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Abstract

This paper considers the application of continuous-tinpetigve control to non-

minimum phase plants in a continuous-time model prediativetrol setting. In

particular, it is shown how some critical performance peold associated with
repetitive control of such plants can be avoided by use dfiptige control with a

prescribed degree of stability. The results developed estlfustrated by simula-
tion studies and then through experimental tests on a noimmam phase electro-
mechanical system.

Key words: repetitive control, predictive control, non-minimum pba®ros,

experimental evaluation.

1. Introduction

Many reference signals encountered in control systemscagiphs are peri-

odic or at least can be accurately approximated by a pergidiwal over suitably
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long time interval. Examples here include those associaftigul engines, elec-
tric motors and generators, converters, and machinesrperg a repetitive task.
Hence it is essential that the output of such a plant has flitydb track a periodic
reference signal and/or reject the influence of a periodituddance. In the former
case, the period will be known a priori by the nature of th& ferformed, and in
the latter it can be identified by using established methmata the areas of signal
processing or system identification.

Repetitive control (RC) has emerged as an approach to tleajetesign prob-
lem considered in this paper where the basic premise is tinfsgnation from
previous periods or trials (also termed cycles in someditee) to modify the con-
trol signal such that the overall system learns to track argperiodic reference
signal. Early references to this approach include [14, Qdsely related is iter-
ative learning control (ILC) that is applicable to systempem@ting in a repetitive
manner where the task is to follow a predefined referencect@jy over a specified
finite time interval, known as a pass or a trial in the literafwith high precision.
In particular, the task is completed and the process is thget to the starting lo-
cation for the start of the next pass. The novel principleiieth_C is to suitably
use data from previous trials, often in combination withrappiate current trial
information, to select the current trial input with the aifrsequentially improving
performance. In particular, the aim is to improve perforoefrom trial-to-trial in
the sense that the tracking error (the difference betweemtitput on a trial and
the specified reference trajectory) is sequentially redtic®ither zero (ideal case)
or some suitably small value. Overviews of the literaturéhis area can be found
in the survey papers [3, 1].

The effect of non-minimum phase zeros on the performancerdfal schemes
is very well known see, for example, [9] and for single-ingirtgle-output linear

systems is manifest in the form of an undershoot in the Inié@aponse to a step
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change in the input (or reference signal closed-loop). Saachs also introduce
performance limitations in RC and ILC for see, for examp&, I1], where the
limiting effects on the convergence rate is establishederd@thas been previous
work on methods to improve the closed-loop performance ¢h sases [13, 4], in-
cluding experimental verification on an electro-mechdrtiestbed which is where
the results developed in this paper are experimentallyigdri

The new contribution in this paper is a repetitive contrgloaithm using the
predictive control setting developed in [19], and appliadi7], to plants with
non-minimum phase zeros. With this new framework, the perémce limitation
problem caused by the unstable zeros is examined and sojvadimple modi-
fication of the cost function. Using a classical result irelin quadratic regulator
theory, see, for example, [10] and root-locus analysis shiswn that some of the
poles of the repetitive control system move towards theared location of the
non-minimum phase zeros of the plant when design is basedromizing the in-
tegral squared errors and the derivatives of the errorsdmatthe plant output and
the reference signal. This result implies that the convergeate of a repetitive

control system with, for simplicity, one non-minimum phasso, is dictated by

the factore—¢*, where¢ denotes this zero, as the gain of the system increases.

this non-minimum phase zero is close to the imaginary axésgbnvergence rate of
the repetitive control system is slow. However, this perfance limitation arises
from the assumption that the objective function has limitedhplexity, and the
closed-loop root loci are pre-determined. This paper shbathis performance
limitation can be overcome if the function to be optimizedéseralized to include
interactions between the errors, their derivatives, aadtate variables. Tuning the
resulting repetitive control system for better perfornaisalso addressed.

The presence of interactions in the objective function raghat the selec-

tion of all the individual elements to achieve a desiredatffe a non-trivial task.



