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Abstract

This paper considers the application of continuous-time repetitive control to non-

minimum phase plants in a continuous-time model predictivecontrol setting. In

particular, it is shown how some critical performance problems associated with

repetitive control of such plants can be avoided by use of predictive control with a

prescribed degree of stability. The results developed are first illustrated by simula-

tion studies and then through experimental tests on a non-minimum phase electro-

mechanical system.

Key words: repetitive control, predictive control, non-minimum phase zeros,

experimental evaluation.

1. Introduction

Many reference signals encountered in control systems applications are peri-

odic or at least can be accurately approximated by a periodicsignal over suitably
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long time interval. Examples here include those associatedwith engines, elec-

tric motors and generators, converters, and machines performing a repetitive task.

Hence it is essential that the output of such a plant has the ability to track a periodic

reference signal and/or reject the influence of a periodic disturbance. In the former

case, the period will be known a priori by the nature of the task performed, and in

the latter it can be identified by using established methods from the areas of signal

processing or system identification.

Repetitive control (RC) has emerged as an approach to the general design prob-

lem considered in this paper where the basic premise is to useinformation from

previous periods or trials (also termed cycles in some literature) to modify the con-

trol signal such that the overall system learns to track a given periodic reference

signal. Early references to this approach include [14, 12].Closely related is iter-

ative learning control (ILC) that is applicable to systems operating in a repetitive

manner where the task is to follow a predefined reference trajectory over a specified

finite time interval, known as a pass or a trial in the literature, with high precision.

In particular, the task is completed and the process is then reset to the starting lo-

cation for the start of the next pass. The novel principle behind ILC is to suitably

use data from previous trials, often in combination with appropriate current trial

information, to select the current trial input with the aim of sequentially improving

performance. In particular, the aim is to improve performance from trial-to-trial in

the sense that the tracking error (the difference between the output on a trial and

the specified reference trajectory) is sequentially reduced to either zero (ideal case)

or some suitably small value. Overviews of the literature inthis area can be found

in the survey papers [3, 1].

The effect of non-minimum phase zeros on the performance of control schemes

is very well known see, for example, [9] and for single-inputsingle-output linear

systems is manifest in the form of an undershoot in the initial response to a step
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change in the input (or reference signal closed-loop). Suchzeros also introduce

performance limitations in RC and ILC for see, for example, [8, 11], where the

limiting effects on the convergence rate is established. There has been previous

work on methods to improve the closed-loop performance in such cases [13, 4], in-

cluding experimental verification on an electro-mechanical testbed which is where

the results developed in this paper are experimentally verified

The new contribution in this paper is a repetitive control algorithm using the

predictive control setting developed in [19], and applied in [17], to plants with

non-minimum phase zeros. With this new framework, the performance limitation

problem caused by the unstable zeros is examined and solved by a simple modi-

fication of the cost function. Using a classical result in linear quadratic regulator

theory, see, for example, [10] and root-locus analysis it isshown that some of the

poles of the repetitive control system move towards the mirrored location of the

non-minimum phase zeros of the plant when design is based on minimizing the in-

tegral squared errors and the derivatives of the errors between the plant output and

the reference signal. This result implies that the convergence rate of a repetitive

control system with, for simplicity, one non-minimum phasezero, is dictated by

the factore−�t, where� denotes this zero, as the gain of the system increases. If

this non-minimum phase zero is close to the imaginary axis, the convergence rate of

the repetitive control system is slow. However, this performance limitation arises

from the assumption that the objective function has limitedcomplexity, and the

closed-loop root loci are pre-determined. This paper showsthat this performance

limitation can be overcome if the function to be optimized isgeneralized to include

interactions between the errors, their derivatives, and the state variables. Tuning the

resulting repetitive control system for better performance is also addressed.

The presence of interactions in the objective function means that the selec-

tion of all the individual elements to achieve a desired effect is a non-trivial task.
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As an alternative, [18] proposed selecting an objective function that results in the

repetitive control system with a prescribed degree of stability � > 0, meaning

that the closed-loop poles are allocated to the left of the lines = −� in the com-

plex s-plane, wheres denotes the Laplace transform variable. This approach has

its origins in the classical method of achieving a prescribed degree of stability in

linear optimal control [2] and was adapted to predictive control using real-time

optimization in [18]. Moreover, since the new system is developed using the re-

ceding horizon control principle, plant operational constraints can, if required, be

naturally embedded in its design and implementation.

