bit error ratio (BER) and block
error ratio (BLER) performance, when compared with their pre-
viously proposed more complex random-construction-based coun-
terparts, as well as with other structured codes of the same length.

Index Terms—Low-complexity low-density parity check
(LDPC), multilevel structured (MLS), protograph LDPC codes,
quasi-cyclic (QC).

I. INTRODUCTION

LOW-DENSITY parity-check (LDPC) codes [1], [2] have
attracted substantial interest in the coding research com-

munity. It is widely recognized that their soft-input–soft-output
iterative decoding strategy is capable of exhibiting a perfor-
mance close to the Shannon limit [3]–[5] when sufficiently high
codeword lengths are considered. Moreover, the sparseness of
their parity-check matrix (PCM) ensures that this performance
is achieved at an acceptable decoder complexity.

The pseudorandom allocation of the logical one values in
the PCM was considered to be an important feature in LDPC
design, since it was demonstrated in [2]–[6] that these codes
exhibit excellent error-correction capabilities. Other algorith-
mic constructions tend to focus on a particular attribute of the
associated graph, such as the girth [7], [8] or the employment
of cycle conditioning [9]–[11]. However, the resultant PCM
structure remains random and, therefore, possesses no compact
description that would facilitate their efficient implementation.
For this reason, various structured constructions have been
investigated [12], such as those using geometric approaches
[13] or combinatorial designs [14]. The latter family includes
different balanced incomplete block design [15] classes such as
the Steiner and Kirkman triple systems [16], [17], Bose designs
[18], and the so-called anti-Pasch [19] techniques. Most of these

Manuscript received October 5, 2009; revised January 15, 2010, March 16,
2010, and April 26, 2010; accepted April 29, 2010. Date of publication
May 18, 2010; date of current version September 17, 2010. This work
was supported in part by the European Union under the auspices of the
Newcom and Phoenix projects and in part by the Engineering and Physical
Sciences Research Council, U.K. The review of this paper was coordinated by
Prof. W. A. Hamouda.

The authors are with the School of Electronics and Computer Science,
University of Southampton, SO17 1BJ Southampton, U.K. (e-mail: nb06r@ecs.
soton.ac.uk; sqc@ecs.soton.ac.uk; lh@ecs.soton.ac.uk).

Digital Object Identifier 10.1109/TVT.2010.2050708

structured constructions are cyclic or quasi-cyclic (QC) [20]–
[23], and therefore, their encoding can be implemented with
the aid of linear shift registers, thus rendering the encoding
complexity to be a linear function of the block length [24].

The iterative decoder of LDPC codes can be regarded as a
serial concatenation of two constituent decoders separated by
an edge interleaver, which defines the edge interconnections
between the nodes involved in the parity-check equations, as
governed by the code’s PCM or by the corresponding bipartite
Tanner graph [25]. This effectively means that each nonzero
position in the PCM or, equivalently, each edge of the Tanner
graph represents an entry either in a large lookup table (LUT)
or in a large-area hardwired mesh of interconnections on a
chip. The complexity of the code’s description tends to linearly
increase with the block length, and again, it is essentially
determined by the specific design of the PCM.

Multilevel-structured1 (MLS) LDPC codes attempt to strike
a balance between two contradictory factors in the design of
LDPC codes, i.e., that of having a pseudorandom versus a
structured PCM. In actual fact, MLS LDPC codes are capable
of favoring either of these factors; however, we are particularly
interested in how far the pseudorandom structure of the PCM
can be restricted in favor of becoming more structured, without
adversely affecting either the bit error ratio (BER) or the block
error ratio (BLER) performance. The novel contribution of this
paper is that we propose a class of structured protograph LDPC
codes having a combinatorial nature, which benefits from
reduced storage requirements, hardware-friendly implementa-
tions, and low-complexity encoding. Our simulation results
provided for both additive white Gaussian noise (AWGN) and
uncorrelated Rayleigh (UR) channels demonstrate that these
advantages accrue without compromising the attainable BER
and BLER performance when compared with their previously
proposed more complex counterparts of the same length.

The structure of this paper is described as follows. Sections II
and III introduce the preliminaries of LDPC codes and the basic
principles of protograph LDPC codes. Then, Section IV de-
scribes the general construction and the necessary constraints of
MLS codes. Our discourse continues with the characterization
of the code’s description complexity in Section V. The structure
of MLS codes is then detailed in Section VI. Section VII
describes the additional constraints, which were introduced to
aid the efficient hardware implementation of MLS codes even
further. Then, in Section VIII, we present an efficient search

1Although they almost have the same nomenclature, MLS LDPC codes
bear no resemblance to the previously proposed multilevel coding [26] and its
relatives. The word “multilevel” is used here to emphasize the point that MLS
LDPC codes are characterized by a PCM constructed of a number of levels.
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method designed for graphs having a large girth, which is
based on exploiting the isomorphism of edge-colored bipartite
graphs. The corresponding simulation results are then detailed
in Section IX before offering our conclusions in Section X.