As an alternative, [18] proposed selecting an objectivetion that results in the
repetitive control system with a prescribed degree of btabhs > 0, meaning
that the closed-loop poles are allocated to the left of thedi= —g in the com-
plex s-plane, wheres denotes the Laplace transform variable. This approach has
its origins in the classical method of achieving a presctiiegree of stability in
linear optimal control [2] and was adapted to predictivetoanusing real-time
optimization in [18]. Moreover, since the new system is digved using the re-
ceding horizon control principle, plant operational coaisits can, if required, be
naturally embedded in its design and implementation.

The next section of this paper summarizes the necessargitoagid on the
repetitive-predictive control algorithm and this is falled by use of the root-
locus generated by the repetitive-predictive controlaysto determine how non-
minimum phase zeros affect closed-loop response perfaenaen the tradi-
tional error function is used in design. This leads to theouhiiction of a sim-
ple modification of the cost function that overcomes the granfince limitations
of such zeros, and supporting simulation studies are gigattion 4 reports on
the results obtained when the new algorithm is experimignégplied to a non-
minimum phase electro-mechanical system. Finally, Sedigives an overview

of the results in this paper in general terms and discusssshpe future research.

2. TheRepetitive-predictive Control Algorithm

This section gives the essential background to the newtsesuthis paper.
In particular, the key steps in the application of the rdjyetipredictive control
algorithm are described, with a fully detailed treatmen{lfl]. For notational

simplicity, attention is restricted to the single-inputgie-output (SISO) case.



2.1. Embedding the Periodic Disturbance Model

It is well known from the internal model control principleathin order to reject
a periodic disturbance, or follow a periodic reference aigwith zero steady-state
error, the generator model for the disturbance or the referenust be included
in the stable closed-loop control system [5]. In this paltc case, the route is
to combine the disturbance and plant models to form an auggdenodel that is
then used in analysis and controller design. Suppose ftlier¢hat the plant to be

controlled is described by the state-space model

y(t) = Cnap(t) 2

wherez,, (t) is then, x 1 state vector, and(t) andy(t) the input and output vari-
ables respectively (in the case of multiple inputs and/¢pwts« (¢) andy(¢) would
be column vectors of compatible dimensions). One way of rirogléhe input dis-
turbancey(t) is as integrated white noise and then the internal modetiptis
satisfied since the predictive controller has an integnabarally imbedded in its
structure, see [6] and [16] for the discrete and continuous-cases respectively.
A similar route will be followed in this work.

Suppose now that the denominator of the disturbance maedfer-function
is of the form

D(s)=5"+d187 1+ des" 2+ ...+ d, ()

where the roots of this polynomial are either on the imagirzadis or in the open
left-half of the complex plane. Also lgi be the differential operator defined as
pf(t) = dfd—gﬂ and D(p) the corresponding polynomial in the denominator of the
disturbance model ip, wherep” f(t) = £(¥)(t) (the kth derivative off(t)). Then

it follows immediately that the input disturbangpét) is described by the following



differential equation
D(p)u(t) = (p7 +dip" " +dop? 4+ ...+ dy)u(t) =0 (4)

Define the following auxiliary variables using the disturtba model

z(t) = D(p)xm (t)

us(t) = D(p)u(t) (®)

i.e. z(t) andug(t) are obtained by filtering the state vectgy,(¢) and the control
signalu(t) respectively by the denominator of the transfer-functiesatiption of
the disturbance model. Also applying the differential aperD(p) to both sides

of the state equation in the system model (1) gives
D(p)im(t) = AmD(p)zm(t) + BmD(p)u(t) + QmD(p)u(t)

or
5(t) = Az(t) + Buus(t) (6)

where the relatioD(p)u(t) = 0 has been used. Similarly, applicationofp) to
both sides of (2) gives
D(p)y(t) = Craz(t) @)

or
Yy (1) = —dyy V() — doy 2 — .. —dy 1y P (1) — dyy(t) + Crz(t) (8)

wherey (™) denotes thexth derivative ofy.