The next section of this paper summarizes the necessary background on the

repetitive-predictive control algorithm and this is followed by use of the root-

locus generated by the repetitive-predictive control system to determine how non-

minimum phase zeros affect closed-loop response performance when the tradi-

tional error function is used in design. This leads to the introduction of a sim-

ple modification of the cost function that overcomes the performance limitations

of such zeros, and supporting simulation studies are given.Section 4 reports on

the results obtained when the new algorithm is experimentally applied to a non-

minimum phase electro-mechanical system. Finally, Section 5 gives an overview

of the results in this paper in general terms and discusses possible future research.

2. The Repetitive-predictive Control Algorithm

This section gives the essential background to the new results in this paper.

In particular, the key steps in the application of the repetitive-predictive control

algorithm are described, with a fully detailed treatment in[19]. For notational

simplicity, attention is restricted to the single-input single-output (SISO) case.
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2.1. Embedding the Periodic Disturbance Model

It is well known from the internal model control principle that in order to reject

a periodic disturbance, or follow a periodic reference signal with zero steady-state

error, the generator model for the disturbance or the reference must be included

in the stable closed-loop control system [5]. In this particular case, the route is

to combine the disturbance and plant models to form an augmented model that is

then used in analysis and controller design. Suppose, therefore, that the plant to be

controlled is described by the state-space model

ẋm(t) = Amxm(t) +Bmu(t) + Ωm�(t) (1)

y(t) = Cmxm(t) (2)

wherexm(t) is then1× 1 state vector, andu(t) andy(t) the input and output vari-

ables respectively (in the case of multiple inputs and/or outputsu(t) andy(t) would

be column vectors of compatible dimensions). One way of modeling the input dis-

turbance�(t) is as integrated white noise and then the internal model principle is

satisfied since the predictive controller has an integratornaturally imbedded in its

structure, see [6] and [16] for the discrete and continuous-time cases respectively.

A similar route will be followed in this work.

Suppose now that the denominator of the disturbance model transfer-function

is of the form

D(s) = s
 + d1s

−1 + d2s


−2 + . . .+ d
 (3)

where the roots of this polynomial are either on the imaginary axis or in the open

left-half of the complex plane. Also let� be the differential operator defined as

�f(t) = df(t)
dt

andD(�) the corresponding polynomial in the denominator of the

disturbance model in�, where�kf(t) = f (k)(t) (thektℎ derivative off(t)). Then

it follows immediately that the input disturbance�(t) is described by the following
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differential equation

D(�)�(t) = (�
 + d1�

−1 + d2�


−2 + . . .+ d
)�(t) = 0 (4)

Define the following auxiliary variables using the disturbance model

z(t) = D(�)xm(t)

us(t) = D(�)u(t) (5)

i.e. z(t) andus(t) are obtained by filtering the state vectorxm(t) and the control

signalu(t) respectively by the denominator of the transfer-function description of

the disturbance model. Also applying the differential operatorD(�) to both sides

of the state equation in the system model (1) gives

D(�)ẋm(t) = AmD(�)xm(t) +BmD(�)u(t) + ΩmD(�)�(t)

or

ż(t) = Amz(t) +Bmus(t) (6)

where the relationD(�)�(t) = 0 has been used. Similarly, application ofD(�) to

both sides of (2) gives

D(�)y(t) = Cmz(t) (7)

or

y(
)(t) = −d1y
(
−1)(t)− d2y

(
−2) − . . .− d
−1y
(1)(t)− d
y(t) +Cmz(t) (8)

wherey(n) denotes thentℎ derivative ofy.