II. PRELIMINARIES

We consider LDPC codes defined by regular bipartite
graphs G(H) associated with a PCM H, whose rows span
the null space of the code constructed over GF(2). Then,
the graph G(H) consists of the nonempty set of elements
{V (G), C(G), E(G)}, where V (G) and C(G) represent the
disjoint vertex sets of the variable nodes and check nodes,
while E(G) is the set representing the edges.2 Furthermore, we
assume that the degree of the variable nodes v ∈ V (G) and that
of the check nodes c ∈ C(G) are γ and ρ, respectively. If H
is of full rank, then it has a dimension of (M × N) elements,
where N = |V (G)| represents the LDPC block length, and the
number of parity bits becomes M = N − K = |C(G)|, where
K represents the number of original information bits. Conse-
quently, |E(G)| becomes equal to γN or ρM , and the code
rate becomes R = K/N = 1 − M/N . We also point out that
there exist numerous LPDC codes’ constructions represented
by rank-deficient PCMs, and therefore, they have rates that are
higher than the rate of 1 − M/N .

LDPC codes are typically decoded using the sum–product al-
gorithm (SPA) [27], where messages or “beliefs” are exchanged
between the nodes residing at both sides of the graph. The
grade of independence of these messages is characterized by
the length of the shortest cycle found in their Tanner graph,
which is typically referred to as the girth g.

III. PROTOGRAPH LOW-DENSITY PARITY CHECK CODES

Let us proceed by briefly describing the construction of
conventional protograph LDPC codes [28]. The construction of
a protograph code involves three main steps; we first determine
a base protograph, which typically consists of a graph having
a relatively low number of nodes, and then replicate this graph
J times. Finally, we permute the edges of the nodes in the J
replicas of the base protograph to obtain the resultant graph.
The code represented by this (final) graph is typically referred
to as a protograph code [28]. Let a base protograph G(Hb)
be described by the set of check nodes C(Hb) = {cmj : m =
1, . . . , Mb; j = 0} and variable nodes V (Hb) = {vnj : n =
1, . . . , Nb; j = 0}, as well as by the set of edges E(Hb), where
Hb, Mb, and Nb represent the PCM of the base protograph,
the number of check nodes, and the number of variable nodes
in the base protograph, respectively. We also note that the index
j = 0 is being assigned to the base protograph. After replicating
G(Hb) J times, we obtain the Tanner graph G(H) of the
protograph code, which is defined by the sets C(H), V (H),
and E(H), where each set has a cardinality, which is J times
higher than that of the corresponding set in the base protograph.
The matrix H denotes the PCM of the graph derived, which has
(JMb × JNb) elements.

2We will interchangeably use the notation of {V (G), C(G), E(G)} and
{V (H), C(H), E(H)}.

An LDPC code is considered to be a protograph code if and
only if the interconnection of the edges in each of the J replicas
obeys the constraints governed by the base protograph, i.e., the
interconnections between the nodes on both sides of the graph
derived follow the same specific permutation pattern of the base
protograph [28]. Typically, protograph LDPC codes are con-
structed using a variant of the progressive edge growth (PEG)
[7] algorithm, which exploits the attractive characteristics of
the PEG algorithm with regard to maximizing the girth of the
corresponding graph, as well as the minimum distance, while
satisfying the constraints governed by the base protograph.
By the term “constraints,” we imply that the connection of
the edges in each of the J replicas must follow the specific
permutation pattern of the base protograph.

Consider the example of a variable node vn0, n = 1, . . . , Nb,
located on the base protograph in a position adjacent to the
check nodes cx0, cy0, and cz0, where the three indices x, y,
and z are within the integer interval [1,Mb]. Then, a PEG-
based algorithm will randomly3 connect every variable node
vnj , n = 1, . . . , Nb, to one of the check nodes cxj , cyj , and czj ,
where j = 0, . . . , J − 1. This “randomness” introduced by the
PEG algorithm will render the resultant PCM H unstructured,
hence slightly complicating its implementation.4 Indeed, it
was argued in [30] that although protograph codes do obey
an internal structure, they still suffer from a relatively high-
complexity description due to the random PEG permutations,
and thus, they still require a considerable amount of memory to
store the addresses to which each input bit is mapped.

IV. GENERAL CONSTRUCTION METHODOLOGY OF

MULTILEVEL STRUCTURED LOW-DENSITY

PARITY CHECK CODES

On the other hand, MLS codes are a class of protograph
codes that are always structured regardless of whether we opt
for a pseudorandom or structured base protograph. Naturally,
every structured code is governed by a set of constraints, and the
larger the number of constraints satisfied is, the more structured
the code’s construction becomes. For the case of MLS LDPC
codes, we distinguish between two types of constraints: the
necessary constraints that must be satisfied by every MLS code
and the additional constraints. In addition to the necessary
constraints, we later impose a number of additional ones in
Section VII to generate code constructions, which facilitate more
efficient hardware implementations. For the sake of simplifying
our discourse, we introduce the following three definitions:

Definition 4.1: The base matrix, which is represented by
Hb, is a sparse matrix defined over GF(2) having (Mb × Nb)
elements and containing exactly ρ and γ nonzero entries in each
of its row and column, respectively. The base matrix of the MLS
code will correspond to the PCM of the base protograph.