Introduce

T
e(®) = | (1) yOV@) ¥OD ) v |



and then, using the plant state-space model (1) and (2) arah{b(7), the state-

space model to be used in design is

o(t) = Awx(t) + Bus(t)

yt) = Cuxt) 9)
where

(4, O O 0) o ] [ B, |

C,, —di —do —dy_1 —d, 0

or 1 0 0 0 0

A: ’B:

or o ... 1 0 0 0

Lot 0 ... 0 1 0 | 0 |
Cz[o 00 ... 0 1]

andO denotes thex; x 1 zero vector.

2.2. The Cost Function and its Minimization

Predictive control requires the construction of a suitatdet function to be
minimized within a moving horizon window and this optimiiat is performed
in real-time, leading to the option of incorporating coastts in the design. The
cost function used in predictive control is similar to thasdical linear quadratic
regulator (LQR) [10], but the solution method is differentdas based on numer-
ical minimization of the cost function by directly compugirthe optimal control
trajectory within this moving horizon window. In the distegeime case, the op-
timal control trajectory was parameterized by a set of caieffits in conjunction
with shift operators [6], and in the continuous-time case aptimal control tra-

jectory was parameterized by a set of continuous-time adhmal basis functions
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[18]. With this parameterization, the problem of finding tEimal control signal
becomes the one of finding the optimal Laguerre coefficients.

Following the continuous-time predictive control case, fittered control sig-
nal us(7) over0 < 7 < T, whereT, is the prediction horizon, is see [18], de-

scribed in terms of a set of Laguerre functions as

T
whereL(r)" = [ () by(r) ... In() |andn=]g & ... ¢

In particular, the set of Laguerre functions are definedieitiyl by the following

differential equation

L(r) = A, L(r) (10)
where ) )
-p 0 0
—2p — ... 0
Ap _ p p
0
| —2p ... —2p —p |

andL(0) is the N x 1 vector with each element equal {&p. Here the parameter
p is a scaling factor andv denotes the number of terms used in the orthogonal
expansion, and the set of Laguerre functions will have aufit response time if
the scaling factop is varied. The key feature of this formulation is that it eleab
the prediction of future values of the state vector entriesletailed next, where
these play a key role in the construction of the cost functiorwhich controller
design is based.

Assume that at the current time, saythe state variable vectar(¢;) is avail-
able, but if not then an observer is needed to access therdataation through

the measurement of input and output signals, which is @etail Section 2.3. Then



at the future timer, 7 > 0, the predicted state vector, denotedady; + 7 | ¢;) is

described by the following equation

a(t + 7| t;) = e a(t;) +/ eI BL(v) dyn (11)
0

Also let I;,,;(7) denote the integral term in this last equation. Then it igin@uto

show thatl;,,;(7) satisfies the matrix linear differential equation
ALp(7) — Lt (1) AL = =BL™ (1) + ¢*"BL" (0) (12)
and hence (11) can be written as
a(t; + 7| ) = e x(t;) + Linu(T)n (13)

Moreover, the matrix4,, is lower triangular and hence (12) has a closed-form so-
lution in the form of a set of linear equations (see [16, 18]fmre details).

In general terms, the cost function used in predictive abias the form
TP
J :/ w(ti +7 | t:)" Qu(ti + 7| t)dr +n" R (14)
0

where and R, are symmetric positive definite and positive semi-definistrioes
respectively, written a§) > 0 and R;, > 0 respectively. For the analysis in this
paper, the orthonormal property of the Laguerre functiengsied in constructing
the cost function by substituting (13) for the predictedestariable vector:(¢; +

T | t;), to give the following form that can then be specialized foohpems of

practical relevance as illustrated next
Tp Ty
yR— / S(1)Qé(r) dr + Ry} — 2" / o(1)Qu(r | t:)dr
0 0
TP
+ / w(T | tZ-)TQw(T | t;)dt (15)
0

whereg(r) = L (1) andw(t | t;) = —eATx(t;).



Consider the case when a periodic disturbance is to be edjethen the con-
trol objective in this case is to achieve constant steaaiestperation where the
plant output (the SISO case is considered) is equal to theedasonstant set-point
signal and all entries in the state vectdt) and all derivatives of the plant output
are zero.