Introduce

x(t) =
[

zT (t) y(
−1)(t) y(
−2) . . . ẏ(t) y(t)
]T
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and then, using the plant state-space model (1) and (2) and (6) and (7), the state-

space model to be used in design is

ẋ(t) = Ax(t) +Bus(t)

y(t) = Cx(t) (9)

where

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Am O O . . . O O

Cm −d1 −d2 . . . −d
−1 −d


OT 1 0 . . . 0 0

. . .
.. .

OT 0 . . . 1 0 0

OT 0 . . . 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Bm

0

0
...

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

C =
[

0 0 0 . . . 0 1
]

andO denotes then1 × 1 zero vector.

2.2. The Cost Function and its Minimization

Predictive control requires the construction of a suitablecost function to be

minimized within a moving horizon window and this optimization is performed

in real-time, leading to the option of incorporating constraints in the design. The

cost function used in predictive control is similar to the classical linear quadratic

regulator (LQR) [10], but the solution method is different and is based on numer-

ical minimization of the cost function by directly computing the optimal control

trajectory within this moving horizon window. In the discrete-time case, the op-

timal control trajectory was parameterized by a set of coefficients in conjunction

with shift operators [6], and in the continuous-time case the optimal control tra-

jectory was parameterized by a set of continuous-time orthonormal basis functions
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[18]. With this parameterization, the problem of finding theoptimal control signal

becomes the one of finding the optimal Laguerre coefficients.

Following the continuous-time predictive control case, the filtered control sig-

nal us(�) over 0 ≤ � ≤ Tp, whereTp is the prediction horizon, is see [18], de-

scribed in terms of a set of Laguerre functions as

us(�) = L(�)T �

whereL(�)T =
[

l1(�) l2(�) . . . lN (�)
]

and� =
[

�1 �2 . . . �N

]T

.

In particular, the set of Laguerre functions are defined explicitly by the following

differential equation

L̇(�) = ApL(�) (10)

where

Ap =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−p 0 . . . 0

−2p −p . . . 0
...

...
.. . 0

−2p . . . −2p −p

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

andL(0) is theN × 1 vector with each element equal to
√
2p. Here the parameter

p is a scaling factor andN denotes the number of terms used in the orthogonal

expansion, and the set of Laguerre functions will have a different response time if

the scaling factorp is varied. The key feature of this formulation is that it enables

the prediction of future values of the state vector entries as detailed next, where

these play a key role in the construction of the cost functionon which controller

design is based.

Assume that at the current time, sayti, the state variable vectorx(ti) is avail-

able, but if not then an observer is needed to access the stateinformation through

the measurement of input and output signals, which is detailed in Section 2.3. Then
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at the future time� , � > 0, the predicted state vector, denoted byx(ti + � ∣ ti) is

described by the following equation

x(ti + � ∣ ti) = eA�x(ti) +

∫ �

0
eA(�−
)BL(
)Td
� (11)

Also let Iint(�) denote the integral term in this last equation. Then it is routine to

show thatIint(�) satisfies the matrix linear differential equation

AIint(�)− Iint(�)A
T
p = −BLT (�) + eA�BLT (0) (12)

and hence (11) can be written as

x(ti + � ∣ ti) = eA�x(ti) + Iint(�)� (13)

Moreover, the matrixAp is lower triangular and hence (12) has a closed-form so-

lution in the form of a set of linear equations (see [16, 18] for more details).

In general terms, the cost function used in predictive control has the form

J =

∫ Tp

0
x(ti + � ∣ ti)TQx(ti + � ∣ ti)d� + �TRL� (14)

whereQ andRL are symmetric positive definite and positive semi-definite matrices

respectively, written asQ > 0 andRL ≥ 0 respectively. For the analysis in this

paper, the orthonormal property of the Laguerre functions is used in constructing

the cost function by substituting (13) for the predicted state variable vectorx(ti +

� ∣ ti), to give the following form that can then be specialized for problems of

practical relevance as illustrated next

J = �T {
∫ Tp

0
�(�)Q�(�)T d� +RL}� − 2�T

∫ Tp

0
�(�)Qw(� ∣ ti)d�

+

∫ Tp

0
w(� ∣ ti)TQw(� ∣ ti)d� (15)

where�(�) = Iint(�) andw(� ∣ ti) = −eA�x(ti).
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Consider the case when a periodic disturbance is to be rejected. Then the con-

trol objective in this case is to achieve constant steady-state operation where the

plant output (the SISO case is considered) is equal to the desired constant set-point

signal and all entries in the state vectorz(t) and all derivatives of the plant output

are zero.