Definition 4.2: The constituent matrices are represented
by the set Ω = {Q0,Q1, . . . ,QJ−1}, where each nonzero

3This is subject to the optimization criterion of maximizing the local girth of
the variable node.

4A possible solution was proposed in [29], which uses a structured base
protograph and then accordingly modifies the PEG algorithm to retain the same
structure of the base.
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constituent matrix Qj , j = 0, . . . , J − 1 is a distinct sparse
matrix over GF(2) having the same dimensions as the base
matrix. The parameter J denotes what we refer to as the number
of levels of the MLS code in the resultant PCM, which also
corresponds to the number of replicas of the base protograph
constituting the derived graph.

Definition 4.3: The adjacency matrix is a (J × J)-element
array matrix represented by PJ , whose row blocks constitute a
sharply transitive set of J permutations within Ω.

Clearly, there are a number of possible adjacency matrices
that satisfy Definition 4.3, and their number increases with the
number of levels J . For the sake of simplifying our discourse,
let us consider the simple example of having an adjacency
matrix given by

PJ =

⎛
⎜⎜⎜⎜⎝

0 1 2 · · · J − 1
J − 1 0 1 · · · J − 2
J − 2 J − 1 0 · · · J − 3

...
. . .

. . .
. . .

...
1 2 · · · J − 1 0

⎞
⎟⎟⎟⎟⎠

. (1)

Each element in the adjacency matrix will then describe the
position of the constituent matrix Qj ∈ Ω with respect to the
PCM of the code. For this specific example, the (JMb × JNb)-
element PCM H of the J-level MLS code constructed on the
adjacency matrix of (1) will be given by

H =

⎛
⎜⎜⎜⎜⎝

Q0 Q1 Q2 · · · QJ−1

QJ−1 Q0 Q1 · · · QJ−2

QJ−2 QJ−1 Q0 · · · QJ−3
...

. . .
. . .

. . .
...

Q1 Q2 · · · QJ−1 Q0

⎞
⎟⎟⎟⎟⎠

(2)

which is also sparse, and its null space represents an LDPC code
having a rate of R ≥ 1 − Mb/Nb.

We can now proceed to explain the aforementioned necessary
constraints, which are outlined in the points below.

• Constraint 1: Each of the sparse constituent matrices Qj ∈
Ω must avoid having pairs of nonzero entries that are
symmetrically repeated in two or more rows (or columns).
It may readily be shown that this ensures that the girth of
each constituent matrix is at least six.

• Constraint 2: All the nonzero entries of all the sparse con-
stituent matrices Qj ∈Ω must occur in the same position
as in the base matrix. Furthermore, a nonzero entry in a
particular location Qj ∈Ω, implies that the entries in the
corresponding locations of Qi∈Ω are zero, where i∈ [0,
J−1], and i �=j. The number of nonzero elements in Hb

is equal to the sum of those in the J constituent matrices.
It may readily be demonstrated that the first and second

constraints are closely related; in fact, any base matrix having a
girth of g > 4 will produce a set of constituent matrices Qj , j =
0, . . . , J − 1 satisfying the first constraint. Naturally, a girth
higher than four requires that the base matrix has a sufficiently
large dimension. The loose lower bound on the required number
of columns of Hb, i.e., Nb, was given by Gallager in [1]:
Nb ≥ 1 + γ(ρ − 1) for a specific girth of g = 6. Furthermore,
we also note that if both the first and second constraints are
satisfied, then the girth of the graph G(H) associated with the

PCM of the MLS code is definitely larger than g = 4, since the
adjacency matrix will avoid positioning any constituent matrix
in the same row or column block.

MLS codes can also be considered as protograph codes
since their adjacency matrix ensures that the permutations of
edges incident to every Nbth variable node at each level of
the graph G(H) are determined using the same J constituent
matrices [see the column blocks in the example shown in (2)],
where the latter have nonzero entries occurring in the same
position of the base matrix (by the second constraint). How-
ever, it is important to emphasize that, while all MLS codes
constitute protograph codes, the reverse is not necessarily true.
The reason for this lies in the previously described technique
used for the construction of conventional protograph LDPC
codes, which prohibits the generation of structured PCMs such
as the one shown in the example in (2). In this light, we may
also interpret MLS codes as specific protograph codes having
more compact descriptions. Despite the aforementioned con-
struction constraints, MLS codes still benefit from inheriting
implementationally attractive semiparallel architectures such as
those suggested by Lee et al. [31].