In the case when set-point following of a periodic signay; s@), is required
it is necessary to assume that the set-point signal is diffexble up to the order
of v — 1 where~ is the order of the disturbance model used in the design. The

associated cost function for set-point following is oftémosen as
TP TP
J = / e(ti + 7| ti)Te(tZ- + 7| t;)dr —l—/ us(T)TRus(T)dT (16)
0 0

where

[ O () —y O+ | )
e(ti+7|t;) = : a7)
r(t;) =yt +7 | ;)

r(ti) —ylti+ 7| t)
Let Cy be they x (ng + ) matrix defined by

02:[0711 Lf}

whereo,,; is they x n; zero matrix and., is the~y x ~ identity matrix. Then itis
shown in [19] that the cost function (16) is identical to the{14) withQ = C7 Cs.

Also, sincer(t) is periodic, the vectors)(7) andw(r | t;) take the form

¢(7) = Colin(7)

and

w(T | ;) = ; — CoeTa(t;) (18)



respectively.
Consider the unconstrained minimization with respect éoghrameter vector
n of the general cost function (15) in the absence of hard caing$. Then the

minimizing n is the least squares solution

Tp Ty
= T Nldr -1 T)Quw(T | t;)dT
=1 Qe Tdr + Ry [T onQuir [tydr (19)

where the optimah and controlu,(7), 0 < 7 < T}, can be expressed in terms of

the associated Laguerre functions as
us(r) = L(m)"1) (20)

Also, by the principle of receding horizon control, the opi controlu,(t) for the

unconstrained problem at tinigis
us(t:) = L(0)" 7 (21)

In this design, the Laguerre scaling parametand the number of terms used,
N, are the performance tuning parameters. WNean large, with a long prediction
horizonT,, the filtered control trajectory,(.) will closely match the underlying
optimal control trajectory defined by the linear quadratiguiator (LQR) [18].

Having computed.;(¢) at timet;, the final step is to convert this into the actual

control signak(t) to be applied at;. The procedure for this is detailed next.

2.3. Control Implementation
Given the optimalu,(t) at timet;, the actual control signal(t) at this time

satisfiesu,(t) = D(p)u(t). Also introduce

T
U = [ w0 D) .. w0 ult)

and using a controllable canonical form realization gives

U(t) = AJU(t) + Byus(t) (22)
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where

[ — —dy_y —d, ] (1]
0 1 0 0 0
Ay = ; By =
0 ... 1 0 0 0
0o 0 ... 1 0 | L0 |

Moreover, approximating the differential equation (22)hwa sampling interval of

At, gives the optimal control at as
Ut;) = (I — AyA) U (t1) + (I — AyAt) ' Byus(t;) At (23)

where the backward difference approximati&éf—)h:ti = %ff—l) is used.
The actual controli(¢;) is computed using the optimal signal(¢;) and the previ-
ous states of the control derivatives and the control itself

In this formulation the computation of the actual controttee is iterative. At
the instant when the control system is switched on, theainitbnditions of the
control vector are specified, i.d/(ty), and these can be chosen to correspond to
the actual plant control states. For example, the contgniadiu(ty) can be taken
as the actual input to the plant with the derivatives.0f) equal to zero. With this
selection, the recursive computation will automaticalfydate the actual control
signal to the plant, and the implementation of the contratay is performed
without additional information such as the steady-stateevaf the plant output.

The resulting state-space model here contains the ayxifate variable vector
entriesz(t), y(t)~Y, ...,y (¢) andy(t) and hence derivatives of the entries
in the original state variable vectar,,(¢) and the plant outpug(¢). Moreover,
it is not desirable to implement the continuous-time priéaggccontroller using

z(t) even ifz,,(t) is available because differentiation of a signal will arfypéiny
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existing measurement noise. Instead, an observer is reeoded to estimate the
augmented state vectoft), even in the case when all entries of the original state
vector x,,,(t) are available from measurements. The observer structwieosen

to match the augmented model and has the form

di(t)
dt

= Ai(t) + Bus(t) + Ko (y(t) — §(t)) (24)

wherez(t) andy(t) are the estimated state vector and output respectivelykgnd

is the observer gain matrix.

