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1. INTRODUCTION

Autonomic systems that are capable of self-management have been advocated as a
solution to the problem of maintaining modern, large, and complex computing sys-
tems [Kephart and Chess 2003]. Within this context, we contend that self-organizing
multi-agent systems provide a suitable paradigm to develop these autonomic systems,
because such self-organizing systems can arrange and rearrange their structure au-
tonomously, without any external control, in order to adapt to changing requirements
and environmental conditions. Furthermore, such adaptation needs to be performed in
a decentralized fashion, so that the ensuing system is robust against failures; again, a
characteristic that fits with the multi-agent paradigm [Tesauro et al. 2004]. With this
motivation, this article explores the area of self-organization in systems of autonomous
agents, and particularly focuses on adaptation of the structure in agent organizations.
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In more detail, self-organization is here viewed as the “mechanism or the process
enabling the system to change its organization without explicit external command
during its execution time” [Di Marzo Serugendo et al. 2005]. In particular, any self-
organizing system is expected to have the following properties: (i) no external control
(all of the adaptation process is initiated internally and only changes the internal state
of the system); (ii) dynamic operation (the system is expected to evolve with time;
self-organization is a continuous process); and (iii) no central control (the organiza-
tion is maintained only through local interactions of the individual components with
no central [internal or external to the system] guidance). Building on this, we argue
that the presence of appropriate self-organization principles in a distributed computing
system can make the system autonomic. In this vein, De Wolf and Holvoet [2003] rec-
ommend that agent-based modeling is best suited to build such systems. Here, we are
primarily interested in multi-agent systems that act as cooperative problem-solving or-
ganizations (i.e., those comprising cooperative autonomous agents that receive inputs,
perform tasks, and return results)1 because they clearly act as an abstract model of the
distributed systems. Hence, we focus on developing self-organization techniques for
such agent organizations. Moreover, we believe decentralized structural adaptation is
the most appropriate way of achieving self-organization in agent organizations. Here,
the structure of an organization is a manifestation of the relations between the agents,
which, in turn, determine their interactions. Consequently, adapting the structure in-
volves changing the agent relations, and thereby redirecting their interactions.

To make it clear, consider a sample scenario of the interconnected network of a
university as a form of autonomic grid computing system. Being a university, it contains
various labs with their own specialized computing systems, as part of the overlaying
network of the university. For example, a computer in the geography lab might contain
specialized software for analysing GIS maps, while that in a graphics lab can render
high-quality images. Now, these computers providing different services will need to
interact with each other to perform complex tasks (say, creating detailed city maps
by analyzing GIS data). Moreover, as these individual computers are controlled by
different people in different labs, the respective loads on them, at any time, cannot
be known or predicted. Also, some might go offline when they are disconnected, some
might be upgraded, and so on. Hence, the computers need to continuously adapt their
interactions with others in the university network to keep up with the changes and, at
the same time, optimize the overall performance.

To illustrate further, let us focus on only a few computers in the GIS labs and the
graphics labs, as depicted in Figure 1(a). Initially, computer Y2 is working on some
project involving the city Seoul, whose GIS information is present in X3. Thus, Y2
maintains relations with Y1 and X3. Similarly, Y1 and X1 have a relation and so on.
However, X3 was switched off by its owner when she went on vacation, as in Figure 1(b).
Then, Y2, left with no other resort, starts enquiring for its GIS information from Y1
who then redirects the queries to its relation X1 and sends back the information to Y2.
In such circumstances, Y2 and X1 should realize this and start maintaining a relation
directly between them to reduce both the computation load and memory usage on Y1,
also saving bandwidth and resulting in a faster passage of the information considering
that the GIS data, which tends to be huge, need not be copied to Y1 in between (see

1The problem solving part of this definition is in contrast to organizations that just provide guidelines to
be obeyed by agents participating in the organization to achieve their individual goals (see, for example,
Sierra et al. [2004]). Specifically, these organizations do not have any particular goals to achieve, but only
act as regulating authorities. Thus, they do not look to accomplish any defined tasks, and cannot be mapped
onto distributed computing systems. The cooperative part of the definition is in contrast to those comprising
self-interested and often competing agents, like in virtual organizations [Norman et al. 2004].
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Fig. 1. An example of structural adaptation.

Figure 1(c)). With time, that Seoul-based project comes to an end and Y1 is then being
used for a new project relating to SaoPaolo. This GIS information is not present with
X1, but resides with X2. Thus, instead of interacting indirectly via X1, Y2 and X2
should then form a direct relation. At the same time, Y2 and X1 should realize that
their interactions are not frequent anymore and dissolve their relation, as shown in
Figure 1(d). Thus, structural adaptation is especially critical in situations where it
can help the organization cope with both internal changes and those in the external
environment.