Previously, we have mentioned that the PCM construction
of MLS codes simultaneously exhibits both pseudorandom
and deterministic structural characteristics. The pseudorandom
PCM structure of MLS codes is attributed to the fact that no
constraints are imposed on the actual base matrix selected,
and therefore, any previously proposed pseudorandom PCM
construction can be utilized as a base matrix. The base matrix
chosen may obey a structured construction. However, we em-
phasize that all our results were obtained using base matrices
having pseudorandom constructions. Our decision was based
on the fact that the resultant construction of H will definitely
be structured due to the necessary constraints imposed. This
can be verified with the aid of the example in (2). The positions
of the nonzero entries in each of the constituent matrices Qj

in Ω are also chosen at random while obeying the previously
described first and second constraints.

In this paper, we have assumed both randomly and uniformly
distributed positions for the nonzero entries in the constituent
matrices Qj of the set Ω = {Q0,Q1, . . . ,QJ−1}. For the case
of uniformly distributed positions, we have introduced addi-
tional constraints, which enhance the code’s structure and, thus,
improve the associated implementational aspects even further.
The additional constraints will be discussed in Section VII.

V. COMPLEXITY OF THE CODE DESCRIPTION

It is quite easy to recognize the reduced code description
complexity that accrues from having a PCM obeying (2). In-
creasing the number of levels J will automatically imply that
the size of both the base matrix and the constituent matrices
Qj ∈ Ω will be decreased, and consequently, the grade of ran-
domness in the resultant MLS code’s construction will become
less pronounced.

Using the terminology introduced in Section II, we denote
the two vertex sets belonging to the regular bipartite Tanner
graph G(H), representing an MLS code by the variable node set
V (G)={vnj : n=1, . . . , Nb; j =0, . . . , J−1} and the check
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node set C(G) = {cmj : m = 1, . . . ,Mb; j = 0, . . . , J − 1}.
Furthermore, we assume that E(Hj) denotes the nonempty
set of edge interconnections that uniquely and unambiguously
describe the connections between the check nodes cmj , m =
1, . . . , Mb, and the variable nodes vnj , n = 1, . . . , Nb. In effect,
the edges represented by this set correspond to the nonzero
entries of the constituent matrix Qj ∈ Ω, j = 0, . . . , J − 1. In
this light, the complete bipartite graph represented by the PCM
H of an MLS code can be interpreted as a specific partition of
an edge set E(H) constituted by the following union:

E(H) = E(H0) ∪ E(H1) ∪ E(H2) . . . E(HJ−1) (3)

where E(Hj), j = 0, . . . , J − 1, are all disjoint (as required by
the second constraint) nonempty sets of edges. Let the parame-
ter ε denote the effective number of edges that must be stored to
represent the corresponding Tanner graph or, equivalently, the
total number of entries in the memory LUT storing the code
description. Following (3), a J-level MLS code can be repre-
sented by ε = |E(H)|, which—by the second constraint—is
identical to |E(Hb)| = Nbγ. Therefore, it is only necessary
to enumerate the edges present within each of the constituent
matrices Qj ∈ Ω to describe an entire MLS code. Due to the
second necessary constraint introduced in Section IV, these
edges will be represented by the nonzero entries found in the
same positions of the base matrix Hb. On the other hand, an
LUT that stores a pseudorandom PCM description must enu-
merate ε = Nγ edges, where N = NbJ . Hence, we may argue
that the complexity of an MLS code’s description is effectively
reduced by a factor, which is proportional to the number of
levels J , when compared with other pseudorandom codes.

VI. EXTERNAL CONSTRUCTION OF MULTILEVEL

STRUCTURED CODES

MLS codes possess both an internal and an external structure,
where the latter is based on the adjacency matrix PJ chosen for
the specific implementation, which is essentially what makes
them different from the protograph codes originally proposed by
Thorpe [28]. The adjacency matrix will then appropriately posi-
tion each (internally structured) constituent matrix Qj ∈Ω with
respect to the (externally structured) PCM of the MLS code H.
This implies that the adjacency matrix must also be stored, and
therefore, it is equally desirable that it has a compact description.
Hence, we may identify two classes of MLS codes, which are
distinguished by their adjacency matrices and by the complex-
ity of their descriptions, as described in the following sections.

A. Class-I MLS Codes Based on an HCC

We will introduce the following definition to define the
family of Class-I MLS codes.

Definition 6.1: A homogeneous coherent configuration
(HCC) is identified by the set of binary matrices A = A0, . . . ,
AJ−1 having a sum equal to the all-one matrix and that is closed
under transposition. In addition, the set A has the property that
one of the matrices is the identity matrix and that the product of
any two matrices is a linear combination of the matrices in the set.