3. Repetitive-predictive Control with a Prescribed Degree of Stability

This section investigates issues associated with tuniagénformance of the
repetitive-predictive controller detailed in the prevdaection, starting with a cost
function used in predictive control, and leading on to asialyhat shows the lim-
itation in closed-loop control performance that would ie#uthis class of cost
function were to be used in repetitive predictive controhafon-minimum phase
plant. The outcome is control law design with a prescribegreke of stability to
achieve desired closed-loop performance when applieddo glants.

The first case considered is the effect of high gain contrtt Wie following
cost function commonly used, see for example [6], in prédictontrol of SISO
plants (this is a special case of (16) where the derivatiésecerror signal are not

included)

TP TP
— A o+ 2dr N2dr
J—/O (r(t:) —y(ti +71t;))°d +R/0 us(7)"d (25)

In the absence of constraints, it is known [18] that if expuiz data weight-
ing is employed then the predictive controller convergethéocorresponding lin-

ear quadratic regulator with sufficiently large predictioorizonZ,, and largeN
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(where this last parameter is the number of terms includederorthonormal ex-
pansion). Therefore, the closed-loop poles of the prediatepetitive controller
will follow the stable branches of the dual root-locus, dietd by the choice of the
weight coefficientR [10]. Also the optimal control is the filtered control signal
us(t), and hence a transfer-function describing the relatignsleitween the out-
put and the control signal is required for root-locus analyBy following the
procedure given in [18], the required transfer-function is

Y (s) 1
Gs(s) = U(s) Ws)G(S) (26)

where D(s) is the denominator polynomial of the disturbance modelsfiemn
function andG(s) = Cy, (s, — Anm) B,y is the plant transfer-function.

The closed-loop poles of the repetitive-predictive cdnsiygstem are deter-
mined by the stable zeros of

1 G(s)G(=s)
R D(s)D(—s)

and, from root-locus analysis, it follows that a branch (@rthes) generated by

1+ =0 27)

the closed-loop poles will converge to the mirrored loaaiio the complex plane
of the non-minimum phase zero (or zeros) of the plant trarfefection. If these
zeros are close to the imaginary axis then the closed-laymrese speed is limited
as these zeros become the closed-loop poles as the weightithg control in the
cost function R) is reduced. This is also true if the plant has zeros with thaga
real parts but close to the imaginary axis of the complexglan
As an example, consider the case when
s—1
(s+3)(s+6)

and the denominator of the transfer-function describirgdisturbance model has

Gs) = (28)

the form
D(s) = s(s* + w?) (29)

14



wherew, = %’r Suppose also the repetitive predictive control systeredsiired

to follow a set-point signal consisting of a sinusoidal sigwith a period of3
seconds and a constant bias. For a given weighfimg the cost function (25), the

closed-loop poles are given by the stable solutions of
L (=5 —1)(s—1)
R (=s+3)(s+3)(=s +6)(s + 6)(—s)(s)(s* + wi)?
and varyingR from 0 to oo, produces the dual root-locus shown in Figure 1. In this

—0 (30)

uuuuuuuuu

Ima

Figure 1: Dual root-locus generated by (11) and (29) witk- 0 andw; = ¢

case the dominant pole moves from the origin-tb, which is the mirror location
of the non-minimum zero.

Consider now the case whé\(s) includes one more periodic mode and takes
the form

D(s) = s(s? + w)(s> + w3) (31)

wherew; = %” andwsy = 4{, resulting in the dual root-locus of Figure 2. Clearly,
the additional periodic mode adds four branches in the cigdtiocus but that for
the dominant pole remains unchanged.

This example highlights the potential performance linmtas when controlling

a non-minimum phase plant by repetitive predictive conif@ traditional cost
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Figure 2: Dual root-locus generated by (11) and (29) witk: 0, w1 = 2F, wy = 4F

function is used in the design, and there has been some wotki®mproblem
reported in the repetitive control literature. Next prei repetitive control with

a prescribed degree of stability is developed as a solutidihi$ problem.