In the case when set-point following of a periodic signal, say r(t), is required

it is necessary to assume that the set-point signal is differentiable up to the order

of 
 − 1 where
 is the order of the disturbance model used in the design. The

associated cost function for set-point following is often chosen as

J =

∫ Tp

0
e(ti + � ∣ ti)T e(ti + � ∣ ti)d� +

∫ Tp

0
us(�)

TRus(�)d� (16)

where

e(ti + � ∣ ti) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

r(
−1)(ti)− y(
−1)(ti + � ∣ ti)
...

r(1)(ti)− y(1)(ti + � ∣ ti)
r(ti)− y(ti + � ∣ ti)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(17)

LetC2 be the
 × (n1 + 
) matrix defined by

C2 =
[

on1 I


]

whereon1 is the
 × n1 zero matrix andI
 is the
 × 
 identity matrix. Then it is

shown in [19] that the cost function (16) is identical to thatof (14) withQ = CT
2 C2.

Also, sincer(t) is periodic, the vectors,�(�) andw(� ∣ ti) take the form

�(�) = C2Iint(�)

and

w(� ∣ ti) =

⎡

⎢

⎢

⎢

⎣

r(
−1)(ti)
...

r(ti)

⎤

⎥

⎥

⎥

⎦

− C2e
A�x(ti) (18)
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respectively.

Consider the unconstrained minimization with respect to the parameter vector

� of the general cost function (15) in the absence of hard constraints. Then the

minimizing � is the least squares solution

� = {
∫ Tp

0
�(�)Q�(�)T d� +RL}−1

∫ Tp

0
�(�)Qw(� ∣ ti)d� (19)

where the optimal� and controlus(�), 0 ≤ � ≤ Tp, can be expressed in terms of

the associated Laguerre functions as

us(�) = L(�)T � (20)

Also, by the principle of receding horizon control, the optimal controlus(t) for the

unconstrained problem at timeti is

us(ti) = L(0)T � (21)

In this design, the Laguerre scaling parameterp and the number of terms used,

N , are the performance tuning parameters. WhenN is large, with a long prediction

horizonTp, the filtered control trajectoryus(.) will closely match the underlying

optimal control trajectory defined by the linear quadratic regulator (LQR) [18].

Having computedus(t) at timeti, the final step is to convert this into the actual

control signalu(t) to be applied atti. The procedure for this is detailed next.

2.3. Control Implementation

Given the optimalus(t) at timeti, the actual control signalu(t) at this time

satisfiesus(t) = D(�)u(t). Also introduce

U(t) =
[

u(
−1)(t) u(
−2)(t) . . . u(1)(t) u(t)
]T

and using a controllable canonical form realization gives

U̇(t) = AuU(t) +Buus(t) (22)
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where

Au =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−d1 −d2 . . . −d
−1 −d


0 1 . . . 0 0

. . .
. . .

0 . . . 1 0 0

0 0 . . . 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, Bu =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

0
...

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Moreover, approximating the differential equation (22) with a sampling interval of

Δt, gives the optimal control atti as

U(ti) = (I −AuΔt)−1U(ti−1) + (I −AuΔt)−1Buus(ti)Δt (23)

where the backward difference approximation,df(t)
dt

∣t=ti ≈ f(ti)−f(ti−1)
Δt

, is used.

The actual controlu(ti) is computed using the optimal signalus(ti) and the previ-

ous states of the control derivatives and the control itself.

In this formulation the computation of the actual control vector is iterative. At

the instant when the control system is switched on, the initial conditions of the

control vector are specified, i.e.,U(t0), and these can be chosen to correspond to

the actual plant control states. For example, the control signalu(t0) can be taken

as the actual input to the plant with the derivatives ofu(t) equal to zero. With this

selection, the recursive computation will automatically update the actual control

signal to the plant, and the implementation of the control system is performed

without additional information such as the steady-state value of the plant output.