Class-I MLS codes are those codes whose adjacency matrix
describes the adjacency algebra of an HCC [32]. The adjacency

matrix and the corresponding PCM of a J-level Class-I code
are, in fact, shown in (1) and (2), respectively, which represent
the adjacency matrix of a nonsymmetric association scheme
[32] on J points. Elaborating slightly further, we will use the
example of a five-level Class-I MLS code having an adjacency
matrix P5 given by

P5 =

⎛
⎜⎜⎜⎝

0 1 2 3 4
4 0 1 2 3
3 4 0 1 2
2 3 4 0 1
1 2 3 4 0

⎞
⎟⎟⎟⎠ (4)

where each element in the matrix corresponds to a subscript
and thus defines the position of a constituent matrix Qj ∈ Ω.
The compact description of PJ can readily be demonstrated
in two different ways. First, it can be recognized that each of
the J zero–one-valued matrices Aj ∈ A, j ∈ [0, J − 1] is a
circulant matrix of size J = 5. It can be observed in both (2)
and (4) that the matrix A0 = IJ , where Is corresponds to the
identity matrix having a size of s, while the remaining binary
matrices Aj , j ∈ [1, J − 1] have a binary one entry in column
(r + j) mod J , where r is the row index of the circulant matrix,
0 ≤ r ≤ J − 1, and (a mod b) represents the modulus after
division of a by b. Alternatively, it can also be argued that a
cyclic shift obeying x �→ x + 1, x ∈ Z5, with Z being the set
of integers, is an automorphism of this scheme, and therefore,
its basic relations can be simply described by

Ri = {(x, y) ∈ Z5 × Z5|y − x = i} , i ∈ [0, 4] (5)

where Ri is a binary relationship on the group Z5, and “×”
denotes the Cartesian product.

B. Class-II MLS Codes Based on Latin Squares

The adjacency matrix PJ can also be interpreted as a Latin
square [33] of order J , consisting of row and column blocks
described by the sets Qj , j = 0, . . . , J − 1 that generate the
symmetric group SΩ on Ω having order J !. Fig. 1 depicts this
representation of an adjacency matrix for a six-level Class-II
MLS code, where the J rows and columns of the Latin square
correspond to the respective multicheck node Cmj ⊂ C(G)
and multivariable node Vnj ⊂ V (H), |Cmj | = |Vnj |, where we
have m = 1, . . . ,Mb, n = 1, . . . , Nb, and j = 0, . . . , J − 1.

A Latin square is also equivalent to a 1-factorization of a
bipartite graph, and hence, we can also regard a J-level MLS
code as an edge-colored complete bipartite graph of degree
J . Equation (3) shows that the edge set E(H) of the graph
G(H) is partitioned into J disjoint nonempty sets E(Hj) ⊂
E(H), j = 0, . . . , J − 1. This brings us to the notion of what
is known as coloring [34] of edges, where E(H) is said to be
an edge coloring of G(H) if any two edges on the graph con-
taining the same vertex have different colors. Correspondingly,
each symbol of the Latin square will create a monochromatic
1-factor of the Tanner graph and, thus, represents a multiedge
on the degree-J edge-colored graph. Fig. 1 also illustrates the
corresponding edge-colored graph for a six-level Class-II MLS
code having an adjacency matrix represented by a reduced Latin
square. The different “edge colors” on the Tanner graph in
Fig. 1 are represented using different line types.
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Fig. 1. Latin square representation of the adjacency matrix of a six-level Class-II MLS code. The J rows and columns of the Latin square correspond to the re-
spective multicheck node Cmj and multivariable node Vnj , where m = 1, . . . , Mb, n = 1, . . . , Nb, and j = 0, . . . , J − 1. Each of the J symbols (or patterned
box) in the Latin square represent the disjoint nonempty set (multiedge) E(Hj), j = 0, . . . , J − 1 [see (3)]. The corresponding edge-colored complete bipartite
graph is shown on the right, having a degree of J , where the different “edge color” (corresponding to a multiedge) is represented by using a different line type.

VII. ADDITIONAL CONSTRAINTS

We impose the additional constraints over the necessary con-
straints mentioned in Section IV to aid the efficient hardware
implementation of MLS codes even further. The constraints are
described as follows.

• Constraint 3: Starting from any base matrix having
(Mb × Nb) elements, uniformly distribute the nonzero
entries across the constituent matrices so that each row and
column of any Qj ∈ Ω contains a single nonzero entry.
This constraint can only be applied in the scenario when
the number of levels J is at least equal to the column
weight ρ of the PCM.

• Constraint 4: Replace each nonzero entry in each constit-
uent matrix by a circulant matrix of size q from the set Iq,

I(1)
q , I(2)

q , . . . , I(q−1)
q , where I(s)

q represents a right cyclic
shift by s positions for each row of the identity matrix Iq.

The third constraint will facilitate the parallel processing
of messages exchanged over the interconnections between the
check and variable nodes. Since each nonzero entry in each
row or column of the base matrix is positioned in a different
constituent matrix, each memory block will only access (read
or write) each location once per clock cycle. Furthermore,
it becomes possible to simultaneously process the ρ edges
incident on each check node by the J memory blocks.

By the fourth constraint, the resultant PCM having (qJMb ×
qJNb) elements will be composed of only circulant matrices
of weight zero or one, and thus, the code effectively becomes
QC. The amount of memory required to store the code’s de-
scription is then reduced by factor of 1/qJ , when compared
with other pseudorandom constructions, since memory shifts
corresponding to the QC PCM structure can be used to address
the messages exchanged between the nodes. The encoding
process can be implemented using simple shift registers, thus
considerably reducing the associated encoding complexity.