3.1. Predictive Repetitive Control with a Prescribed Degod Stability

The analysis here is in a linear quadratic regulator settihgre the general

form of the cost function for the repetitive-predictive tar system is
TP
J= / [t + 7 | 6)TQa(t; +7 | t) + us(r) Rug(r)] dr  (32)
0

where@ > 0, R > 0, andz(-) is the augmented state vector that includgs) and
the outputy(-) and its derivatives. Moreover, with this general form costction,
the resulting closed-loop poles of the repetitive-predéctontrol system will not
necessarily obey the root-locus rule given above.

The matrix@ is of dimension(n; + v) x (ny + ) and it is very difficult and
time consuming to select the individual elementsjno achieve desired closed-
loop performance. In addition, the formulation of the potile repetitive control

problem has led to an augmented system state matdixh@at hasy poles on the
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imaginary axis of the complex plane. As a result, the prediatepetitive control
system is numerically ill-conditioned and there is a needorove the numerical
conditioning and develop a systematic way to tune its cldsefd performance.

One approach to predictive control with a prescribed degfestability has
been developed in [18] where the resulting design also omees the numerical
ill-conditioning problem. In particular, the eigenvaluafsthe state matrix4 in the
augmented state-space model (9) are determined, where flaint is stable the
unstable eigenvalues dgf come from the periodic modes that have been embedded
in the model. It is, however, essential to use a stable madile predictive com-
putation and the strategy here is to select an exponentightieg o and A — oI in
this computation, where > 0 if the plant is stable. If the plant is unstable with all
its eigenvalues lying to the left of the lire= ¢ line in the complex plane, where
e > 0, thena > eis required.

Once the exponential weighting factaris selected, the eigenvalues of the
matrix A — ol are fixed. Since this matrix is stable for an appropriate aoi
of a, the prediction of the state variables is numerically welhditioned and the
prediction horizort), is selected sufficiently large to capture the transformatest
variable response. In general, if the eigenvalued ef ol were further away from
the imaginary axis in the complex plane, then a smdllecan be used.

The use of exponential data weighting alters the originasedl-loop perfor-
mance as specified by the cost function weighting matrigesd R, and in order

to compensate for this variation tiggmatrix is replaced by
Qa =Q +2aP (33)
whereP is the solution of the Riccati equation

PA+ATP—-PBR'BTP+Q =0 (34)
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To achieve a prescribed degree of stabilitythe P matrix is found as the solution

of the Riccati equation
PA+BI)+ (A+81)'P—-PBR'BTP+ Q=0 (35)

and@, from
Qo =Q+2(a+p)P (36)
As a numerical example, consider the case when

s—0.1
) = 8+ 0)
which has a non-minimum phase zerdadt with the periodic modes, = 0 and
wy = 2w /3 embedded in the design. We choose the exponential weigfatirtgr
asa = 0.18 to ensure numerical stability in the computation. In thisec¢he
dominant closed-loop pole will converge 0.1, as the weightingr is reduced.
As an illustration of this consider the choiéeé= 1078, p = 0.1 andN = 15, with

resulting closed-loop poles at

5.9971, —-3.1095 —-0.8339 £1.27775, —0.1

Figure 3 shows the corresponding closed-loop responseewhervery slow con-
vergence rate in tracking the periodic reference signaligeat. To improve the
convergence rate, the slow dominant closed-loop pole nedaks removed by us-
ing prescribed degree of stability design, where here theirement is that all
closed-loop poles must be to the left of the liie= —2 in the complex plane.
Also @ is unaltered buR = 1 is used (instead of a very small number) for better
numerical conditioning

The Laguerre scaling facter = 2 is applied to the guessed dominant closed-

loop pole in this cased), P is obtained by solving the Riccati equation (35) and
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Figure 3: Repetitive-predictive control without presetibdegree of stability.