In this context, Mathieu et al. [2002] suggest that an adaptation method is important
to improve the performance (in terms of costs and task completion times) of organi-
zations, though they do not actually provide such a method. Furthermore, autonomic
systems are expected to be deployed in uncertain and changing environments where
neither the components, their characteristics, nor the tasks facing the system will re-
main constant. In more detail, the system will be expected to continue performing well
in scenarios where agents might be added or removed from the organization, the prop-
erties of the existing agents might be changed with time (they might start providing
new services, lose services, or gain more resources), and similarly, the characteristics
of the task stream (the type and rate of tasks) might also vary with time. In such cases,
structural adaptation will enable the agents to reorganize their interactions to better
suit the changed circumstances. Thus, structural adaptation is especially critical in
such situations as it can help the organization cope with both internal changes and
those in the external environment.

Moreover, as the adaptation process itself will require some computation, metarea-
soning is also needed by the agents to decide “whether to adapt” (in addition to “how
to adapt”) or to continue performing the tasks without adaptation. As a sample sce-
nario, consider our earlier example. Y2 has limited computational resources (processor
cycles and memory) available to it. Given that it has to process a continuous stream of
tasks for its projects, it has to make the best possible use of the resources for a good
performance (in terms of tasks completed for the project). In addition to those compu-
tational tasks, we have seen that Y2 also needs to maintain the best set of relations
to help in its task allocation. This evaluation and modification of relations (structural
adaptation) by Y2 takes up its resources as well. Y2 will have to balance its limited
resources between doing its actual tasks and this adaptation reasoning. Therefore, it
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becomes imperative for Y2 to choose smartly between when to evaluate the structure
for adaptation and when to continue with the current structure (that is, the current re-
lations) without evaluation, thereby needing metareasoning. Now, such metareasoning
in a multi-agent systems context has been shown particularly important for resource-
bounded agents in uncertain environments [Raja and Lesser 2004]. Thus, we believe
it is an important issue that needs to be addressed in our context because we also deal
with agents adapting in the face of limited computational resources and present in dy-
namic environments where the tasks and agent properties are unpredictably changing
with time.

Against this background, we present a novel structural adaptation method
for problem-solving agent organizations. Following self-organization principles, the
method is a decentralized and continuous process that is followed by every agent to
decide on when and how to adapt its relations, based only on locally available informa-
tion. Moreover, the adaptation method only involves changing the structural relations
between the agents and does not need the agents to change their internal properties
like services/skills or capacities and neither does it need new agents to be added, or
existing agents to be removed from the system. Therefore, it can even be applied to
scenarios where such modifications to the agents are not permitted to the adaptation
mechanism. Thus, our mechanism can serve as a self-management tool similar to those
envisioned in autonomic systems.

Our adaptation method enables pairs of agents to continuously and locally reeval-
uate their inter-relations on the basis of their past interactions. Using the method,
every pair of agents can calculate the utility of the possible relations between them
and choose the most beneficial one. Additionally, the agents are also able to decide
when to initiate such calculation and with which other agents. Furthermore, the
organizations can be open and dynamic as well. In such systems, agents might be
entering or leaving the system and/or their properties changing with time, thereby
representing distributed systems in which resources are added, removed, updated,
or changed as time goes on. In this context, our method also aids the agents to adapt
in these open organizations. Using simple principles based on the current context
of the existing agents, newer agents are easily assimilated into the structure by the
method. Similarly, agents in dynamic organizations are able to adapt the structure to
the quickly changing circumstances by associating time-decaying weights to the past
interactions while calculating utilities. Here, it is important to note that our focus is not
on distributed task allocation. Rather, it is on the underlying structure that the agents
use while allocating and executing tasks. In this way, our work enables the agents
to adapt their structure towards optimizing the efficiency of task completion, and is
independent of the actual task allocation algorithms that the agents might employ.

In summary, our method can be seen to extend the state-of-the-art in terms of struc-
tural adaptation mechanisms for agent organizations by being the first that is generi-
cally applicable to models with a broad range of inter-agent relations and by addressing
the metareasoning aspects of adaptation in a completely decentralized fashion. It is
also the first adaptation method that is suitable for open and dynamic organizations
where the agents and their internal characteristics are changing with time. Finally, we
advance the state-of-the-art by providing a self-organization inspired approach for de-
centralized adaptation in formally specified organizations (as opposed to structureless
systems like swarms and ant colonies).

In the next section, we review the existing literature relevant to the problem at hand.
We follow it with a description of the model of a problem-solving agent organization that
will act as the abstract platform on which to base our adaptation mechanism (Section 3).
By using such a generic platform, instead of focusing on a particular existing system,
we can develop a general method that can be applied to a wide variety of applications.
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We first present the fundamentals of our adaptation process in Section 4 and then
show how to extend it for open and dynamic scenarios. Then, we demonstrate the
effectiveness of our approach through experimental evaluation in Section 5. Finally,
we conclude in Section 6.