VIII. EFFICIENT SEARCH FOR GRAPHS

HAVING A LARGE GIRTH

We have selected MLS codes based on the optimization
criterion of maximizing the average girth, using an approach
similar to that of Mao and Banihashemi in [35]. However, the
differentiating feature of our search is that it is now possible

to avoid the inspection of isomorphic (edge-colored) graphs
based on their corresponding Latin square representation, and
hence, our search is much more efficient. Formally, we have the
following definitions.

Definition 8.1: Two Latin squares S and S ′ are said to be iso-
topic if there exists a triple (α, β, χ) (referred to as an isotopy),
where α, β, and χ correspond to a respective row, column,
and symbol permutation, which carries the Latin square S to
S ′. Effectively, this implies that if we consider any particular
row and column position of the Latin square specified by the
check and variable nodes (cmj , vnj) containing entry e, where
m = 1, . . . , Mb, n = 1, . . . , Nb, and j = 0, . . . , J − 1, then the
entry at position (α(cmj), β(vnj)) of the Latin square S ′ will be
equal to χ(e). Subsequently, an isotopy class comprises the set
of all the Latin squares isotopic to a given Latin square.

Definition 8.2: Two Latin squares S and S ′′ are said to be
conjugates (or parastrophes) if S ′′ is obtained from S by simply
permuting the “roles” of the rows, columns, and symbols of S.
Therefore, there will be six conjugate Latin squares5 that can
be obtained from S. With the aid of the following claim, we
can effectively avoid searching through the isomorphic edge-
colored graphs.

Claim 7.1 [36]: Two Latin squares S1 and S2 will give
rise to isomorphic edge-colored complete bipartite graphs if
and only if S1 is isotopic to either S2 or (S2)T , where the
superscript T denotes the transpose operation.

The transpose of Latin square S is actually one of its
conjugates, which is obtained by exchanging the roles of the
columns with that of the rows. For the sake of illustrating
the efficacy of the aforementioned technique, let us consider
the example of a Class-II MLS code having J = 6 levels
in its underlying PCM. According to McKay and Rogoyski
[37], the total number of distinct Latin squares of order J is
given by XJ = J ! × (J − 1)! × L(J, J) [37], where L(J, J)
is the number of normalized (J × J)-element Latin squares.
Consequently, the full search will involve the examination of a
staggering number of X6 = 6! × 5! × 9408 [37] Latin squares.
By contrast, using the aforementioned Claim 7.1, we can avoid

5If we use the orthogonal array representation of a Latin square having order
J , thus representing the square by J2 triples in the form of (row, column,
symbol), we can obtain a conjugate of the same Latin square by changing the
roles in each triple.
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Fig. 2. Coding gain achieved at a BER of 10−5 by MacKay’s [39] and Class-I MLS LDPC codes when communicating over the AWGN and UR channels using
BPSK modulation using different block lengths at various coding rates.

the unfruitful inspection of isomorphic graphs and, thus, only
search a representative from each isotopy class and four of its
conjugates. Given that there are a total of 22 isotopy classes6

for an order-six Latin square, the number of Latin squares that
has to be examined is reduced to only 88 Latin squares.

We also note that Class-I MLS codes are effectively a sub-
class of Class-II MLS codes. It is easy to demonstrate that by
permuting the rows, columns, or symbols and/or by permuting
the roles of the rows, columns, and symbols of the Latin square,
one can obtain the adjacency matrix of a Class-II MLS code
from that of a Class-I code. The more constrained Class-I
MLS codes are characterized by a simpler description for their
adjacency matrix PJ , since it is only required to store the
position of each constituent matrix QJ in the first level of PJ ,
while the respective positions of each QJ in the other levels can
effectively be generated by means of a shift register.

IX. RESULTS AND DISCUSSION

The results presented in this section were obtained using bi-
nary phase-shift keying (BPSK) modulation, when transmitting
over the AWGN and UR channels and using a maximum of
I = 100 decoding iterations of the SPA. We note that, in all
the test cases, both Hb and Qj , j = 0, . . . , J − 1, which are
selected to construct a J-level MLS code having an (M × N)-
element PCM, will contain (M/J × N/J) elements. The base
matrix was pseudorandomly constructed, without any effort
for optimization. Subsequently, the constituent matrices were
constructed according to the heuristic search described in
Section VIII and satisfying the aforementioned constraints.
Our forthcoming discourse is organized in two sections:
Section IX-A describes the results obtained for MLS LDPC
codes satisfying the necessary constraints of Section IV, while
Section IX-B details the results obtained for MLS LDPC codes
satisfying both the necessary constraints and the additional
constraints of Section VII.

6A list of the isotopy classes for Latin squares of small orders is given by
McKay in [38].