The resulting state-space model here contains the auxiliary state variable vector

entriesz(t), y(t)(
−1), . . . , y(1)(t) and y(t) and hence derivatives of the entries

in the original state variable vectorxm(t) and the plant outputy(t). Moreover,

it is not desirable to implement the continuous-time predictive controller using

z(t) even ifxm(t) is available because differentiation of a signal will amplify any
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existing measurement noise. Instead, an observer is recommended to estimate the

augmented state vectorx(t), even in the case when all entries of the original state

vectorxm(t) are available from measurements. The observer structure ischosen

to match the augmented model and has the form

dx̂(t)

dt
= Ax̂(t) +Bus(t) +Kob(y(t)− ŷ(t)) (24)

wherex̂(t) andŷ(t) are the estimated state vector and output respectively, andKob

is the observer gain matrix.

3. Repetitive-predictive Control with a Prescribed Degree of Stability

This section investigates issues associated with tuning the performance of the

repetitive-predictive controller detailed in the previous section, starting with a cost

function used in predictive control, and leading on to analysis that shows the lim-

itation in closed-loop control performance that would result if this class of cost

function were to be used in repetitive predictive control ofa non-minimum phase

plant. The outcome is control law design with a prescribed degree of stability to

achieve desired closed-loop performance when applied to such plants.

The first case considered is the effect of high gain control with the following

cost function commonly used, see for example [6], in predictive control of SISO

plants (this is a special case of (16) where the derivatives of the error signal are not

included)

J =

∫ Tp

0
(r(ti)− y(ti + � ∣ ti))2d� +R

∫ Tp

0
us(�)

2d� (25)

In the absence of constraints, it is known [18] that if exponential data weight-

ing is employed then the predictive controller converges tothe corresponding lin-

ear quadratic regulator with sufficiently large predictionhorizonTp and largeN
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(where this last parameter is the number of terms included inthe orthonormal ex-

pansion). Therefore, the closed-loop poles of the predictive repetitive controller

will follow the stable branches of the dual root-locus, dictated by the choice of the

weight coefficientR [10]. Also the optimal control is the filtered control signal

us(t), and hence a transfer-function describing the relationship between the out-

put and the control signal is required for root-locus analysis. By following the

procedure given in [18], the required transfer-function is

Gs(s) =
Y (s)

Us(s)
=

1

D(s)
G(s) (26)

whereD(s) is the denominator polynomial of the disturbance model transfer-

function andG(s) = Cm(sIn1
−Am)−1Bm is the plant transfer-function.

The closed-loop poles of the repetitive-predictive control system are deter-

mined by the stable zeros of

1 +
1

R

G(s)G(−s)

D(s)D(−s)
= 0 (27)

and, from root-locus analysis, it follows that a branch (or branches) generated by

the closed-loop poles will converge to the mirrored location in the complex plane

of the non-minimum phase zero (or zeros) of the plant transfer-function. If these

zeros are close to the imaginary axis then the closed-loop response speed is limited

as these zeros become the closed-loop poles as the weightingon the control in the

cost function (R) is reduced. This is also true if the plant has zeros with negative

real parts but close to the imaginary axis of the complex plane.

As an example, consider the case when

G(s) =
s− 1

(s+ 3)(s + 6)
(28)

and the denominator of the transfer-function describing the disturbance model has

the form

D(s) = s(s2 + w2
1) (29)
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wherew1 = 2�
3 . Suppose also the repetitive predictive control system is required

to follow a set-point signal consisting of a sinusoidal signal with a period of3

seconds and a constant bias. For a given weightingR in the cost function (25), the

closed-loop poles are given by the stable solutions of

1 +
1

R

(−s− 1)(s − 1)

(−s+ 3)(s + 3)(−s + 6)(s + 6)(−s)(s)(s2 + w2
1)

2
= 0 (30)

and varyingR from 0 to∞, produces the dual root-locus shown in Figure 1. In this
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Figure 1: Dual root-locus generated by (11) and (29) withw = 0 andw1 =
2�

3

case the dominant pole moves from the origin to−1, which is the mirror location

of the non-minimum zero.