2. RELATED WORK

Self-organization can be generated in multi-agent systems in several ways [Di Marzo
Serugendo et al. 2006; Bernon et al. 2006]. For example, it may emerge from stigmergic
(indirect coordination through traces left in the environment) or reinforcement mecha-
nisms in agents [Mano et al. 2006] or it can arise from the locally cooperative actions of
the agents [Capera et al. 2003a; 2003b]. To date, however, most of the self-organization
mechanisms are not applicable to an explicitly modeled agent organization because,
being based on reactive agents interacting in unstructured ways, they cannot easily
be incorporated into agents that are working towards organizational goals. The few
mechanisms that do consider agent organizations are usually centralized in nature,
requiring a few specialized agents to manage the adaptation process for all the agents.
For example, Hubner et al. [2004] present a “controlled reorganization” mechanism
which is a top-down approach in which a specialized group of agents perform the reor-
ganization process for the whole organisation. Therefore, it is neither decentralized nor
continuous. Similarly, Bou et al. [2006] present a centralized reorganization mecha-
nism in which the central authority named “autonomic electronic institution” modifies
the norms of the institution to achieve institutional goals. Thus, this work does not
focus on the organization structure. A centralized mechanism that involves the organi-
zation structure is presented by Hoogendoorn [2007] where a maxflow network-based
approach is used to identify bottlenecks in the organization, the corresponding agents
or nodes are replicated, and new structural links are added to connect them to the
organization. It also aims to improve the capacity of the organization by adding links
and nodes, but does not attempt to optimize by removing redundant links or nodes.

In contrast, Horling et al. [2001] suggest a somewhat distributed method (using
a central blackboard). However, their approach involves a diagnostic subsystem for
detecting faults in the organization that map to some fixed predesigned reorganization
steps. But, such a method is not applicable when all the states of the system cannot be
anticipated by the designer. Similar drawbacks also exist with the approach presented
by Wang and Liang [2006] in which the transformation of organization structure occurs
by agents shifting between roles on the basis of some predefined rules corresponding
to different scenarios. Finally, a method called organization self-design [Ishida et al.
1992; Kamboj and Decker 2007] achieves self-organization by dynamically spawning
and merging agents in response to the changing requirements. However, since agent-
based development of autonomic systems involves modeling the individual components
as agents, changing the characteristics of these components may not be possible on all
occasions due to physical and accessibility limitations (e.g., data centers located in
remote places cannot easily be replicated). Moreover we are interested in adapting the
inter-agent interactions, rather than changing the agents internally (for the reasons
detailed in Section 1).

A self-organization approach that has been successfully applied in a multi-agent
system is demonstrated by Schlegel and Kowalczyk [2007]. They tackle the problem
of resource allocation by proposing a distributed algorithm that does not require any
central controller. Their agents attempt to optimize their task allocations to servers
by forecasting the future task load on the servers on the basis of the history of server
utilization, obtained from the completed tasks at those servers. On the basis of the
forecasts on each of the servers, the agent chooses the server with the maximum
capacity forecasted. In this way, efficient resource allocation emerges from the indirect
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interactions between the agents (as the agents only interact with the servers). The
major difference between their work and ours is that, in their work, the agents do
not interact directly and take all decisions independently, while in our model, the
agents need to interact with each other to collectively decide about their relations.
Furthermore, in this case, the self-organization process influences the task allocations
on a case-to-case basis, while we require self-organization at the higher level of agent
relations that, in turn, influence the task allocations.

On similar lines, Gershenson [2007] demonstrates a self-organization approach for
the problem of task assignment in agent networks. An agent, that receives a task, needs
to send out some dependency requests to its neighboring agents. The self-organization
process works by first identifying the agent (say ax) with the longest queue. Then,
among the agents dependent on ax, the one with the largest waiting period (say ay)
chooses another agent (one with the shortest queue) (az) to replace ax as its neighbor.
Therefore, the global knowledge of the queues of every agent is required in this method,
which is not always a valid assumption.

Additionally, there has been some work using self-organization in agent systems us-
ing a “holonic” architecture. The methods are based on holarchies: hierarchies made up
of holons. Holons are entities that can exist independently or can join with other holons
to form bigger holons. Holons dynamically altering the holarchy, according to changes
in the environment, form the basis of self-organization [Bongaerts 1998; Fischer 2005].
For example, Hilaire et al. [2008] use a holonic architecture for decentralized decision
making in the agent system. However, such holarchy-based approaches require a strict
hierarchy between the groups of holons. Also, while this approach helps the agents
in decision making regarding the tasks, it does not assist with reasoning about the
structure itself.

As stated in Section 1, we seek a method that enables the agents to self-organize
in distributed systems that have to operate in highly dynamic environments. Now,
such an approach is presented by Forestiero et al. [2008] for information dissemination
in a dynamic grid computing system. In their case, agents travel through the grid
replicating information and discovering new resources based on some biology-inspired
algorithms. However, their method is specifically applicable to resource discovery and
update only, while we seek a self-organization approach for the very different problem of
structural adaptation. Nevertheless, the usefulness of a self-organization mechanism
in a dynamic environment is amply demonstrated by their work. More specifically,
we seek a mechanism that will enable the agents to locally adapt the structure in a
dynamic environment. Such methods are generally developed for peer-to-peer systems
or networks. To this end, Biskupski et al. [2007] survey the existing self-organizing
methods for such systems by comparing them against their model of agent-based self-
organization. Specifically, their localized mechanisms incorporate concepts of feedback,
local evaluation functions, and decay. Although our domain is more complex, as it deals
with agent organizations (rather than networks) which contain several possible types of
relations or links between agents influencing both task allocation and load balancing
in the organization, the ideas of feedback, decay, and local evaluation functions are
useful to us too. Thus, we will be including these basic ideas into the design of our
approach.