TABLE I
NUMBER OF LEVELS J FOR THE MLS CODES WHOSE

PERFORMANCE IS ILLUSTRATED IN FIG. 2

A. MLS Codes Satisfying Only the Necessary Constraints

The BER/BLER performance of MLS codes is very much
dependent on the number of levels employed, where, gener-
ally, the BER/BLER performance improves upon decreasing
the number of levels J , which is at the expense of a higher
code’s description complexity. We particularly emphasize that
the MLS performance results reported in this section represent
the worst-case scenario in terms of the associated BER/BLER
performance of the MLS code, because a code having a lower
number of levels J will exhibit better performance than the
codes characterized here.7 However, this is actually the best-
case scenario in terms of the achievable code description
complexity reduction. In this section, we provide simulation
results for codes having γ = 3, a block length of N ranging
from 376 to 4008 bits, and code rates R spanning from 0.4 to
0.8.8 Fig. 2 depicts the coding gain achieved by the proposed
MLS LDPC codes and by MacKay’s pseudorandom code [39]
at a BER of 10−5. The number of levels that was actually
used is summarized in Table I for each code rate and block
length range. It can be observed from Fig. 2 that, despite the
reduction in the code’s description complexity, the performance

7For example, the coding gain achieved at a BER of 10−5 by a half-
rate Class-I MLS codes having a block length of N = 504 when commu-
nicating over the AWGN channel and constructed using J = 2, 3, 4, 5, and
6 levels was equal to 6.450, 6.440, 6.427, 6.412, and 6.393 dB, respectively.
The corresponding MacKay benchmarker code exhibited a coding gain of
6.344 dB.

8The row weights of the LDPC codes having rates of 0.4, 0.5, 0.625, and
0.8 are 5, 6, 8, and 15, respectively.
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Fig. 3. BER and BLER performance comparison of R = 0.5 Class-I MLS and MacKay’s [39] LDPC codes with N = 1008 − 8064 and a maximum of I = 100
decoder iterations when transmitting over the AWGN channel using BPSK modulation. All the codes shown have a PCM associated with a column weight of
γ = 3 and a row weight of ρ = 6. (a) BER performance. (b) BLER performance.

of the proposed MLS codes is still comparable with that of the
corresponding pseudorandom benchmarker codes.

It can also be observed from Table I that it was always
possible to design MLS codes that achieve the maximum
parallelization factor (equal to N/ρ) for the case of low to
medium code rates. However, it becomes quite difficult to
increase the number of levels up to the PCM row weight
for the case of high-rate codes without suffering any BER
or BLER performance loss compared with the pseudorandom
benchmarker codes. Notice that, as the code rate is increasing,
the row weight is also increasing while the number of rows
in the base matrix is decreasing. At short block lengths, the
latter makes it quite difficult to find a base matrix having a
girth of g > 4, and consequently, the first necessary constraint
described in Section IV may not be satisfied.

B. MLS Codes Satisfying Both the Necessary and the
Additional Constraints

This section details our BER/BLER performance results for
MLS LDPC codes that also satisfy the additional constraints.
We remark that no BER/BLER performance degradation was
observed for the MLS LDPC codes satisfying one or both of the
additional constraints, when compared with the corresponding
MLS codes satisfying only the necessary constraints. On the
contrary, the average girth of the associated Tanner graphs was
slightly improved9 after imposing the first additional constraint
(see constraint 3 in Section VII). We will appropriately distin-
guish between MacKay’s pseudorandom codes, the proposed
MLS codes satisfying the first three constraints, and QC MLS

9It can easily be demonstrated that it is more beneficial (in terms of improv-
ing the girth of the associated Tanner graph) to uniformly distribute the non-
zero entries of the base matrix Hb across the J constituent matrices, instead of
using any other random distribution of the logical one values.

codes satisfying all the previously mentioned constraints using
the notation (N,K), (N,K, J), and (N,K, J, q), respectively.

Fig. 3(a) illustrates the comparison of the achievable BER
performance for transmission over the AWGN channel em-
ploying half-rate six-level Class-I MLS codes, as well as the
corresponding MacKay codes having block lengths of 1008,
2016, 3888, and 8064. The achievable BLER performance is
then portrayed in Fig. 3(b). It was ensured that at least 100 block
errors were collected at each point on the simulation curve.
The MLS(1008,504,6) code was constructed using an (84 ×
168)-element base matrix and six constituent matrices. Both the
QC MLS(2016,1008,6,7) and the QC MLS(8064,4032,6,28)
codes were constructed using the same (24 × 48)-element base
matrix, but the former was expanded using circulant matrices
of size seven, while the latter used circulant matrices of size 28.
The QC MLS(3888,1944,6,18) code was then constructed us-
ing a base matrix having dimensions of (18 × 36) elements,
decomposed over six constituent matrices, and then expanded
by circulant matrices of size 18. The adjacency matrix for these
four MLS codes is based on a six-point HCC, while the row and
column weight of their PCM is equal to three and six, respec-
tively. It can be observed that despite their constrained PCM,
the MLS codes exhibit no BER and BLER performance loss
with compared with their pseudorandom counterparts, although
the MLS codes exhibit substantial implementational benefits.
Similar BER and BLER performance trends are exhibited over
the UR channel, as illustrated in Fig. 4(a) and (b).