Consider now the case whenD(s) includes one more periodic mode and takes

the form

D(s) = s(s2 + w2
1)(s

2 + w2
2) (31)

wherew1 =
2�
3 andw2 =

4�
3 , resulting in the dual root-locus of Figure 2. Clearly,

the additional periodic mode adds four branches in the dual root-locus but that for

the dominant pole remains unchanged.

This example highlights the potential performance limitations when controlling

a non-minimum phase plant by repetitive predictive controlif a traditional cost
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Figure 2: Dual root-locus generated by (11) and (29) withw = 0, w1 =
2�

3
, w2 =

4�

3

function is used in the design, and there has been some work onthis problem

reported in the repetitive control literature. Next predictive repetitive control with

a prescribed degree of stability is developed as a solution to this problem.

3.1. Predictive Repetitive Control with a Prescribed Degree of Stability

The analysis here is in a linear quadratic regulator settingwhere the general

form of the cost function for the repetitive-predictive control system is

J =

∫ Tp

0

[

x(ti + � ∣ ti)TQx(ti + � ∣ ti) + us(�)
TRus(�)

]

d� (32)

whereQ ≥ 0,R > 0, andx(⋅) is the augmented state vector that includesxs(⋅) and

the outputy(⋅) and its derivatives. Moreover, with this general form cost function,

the resulting closed-loop poles of the repetitive-predictive control system will not

necessarily obey the root-locus rule given above.

The matrixQ is of dimension(n1 + 
) × (n1 + 
) and it is very difficult and

time consuming to select the individual elements inQ to achieve desired closed-

loop performance. In addition, the formulation of the predictive repetitive control

problem has led to an augmented system state matrix (A) that has
 poles on the
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imaginary axis of the complex plane. As a result, the predictive repetitive control

system is numerically ill-conditioned and there is a need toimprove the numerical

conditioning and develop a systematic way to tune its closed-loop performance.

One approach to predictive control with a prescribed degreeof stability has

been developed in [18] where the resulting design also overcomes the numerical

ill-conditioning problem. In particular, the eigenvaluesof the state matrixA in the

augmented state-space model (9) are determined, where if the plant is stable the

unstable eigenvalues ofA come from the periodic modes that have been embedded

in the model. It is, however, essential to use a stable model in the predictive com-

putation and the strategy here is to select an exponential weighting� andA−�I in

this computation, where� > 0 if the plant is stable. If the plant is unstable with all

its eigenvalues lying to the left of the lines = � line in the complex plane, where

� > 0, then� > � is required.

Once the exponential weighting factor� is selected, the eigenvalues of the

matrix A − �I are fixed. Since this matrix is stable for an appropriate choice

of �, the prediction of the state variables is numerically well conditioned and the

prediction horizonTp is selected sufficiently large to capture the transformed state

variable response. In general, if the eigenvalues ofA−�I were further away from

the imaginary axis in the complex plane, then a smallerTp can be used.

The use of exponential data weighting alters the original closed-loop perfor-

mance as specified by the cost function weighting matricesQ andR, and in order

to compensate for this variation theQ matrix is replaced by

Q� = Q+ 2�P (33)

whereP is the solution of the Riccati equation

PA+ATP − PBR−1BTP +Q = 0 (34)
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To achieve a prescribed degree of stability,�, theP matrix is found as the solution

of the Riccati equation

P (A+ �I) + (A+ �I)TP − PBR−1BTP +Q = 0 (35)

andQ� from

Q� = Q+ 2(�+ �)P (36)

As a numerical example, consider the case when

G(s) =
s− 0.1

(s+ 3)(s + 6)

which has a non-minimum phase zero at0.1 with the periodic modesw0 = 0 and

w1 = 2�/3 embedded in the design. We choose the exponential weightingfactor

as� = 0.18 to ensure numerical stability in the computation. In this case the

dominant closed-loop pole will converge to−0.1, as the weightingR is reduced.