Just like the P2P networks, social networks [Watts 2001; Jackson and Watts 2002]
also provide a suitable domain to investigate structural adaptation methods. In this
vein, Gaston and desJardins [2005] focus on agent networks, which comprise a set of
agents with some undirected acquaintance links between them. Their work deals with
agent-based rewiring of the links in order to improve dynamic team formation, thus
somewhat resembling structural adaptation in organizations. However, their model
assumes that only one type of relation exists in the system, and that the number of
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relations possessed by an agent has no effect on its computational resources. Under
these assumptions, their methods always result in scale-free network structures, which
are unrealistic in cases when agents have to expend resources for managing and dele-
gating tasks based on their relations. Glinton et al. [2008] improved over this approach
by limiting the number of links at an agent and using a token-based adaptation ap-
proach for a better spread of links across the network. As they state, their algorithm
“randomly walks a token from an agent wanting to change its links to an agent to
which a link would be potentially beneficial”. However, the model was still restricted
to single link-type,2 ignored load due to the existing links, and also the metareasoning
aspects of adaptation. Nevertheless, as this is the latest and also the most relevant
work that comes close to our requirements, we have implemented this and compared
its performance against ours. Another work on similar lines, by Abdallah and Lesser
[2007], deals with task allocation in agent networks. They use the “Weighted Policy
Learner” algorithm for learning task allocation where agents are connected to each
other via a network. These agents use the information gained from the learning mech-
anism to guide each other into changing their set of neighbors, thereby reorganizing
the network. However, as in the aforesaid work, their network supports only one type
of link. Moreover, every type of task has its own separate agent network. Hence, the
method is not required to adapt the same network when faced with various kinds of
tasks. Also, since the number of incoming or outgoing links of an agent is assumed
to not affect its resources, an agent is able to form a link to another agent without
requiring the consent of the other agent. Such an assumption is not always valid and
more generic organization models would require that two agents agree on the relation
between them. Finally, the fact that an agent’s resources might be expended by the
reorganization process is also ignored.

Finally, as suggested in Section 1, if the adaptation process also requires com-
putation, metareasoning is needed by the agents to decide whether and when to
adapt. Metareasoning, in general, has been explored in a multi-agent systems context
[Alexander et al. 2007; Hogg and Jennings 2001], but has not previously been applied
to self-organization scenarios. In particular, Conitzer [2008] emphasises that generic
metareasoning problems tend to be computationally hard and it is more productive
to focus on individually solving the particular cases where metareasoning is required.
With this knowledge, we seek to only solve our particular metareasoning problem and
thereby our approach may or may not be applicable to other metareasoning scenarios.

3. THE ORGANIZATION MODEL

In this section, we present our organization framework by first describing the task
model and a basic organization representation. Next, we discuss the modeling of open
and dynamic organization before detailing the mechanism for measuring an organiza-
tion’s performance.

Organization modeling involves modeling the agents comprising the organization,
the organizational characteristics, and the task environment. There are several exist-
ing frameworks for such modeling in the literature [Dignum 2003; Vazquez-Salceda
et al. 2005; Sierra et al. 2004; Deloach et al. 2008]. However, we mainly build on the
ideas presented by Jin and Levitt [1996], Ferber and Gutknecht [1998], and Hannoun
et al. [2000]. A preliminary version of the consolidated model was presented by Kota
et al. [2008]. However, here we extend it by making the organization open and dynamic
(see Section 3.2). Moreover, the evaluation mechanism (Section 3.3) has been made

2Having only a single link-type makes all inter-agent links homogeneous, thereby restricting the model by
not allowing for any kind of classification of the links on the basis of any characteristics like say, amount of
interaction or speed of interaction.
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Fig. 2. Representation of an example task and organization.

more intuitive and realistic than before. In this context, it should be noted that our
contribution is the adaptation method and not the organization model per se. Further-
more, although our adaptation method is demonstrated using this particular organi-
zation model, it can be equally well applied to other organization models, if desired.

3.1. Fundamentals of the Model

In our model, the agent organization comprises a group of problem solving, cooperative
agents situated in a task environment. By problem solving, we mean agents receive
certain input tasks to achieve, execute these tasks, and return the outcomes. Corre-
spondingly, the task environment presents a continuous dynamic stream of tasks that
have to be performed. In addition, the environment also has costs associated with
passing messages between the agents (communication) and changing their relations
(reorganization).

In more detail, the tasks are modeled as workflows composed of a set of Service
Instances (SI), each of which specifies the particular service and the amount of com-
putation required (defined in terms of the number of units that need to be available
at the agent executing it). These SIs need to be executed following a precedence order
which is specified in the form of dependency links between the SIs. This dependency
structure is modeled as a tree. The execution of a task begins at the root node and the
task is deemed complete when all its nodes have been executed, terminating at the leaf
nodes. Figure 2(a) shows an example task composed of five SIs each requiring a partic-
ular service and a specified amount of computation. The required order of execution is
shown by the dependency links between the SIs. That is, geo map needs to be executed
first, followed by its child nodes, draw city and get census (which are executed in any
order or even in parallel).