Q. from (36). With this design, the predictive repetitive aqohtsystem has the
closed-loop poles

—6, —4.0138 £2.1491j, —3.9155, —3.0005

The closed-loop response with the prescribed degree alistaesign in place
is shown in Figure 4. For comparative purposes, the closeptesponse without

the prescribed degree of stability is also shown and is lgleat tracking the peri-

odic reference signal.

—beta=2
- --beta=0
(o] s

Control
|
B
o
o

—600r|

—-800y

. . —1
10 15 ODG0 5 10 15

Time (sec) Time (sec)

(a) Output and Reference (b) Control signal

Figure 4: Repetitive-predictive control with and withouegcribed degree of stability.
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4. Experimental Results

The test facility used to provide the experimental resudtshiown in Figure
5, and has previously been used to evaluate a number of RQ_andlgorithms

(see [7, 15]) for details). It has been specifically desigtegroduce the non-

Figure 5: Experimental test facility.

minimum phase characteristic, and consists of a rotary arechl system of iner-

tias, dampers, torsional springs, a timing belt, pulleys gears. A 1000 pulse/rev
encoder records the output shaft position and a standaidedqage induction

motor supplied by an inverter, operating in Variable Vo#taéariable Frequency
(VVVF) mode, drives the load. The system input is the voltagpplied to the

inverter and the system output is in radians. The system eargresented using
the continuous time plant transfer function

1.202(4 — s)

G = a0 + 125 + 56.35

(37)

which has been identified in previous work. A sampling peab@.0001s has been
used in the experimental tests performed. As in the lasissestalues otx = 0.18
and N = 15 have been selected, and the periodic madgs= 0 andw;, = 27/3
have also been embedded. The samend R values are also used apds set

equal tos. Figure 6 shows the experimental tracking results and spareding
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input usings = 0.8. Here the closed-loop poles are
—9.0000, — 6.0000 4 4.50005, — 1.5929 +2.11035, — 1.6000 £ 0.0007;

Figure 7 shows results using = 1.8, and the increase in convergence speed is

20 p— 2

y 15
15F
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10 05

0

Output (rad)
Control (V)

-05
-1
-15

-5 2 . . . ,
0 5 10 15 20 [¢] 5 10 15 20
Time (s) Time (sec)

(a) Output and Reference (b) Control signal

Figure 6: Experimental results using beta = 0.8.
clearly evident. Here the closed loop poles are
—9.0000, — 6.0000 4+ 4.50005, — 3.6002 + 2.0946j5, — 3.6161, — 3.5832

A further increase in convergence rate is observed whea 3.8, as shown in

20- 3
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=

0 5 10 15 20 ) 5 10 15 20
Time (s) Time (sec)
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Figure 7: Experimental results using beta = 1.8.

Figure 8. In this case the closed loop poles are

—6.0000 £ 4.50005, — 7.6018 £ 2.09405, — 9.0000, — 7.6754, — 7.5188
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Figure 8: Experimental results using beta = 3.8.

If beta is increased excessively, the controller robustseffers and performance
is degraded, as confirmed by Figure 9 in which a valug ef 4.2 has been used,

and the closed loop poles are

—6.0000 £ 4.50005, — 8.4027 +2.094335, — 9.0000, — 8.4923, — 8.2998

Output (rad)
Control (V)
o

[¢] 5 10 15 20 0 5 10 15 20
Time (s) Time (sec)

(a) Output and Reference (b) Control signal

Figure 9: Experimental results using beta = 4.2.

5. Conclusions

In this paper an approach is developed to disturbance i@mjeahd set-point
following of periodic signals in the framework of prediativcontrol with con-

straints. The predictive control system is designed witbetded periodic compo-
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nents in the augmented model where a set of continuous-tegedrre functions
is used to describe the inversely filtered control signal. aA®sult, the control
system tracks (or rejects) periodic signals with zero stesate errors. lllustrative
simulation studies have been reported and the designsiexgeally verified on a
non-minimum phase electro-mechanical testbed with exceiigreement between
simulated and measured performance. One obvious areartoerfwork is to in-

clude control constraints.
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