As an illustration of this consider the choiceR = 10−8, p = 0.1 andN = 15, with

resulting closed-loop poles at

5.9971, −3.1095 −0.8339 ± 1.2777j, −0.1

Figure 3 shows the corresponding closed-loop response where the very slow con-

vergence rate in tracking the periodic reference signal is evident. To improve the

convergence rate, the slow dominant closed-loop pole needsto be removed by us-

ing prescribed degree of stability design, where here the requirement is that all

closed-loop poles must be to the left of the line� = −2 in the complex plane.

Also Q is unaltered butR = 1 is used (instead of a very small number) for better

numerical conditioning

The Laguerre scaling factorp = 2 is applied to the guessed dominant closed-

loop pole in this case (�), P is obtained by solving the Riccati equation (35) and
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Figure 3: Repetitive-predictive control without prescribed degree of stability.

Q� from (36). With this design, the predictive repetitive control system has the

closed-loop poles

−6, −4.0138 ± 2.1491j, −3.9155, −3.0005

The closed-loop response with the prescribed degree of stability design in place

is shown in Figure 4. For comparative purposes, the closed-loop response without

the prescribed degree of stability is also shown and is clearly not tracking the peri-

odic reference signal.
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Figure 4: Repetitive-predictive control with and without prescribed degree of stability.
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4. Experimental Results

The test facility used to provide the experimental results is shown in Figure

5, and has previously been used to evaluate a number of RC and ILC algorithms

(see [7, 15]) for details). It has been specifically designedto produce the non-

Figure 5: Experimental test facility.

minimum phase characteristic, and consists of a rotary mechanical system of iner-

tias, dampers, torsional springs, a timing belt, pulleys and gears. A 1000 pulse/rev

encoder records the output shaft position and a standard squirrel cage induction

motor supplied by an inverter, operating in Variable Voltage Variable Frequency

(VVVF) mode, drives the load. The system input is the voltagesupplied to the

inverter and the system output is in radians. The system can be represented using

the continuous time plant transfer function

G(s) =
1.202(4 − s)

s(s+ 9)(s2 + 12s+ 56.25)
(37)

which has been identified in previous work. A sampling periodof 0.0001s has been

used in the experimental tests performed. As in the last section, values of� = 0.18

andN = 15 have been selected, and the periodic modesw0 = 0 andw1 = 2�/3

have also been embedded. The sameQ andR values are also used andp is set

equal to�. Figure 6 shows the experimental tracking results and corresponding
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input using� = 0.8. Here the closed-loop poles are

−9.0000, − 6.0000 ± 4.5000j, − 1.5929 ± 2.1103j, − 1.6000 ± 0.0007j

Figure 7 shows results using� = 1.8, and the increase in convergence speed is
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Figure 6: Experimental results using beta = 0.8.

clearly evident. Here the closed loop poles are

−9.0000, − 6.0000 ± 4.5000j, − 3.6002 ± 2.0946j, − 3.6161, − 3.5832

A further increase in convergence rate is observed when� = 3.8, as shown in
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Figure 7: Experimental results using beta = 1.8.

Figure 8. In this case the closed loop poles are

−6.0000 ± 4.5000j, − 7.6018 ± 2.0940j, − 9.0000, − 7.6754, − 7.5188
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Figure 8: Experimental results using beta = 3.8.

If beta is increased excessively, the controller robustness suffers and performance

is degraded, as confirmed by Figure 9 in which a value of� = 4.2 has been used,

and the closed loop poles are

−6.0000 ± 4.5000j, − 8.4027 ± 2.0943j, − 9.0000, − 8.4923, − 8.2998
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Figure 9: Experimental results using beta = 4.2.

5. Conclusions

In this paper an approach is developed to disturbance rejection and set-point

following of periodic signals in the framework of predictive control with con-

straints. The predictive control system is designed with embedded periodic compo-
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nents in the augmented model where a set of continuous-time Laguerre functions

is used to describe the inversely filtered control signal. Asa result, the control

system tracks (or rejects) periodic signals with zero steady state errors. Illustrative

simulation studies have been reported and the designs experimentally verified on a

non-minimum phase electro-mechanical testbed with excellent agreement between

simulated and measured performance. One obvious area for further work is to in-

clude control constraints.
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