The organization consists of a set of agents A that provide these services. Every
agent is capable of a set of services and possesses a fixed computational capacity.
Thus, an agent is of the form ax = 〈Sx, Lx〉, where Sx ⊆ S (S is the complete set of
services provided by the organization) and Lx is the agent’s capacity defined in terms
of available computational units in a time step (these are consumed by the SIs as they
are executed). Tasks enter the system at random time steps and their processing should
start immediately. The processing of a task begins with the assignment of the root SI
to some agent. The agent that executes a particular SI is, then, also responsible for
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the allocation of the subsequent dependent SIs (as specified by the task structure) to
agents capable of those services. Thus, the agents have to perform two kinds of actions:
(i) execution and (ii) allocation. Consider an agent executing SI geo map in Figure 2(a).
After completing the execution, that agent needs to find and allocate appropriate agents
to execute draw city and get census, the dependent SIs. Moreover, every action has a
load associated with it. The load incurred for the execution of a SI is equal to the
computational amount specified in its description, while the load due to allocation
(called management load) depends on the relations of that agent (will be explained
later). As every agent has a limited computational capacity, an agent will perform the
required actions on a first-come first-served basis, in a single time step, as long as
the cumulative load (for the time step) on the agent is less than its capacity. If the
load reaches the capacity and there are actions still to be performed, these remaining
actions will be deferred to the next time step, and so on.

As described earlier, agents need to interact with one another for the allocation
of the SIs. These interactions are regulated by the structure of the organization. This
structure is based on the relationships between the agents. The type of relationship can
be categorized into different levels. We consider the following: (i) stranger, not aware
of each other; (ii) acquaintance, knowing about the presence of, but no interaction;
(iii) peer, low frequency of interaction; and (iv) superior-subordinate, high frequency of
interaction. It is clear that a higher-level relation (like superior-subordinate) contains
the properties of the lower level (like being acquaintances of each other) in addition
to some more characteristics (like the superior knowing the services being provided
by the subordinate and delegating SIs to it).3 Therefore, the relation between any
two agents can exist in only one of these states at a time. In particular, the type of
relation present between two agents determines the information that they hold about
each other and the interactions allowed between them. We can distinguish between
the various relations as follows.

—An agent possesses information about the services that it provides, the services
provided directly by its peers, and the accumulated service sets of its subordinates.
The accumulated service set (AccmSet) of an agent is the union of its own service set
and the accumulated service sets of its subordinates recursively. Thus, the agent is
aware of the services that can be obtained from the subgraphs of agents rooted at
each of its subordinates, though it might not know exactly which particular agent is
capable of the service.

—During the allocation of an SI, an agent will always try to perform the SI by itself if it
is capable of the service and has available computational capacity. Otherwise, it will
delegate it to one of its subordinates (which contains the service in its accumulated
service set). If there are no suitable subordinates (none of the subordinate subgraphs
is capable of that service) and it is capable of the service itself (but did not initially
assign to self because its capacity is filled), then it will add the SI to its task waiting
queue for execution. However, if it is not capable of the service (and nor are its
subordinates), it will try to delegate the SI to its peers. If it is unable to do so either
(no peer is capable of the service) it will pass it back to one of its superiors (who will
have to find some other subordinate or peer for delegation).

Therefore, an agent mostly delegates SIs to its subordinates and seldom to its peers.
Thus, the structure of the organization influences the allocation of SIs among the
agents. Moreover, the number of relations of an agent contributes to the management
load that it incurs for its allocation actions, since an agent will have to sift through

3In this view, the stranger relation represents the fact that both agents belong to the organization (though
they don’t know each other), thus it is at a lower level than the acquaintance relation.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, Article 1, Publication date: April 2012.



1:10 R. Kota et al.

its relations while allocating an SI. Therefore, an agent with many relations will incur
more management load per allocation action than an agent with fewer relations. Also,
a subordinate will tend to cause management load more often than a peer because
an agent will search its peers only after searching through its subordinates and not
finding a capable agent. As all the agents in the organization are cooperative and
work selflessly for the organization, an agent willingly accepts all SIs delegated by
its superiors or peers. Note that, to avoid an infinite loop of delegation, the superior-
subordinate (also called authority) relations are not permitted to have cycles. Also,
the relations are mutual between the agents, that is for any relation existing between
two agents, both the concerned agents respect it. In total, the authority relations
impose the hierarchical structure in the organization while the peer relations enable
the otherwise disconnected agents to interact closely. These types of relationships are
sufficient to describe the different kinds of interactions possible in a task allocation
setting. Moreover, having such multiple types of relations to select from (rather than
just a single link-type) enables the agents to classify their links with the other agents,
thereby providing more richness to the model and also helping them reason about their
interactions more easily. Nevertheless, the types of relations described here are just
canonical structures. For example, there could be an additional relation, say manager,
which is like the authority relationship but in this, the superior is also aware of the
current workload on the subordinates and thus can delegate SIs more wisely. Using our
organization model, we also abstract away the complex interaction problems relating
to issues like service negotiation, trust, and coordination. We do so to focus on the
essence of self-organization and to isolate its impact on system performance.