Table II summarizes the distance between the Shannon limit
of the codes’ exhibited BER performance for both the AWGN
and UR channels, which is measured at a BER of 10−6. We
also compared the complexities of the codes’ description for
the MLS and the corresponding MacKay benchmarker codes
by quantifying the effective number of edges ε that must
be stored or, equivalently, the number of LUT entries that
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Fig. 4. BER and BLER performance comparison of R = 0.5 Class-I MLS and MacKay’s [39] LDPC codes with N = 1008 − 8064 and a maximum of I = 100
decoder iterations when transmitting over the UR channel using BPSK modulation. All the codes shown have a PCM associated with a column weight of γ = 3
and a row weight of ρ = 6. (a) BER performance. (b) BLER performance.

TABLE II
PERFORMANCE COMPARISON BETWEEN THE CLASS-I MLS AND MACKAY CODES

are needed to store the code’s description. It is evident from
Table II that the proposed MLS codes benefit from considerable
gains in terms of the required storage memory. For example,
the QC MLS(8064,4032,6,28) is uniquely and unambiguously
described by as few as 144 edges, while the corresponding
MacKay(8064,4030) code requires the enumeration of a sig-
nificantly higher number of 24 192 edges.

Our BER performance comparison between the half-rate
Class-I and Class-II MLS codes and the MacKay benchmarker
codes is provided in Fig. 5 for transmission over the AWGN
channel. It can be observed that the Class-II MLS(1008,504,6)
code exhibits a BER versus Eb/N0 performance that is ap-
proximately 0.15 dB better than that of the aforementioned
Class-I MLS and 0.21 dB better than that of the correspond-
ing MacKay-style benchmarker code. Furthermore, a modest
but measurable gain of approximately 0.07 and 0.10 dB was
attained by the Class-II QC MLS(2016,1008,6,7) over the re-
spective Class-I QC MLS and the MacKay code. Class-II MLS
codes attain superior BER/BLER performance in comparison

with Class-I codes since the former have to satisfy a lower
number of constraints and, thus, attain a higher average girth.
Moreover, Class-II MLS codes have the advantage that, given
the same J number of constituent matrices, we can represent
ζJ as the number of different PCMs, where ζJ depends on
the order J of the corresponding Latin square. This attractive
property of Class-II MLS codes was exploited in [40] for
creating the concept of channel code-division multiple access,
where the different users are uniquely identified by their user-
specific channel codes, namely, by MLS codes having the same
constituent matrices but employing user-specific adjacency
matrices.

Fig. 5 also depicts the BER performance for trans-
mission over the AWGN channel for the Class-II QC
MLS(8064,4032,8,4) having a PCM associated with a column
weight of γ=4 and a row weight of ρ=8. This code achieves a
BER of 10−6 at a signal-to-noise ratio of approximately 1.64 dB
and is, thus, only 1.45 dB away from the Shannon limit. This
code achieves similar performance to that of a corresponding
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Fig. 5. BER performance comparison of R = 0.5 Class-I and Class-II MLS
and MacKay’s [39] LDPC codes with N = 1008 and 2016 bits, when transmit-
ting over the AWGN channel using BPSK modulation. The maximum number
of allowable decoder iterations I was set to 100. All the codes shown have a
PCM associated with a column weight of γ = 3 and a row weight of ρ = 6,
except for the Class-II QC MLS(8064,4032,8,4), which has a PCM associated
with a column weight of γ = 4 and a row weight of ρ = 8.

QC half-rate code based on the Euclidean subgeometry
EG∗(3, 23) (see [21, Tab. I]) and having block length N =
8176, which was designed by decomposing circulant matrices
constructed from finite geometries. Moreover, all our MLS
codes benefit from a readily parallelizable protograph decoder
structure [31], which is not the case for the EG∗(3, 23) code in
[21]. Furthermore, these LDPC codes constructed from finite
and Euclidean geometries such as those presented in [13] and
[21] tend to have higher row and column weights than other
LDPC codes (see, for example, [13, Tab. I–III]). Thus, their
attractive BER/BLER performance is somewhat achieved at
the expense of a higher decoding complexity imposed by their
higher logic depth. On the other hand, we were still able to
attain excellent BER/BLER performance with codes having
only γ = 3.

X. SUMMARY AND CONCLUSION

In this paper, we have proposed the construction of MLS
LDPC codes, which benefit from having a low-complexity de-
scription due to the structured row–column connections based
on protographs, while also having low-complexity encoding
and decoding implementations due to their semiparallel archi-
tectures. We have investigated their BER and BLER perfor-
mance for transmission over both AWGN and UR channels for
various code rates, as well as block lengths, and compared their
performance with both pseudorandom and structured bench-
markers. Explicitly, our experimental results have demonstrated
that these considerable implementational benefits provided by
the proposed MLS LDPC codes accrue without any BER/BLER
performance loss. Indeed, no performance loss has been ob-
served, at least down to a BER/BLER of 10−6.
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