Figure 2(b) shows an example organization. The services that an agent provides
are shown beside it in parentheses. The services that an agent can seek from its
subordinates, the AccmSet, is shown in curly braces, while the services that it can seek
from its peers are shown in square brackets.

3.2. Open and Dynamic Organizations

Given an organization, the agents in it can remain unchanged over its existence, or they
might change with time. For example, new agents might enter the organization and/or
some existing agents might leave. In this way, the organization can be open. Moreover,
even within a given agent, the properties can change with time. It might, for example,
start providing new services and/or lose previous services. Thus, the organization can
be dynamic. In contrast, organizations in which the set of agents is constant are called
as closed and those in which the agent properties do not change are considered static.
Thus an organization can be closed or open and, in addition, be static or dynamic. Up
to now, our description of the organization model is sufficient to represent closed and
static organizations. Thus, in the following, we discuss how to extend it to model open
and dynamic organizations.

—Open Organizations. For this kind of organizations, the set of agents A changes with
time. In particular, we focus on those organizations that have some permanent agents
to begin with (similar to closed) and some temporary agents who join later, at specified
“start-times,” and also leave the organization at the expiration of their “life-times.”
We look at these types of open systems initially because in them, the service set S of
an organization can be kept constant (the temporary agents will offer services chosen
from the same S as the permanent ones). In this way, our method can focus solely on
the changes to the overall capacity (resulting from the temporary agents) instead of
the service discovery aspect that might have been needed. Consequently, these open
organizations represent distributed systems in which additional resources might be
added to tackle the workload and withdrawn later on (as discussed in Section 1).
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—Dynamic Organizations. In these organizations, the properties of the agents are
changing with time. As described earlier, in our model, an agent ax has a service
set Sx that it provides. Since Sx ⊆ S, the services (si, sj . . . ) belonging to Sx can
change with time. In particular, we look at scenarios, where the agents start with
their respective service sets and then additional services (from S) are added to these
sets with time (either gradually or suddenly). Similarly, we also look at scenarios
where services are removed from the service sets of the agents with time. The way
we generate these dynamic organizations is explained in detail in Section 5.1.

3.3. Organizational Performance Evaluation

The performance of a computing system denotes how well it performs its tasks. In
terms of an agent organization, the performance measure can be abstracted to the
profit obtained by it. In our model, the profit is simply the sum of the rewards gained
from the completion of tasks when the incurred costs have been subtracted. In more
detail, the cost of the organization is based on the amount of resources consumed by
the agents, in addition to their computational capacities. In our case, this translates
to the cost of sending messages (communication) and the cost of changing relations
(reorganization) between the agents. Thus, the cost of the organization is

costORG = C.
∑
ax∈A

cx + D.d, (1)

where C is the communication cost coefficient representing the cost of sending one
message between two agents and D is the reorganization cost coefficient representing
the cost of changing a relation. cx is the number of messages sent by agent ax and d is
the number of relations changed in the organization.

As stated earlier, agents have limited capacities and their computational load cannot
increase beyond this capacity. The load lx on agent ax in a given time step is

lx =
∑

sii∈WxE

pi + M
∑

si j∈WxF

mj,x + R.rx. (2)

—pi is the amount of computation expended by ax for executing SI sii (determined by
the task description of the SI sii);

—mj,x is the number of relations considered by ax while allocating SI si j ;
—WxE is the set of SIs (possibly belonging to several tasks) being executed by ax;
—WxF is the set of SIs being allocated by ax;
—M is the “management load” coefficient denoting the computation expended by an

agent to consider one of its relations while allocating a single SI;
—R is the “reorganization load” coefficient, denoting the amount of computational units

consumed by an agent while reasoning about reorganization with another agent;
—rx is the number of agents that ax initiated reorganization deliberation in that time

step.

In this way, M represents the computational complexity resulting from the relations of
an agent. If an agent has more relations, it will need more computation for allocating
an SI. The increase in computation caused by one relation at an agent is given by M.
Depending on the domain, the value of M can be fixed and be the same for all agents,
irrespective of their relations, or can be agent-specific and also vary depending on the
number of relations at the agent (perhaps increasing exponentially as the number
of relations increases). Similarly, R is used to represent the excess load caused by
reasoning about reorganization. Since the load lx of ax cannot exceed its capacity Lx,
any excess SIs will be waiting for their turn, thus delaying the completion time of the
tasks.
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The rewards obtained by the organization depend on the speed of completion of tasks.
In particular, a task w completed on time accrues the maximum reward which is the
sum of the computation amounts of all its SIs. For delayed tasks, this reward degrades
linearly with the extra time taken until it reaches 0

rewardw =
|siw |∑
i=0

pi − (
ttaken
w − treqd

w

)
, (3)

where siw is its set of SIs, ttaken
w represents the actual time taken for completing the

task, while treqd
w is the minimum time needed. Thus, the total reward obtained by the

organization is the sum of the rewards of the individual tasks completed by the organi-
zation: rewardORG = ∑

w∈W rewardw where W is the set of all tasks. The organization’s
performance is measured by its profit.

profitORG = rewardORG − costORG (4)

Thus, for higher profits, the reward should be maximized, while the cost needs to
be minimized. It is important to note that the agents only have a local view of the
organization. They are not aware of all the tasks coming in to the organization (only
those SIs allocated to them and the immediately dependent SIs of those allocated SIs)
and neither are they aware of the load on the other agents. In spite of this incomplete
information, they need to cooperate with each other to maximize the organization profit
by maintaining the most useful relations which lead to faster allocation and execution
of tasks.

4. STRUCTURAL ADAPTATION

This section details our work on developing a self-organization-based structural adap-
tation method that can be employed continually by all the agents in a problem-solving
organization. The aim of the adaptation method is to improve the performance of the
organization. Our adaptation method is based on the agents forging and dissolving
their relations with other agents, thereby modifying the organization structure. It uses
only the history of agent interactions since we do not assume that agents possess any
information about the tasks coming in the future. In this section, we first present the
basics of the method and how it is to be applied by the agents in an organization.
Following that, we show how to extend it to deal with open and dynamic organizations.

We present the fundamental mechanism, in a pseudocode form in Algorithm 1, for
how an agent ax should reorganize at a given time step. The first component (line 1)
refers to the metareasoning aspect of choosing the particular acquaintances for ini-
tiating the reorganization process. The second component (lines 3–9) explains how it
should adapt its relation with one such acquaintance ay.

We formulate this part using a decision-theoretic approach since it provides us with
a simple and suitable methodology for representing adaptation in terms of actions and
utilities. We denote the actions available to a pair of agents as those changing the rela-
tion between them. Consequently, the set of actions available to a pair depends on their
relation (line 3). In our model, for every pair of agents that are not strangers,4 the rela-
tion between them has to be in one of the states: acquaintance relation, peer relation,
or authority relation. For each of these states, there are three possible choices of action
available to the agents as shown in Figure 3. For example, action 1(ii) (form subrx,y)

4The stranger relation is not considered as a state because if the pair of agents do not know each other, then
they cannot seek to adapt their relation. Getting to know about strangers is an issue of service discovery
and is out of the scope of this work. Similarly, two acquaintances can only become strangers by forgetting
knowledge or memory of each other, again out of scope of this work.
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ALGORITHM 1: Adaptation algorithm in terms of agent ax

1 Chosen ← selected from the acquaintances set of ax;
2 foreach ay ∈ Chosen do
3 Actions ← possible actions(x, y);
4 Ux,y ← ∅;
5 foreach e ∈ Actions do
6 Ue ← calculate utilityx,y(e);
7 Ux,y ← Ux,y

⋃
Ue;

end
8 ebest ← argMax(Ux,y);
9 take action ebest with ay;

end

ayax

4. ay supr of ax

relation state
action
supr-subr
peer
acqt

1(iii)no-action

ax ay

ax ay

3. ay peer of ax

1. ay acqt of ax

2. ay subr of ax

ayax

4(ii)rem-subr

3(ii)rem-peer+

2(iii)no-action

3(i)rem-peer

3(iii)no-action

2(i)rem-subr

4(i)rem-subr+
form-subr

form-subr
1(ii)form-subr

1(i)form-peer

2(ii)rem-subr+
form-peer

4(iii)no-action

Fig. 3. State transition diagram.

denotes that ax and ay take the action of making ay a subordinate of ax and transition
from state 1 to 2. A transition from state 2 to 4 is not needed because it is equivalent
to the transition from 4 to 2, by interchanging ax and ay. Similarly, transitions from
1 to 4 or between 3 and 45 are not required. If there were more types of relations in
the organization model, there would be correspondingly more states and transitions to
represent them. However, the essence of the adaptation method will remain the same.

As can be seen, the transition actions are composed of four atomic types: form peer,
rem peer, form subr, and rem subr, which translate to forging and dissolving the peer or
authority relations (as agents are acquaintances of each other, by default). The actions
are mutually exclusive and can be performed if the relation between the agents is
in the requisite state (as explained later). Obviously, each of these actions has to be
jointly performed by the two agents involved in changing the relation. Furthermore,
the actions are deterministic (there is no uncertainty regarding the outcome of an
action which is the formation or deletion of a link; only the utility of the outcome is
not predetermined). The utility of performing an action (Ue in line 6) is given by value

5In state 4, when az is an indirect superior of ax via ay, it is not possible for ax to have az as its subordinate
(since cycles are not permitted). Hence, it dissolves its relation with its immediate superior in the authority
chain ay and goes to state 1 with respect to ay and then forms a relation with az.
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function V (also called an ordinal utility function) associated with the relation. Since
our environment is characterized by various factors, like the costs and the load on the
agents, V will have multiple attributes to represent them. In terms of two agents, ax and
ay, the five attributes that will constitute V are: (i) change to the load on ax, (ii) change
to the load on ay, (iii) change to the load on other agents of the organization, (iv) change
to the communication cost, and (v) reorganization cost. Moreover, this set of attributes
exhibits Mutual Preferential Independence (MPI). That is, while every attribute is
important, it does not affect the way the rest of the attributes are compared. Therefore,
V can be represented simply as a sum of the functions pertaining to the individual
attributes.

V = �loadx + �loady + �loadOA + �costcomm + �costreorg (5)

In this way, depending on the state, the agents jointly calculate the expected utilities
for the possible actions using the value function (which are stored in Ux,y at line 7),
and then choose the action giving the maximum expected utility (line 8). Being coop-
erative, the agents do not have conflicts as the value corresponds to the social utility
of the relation to the organization and not to the individual agents. The evaluation for
no action will always be 0 as it does not result in any change to the expected load or cost
of the organization. The evaluation for the rest of the actions is obtained from Eq. (5).
In the case of the composite actions (like rem subr+form peer) the value will simply be
the sum of the individual evaluations of the comprising actions. Moreover, since any
action will be taken jointly by the two agents involved, even the evaluation is jointly
conducted by the agents with each of them supplying those attribute values accessible
to them.

To understand further, let us look at the utility calculation (Eq. (5)) for the action
form subrx,y when ax and ay are just acquaintances (state 1). Here, �loadx, representing
the estimated change to the load on ax, is calculated by considering that a new subor-
dinate ay will lead to an increase in the management load on ax every time it tries to
allocate an SI. This is quantified as

�loadx = −M ∗ Asgx,total ∗ f illedx
(
ttotal
x

)/
ttotal
x , (6)

where Asgx,total denotes the total number of SIs allocated by ax, ttotal
x denotes the total

number of time steps that ax has been in existence, while f illedx(ttotal
x ) represents the

number among those that ax ’s capacity was filled with load and some SIs were pending.
By multiplying this value with M, it represents the additional load that would have
been put on ax had ay been a subordinate of ax since the beginning. The negative
sign indicates that this value represents an addition to load, and thereby, a decrease
in utility. In a similar fashion, the second term, �loady, is calculated by estimating
the possible increase in the load on ay had ax been its superior since the beginning.
For the third term, �loadOA, the estimation is carried out by assuming that, had ay
been a subordinate of ax, all those allocations that started at ax and ended at ay via a
delegation chain involving other agents, would have been allocated directly. Therefore,
the load on the intermediary agents would have been less (this value can be calculated
by ax as it gets back information about the delegation chain of each of the SIs allocated
by it). Similarly, the fourth term, �costcomm, is also estimated, while the last term,
the reorganization cost (−D) is a known constant (the minus sign again signifies a
decrease in utility). A detailed explanation of the utility calculation, along with the
corresponding equations, is available in Section 4.1.1 in Kota [2009]. In this way, using
our mechanism, every pair of agents can jointly evaluate the utility for taking any of the
possible actions towards changing their relation, at any time step. Being cooperative,
the agents do not have conflicts as the value corresponds to the utility of the relation to
the organization and not to the individual agents. In a similar context, Sims et al. [2003]
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show that adaptation among cooperative agents which use this kind of social utility
through sharing of values performs better than self-utility-based methods. Thus, this
continuous adaptation of the relations helps in the better allocation of SIs amongst
the agents as they will maintain relations with only those agents with whom they
require frequent interactions. It is evident that the adaptation method does not need
the information about the tasks, but only the resultant agent interactions. Therefore,
the method is independent of the task model and allocation mechanisms. Hence, our
adaptation method will work for a more constrained or relaxed task model, as long as
the information about their personal agent interactions is available to the respective
agents.

4.1. Metareasoning

Now, we focus on how an agent can decide which acquaintances to choose for initiating
the preceding detailed adaptation process. In the ideal scenario, at line 1 in Algorithm 1,
all acquaintances of an agent will be chosen for reasoning about adaptation. However,
as the computation required for these utility calculations and reasoning depends on R
(Section 3.3), it need not be negligible and might exhaust the computational capacities
of the agent that, otherwise, would have been spent on task-related actions (allocation
and execution). Thus, when R cannot be ignored, an agent will have to smartly select
the acquaintances for Chosen in line 1. Thus, effective metareasoning emerges as an
important aspect of the adaptation process.

In our case, this problem boils down to the following: at any given time step, an
agent should decide on how many and which agents to select for initiating reorgani-
zation procedures. This can be viewed as a form of the well-known coupon collector’s
problem [Motwani and Raghavan 1995] and, therefore, we explore a simple randomized
approach that is typically used for such problems. In the coupon collector’s problem,
there are n types of coupons and an infinite number of coupons for each type. At each
trial, a coupon is chosen at random. We can map this problem to our scenario by con-
sidering every agent to be the collector, and all its acquaintances (including the peers,
superiors, and subordinates) as the coupons. Also, in our case, there can be several
trials in a single time step.

Now, if X is the number of trials such that at least one coupon of each type is collected,
then the expectation of X is: E(X) = nln(n) + O(n) [Motwani and Raghavan 1995]. This
assures us that even when chosen randomly, on average, all acquaintances of an agent
will be picked up for reorganization deliberation in a given period of time (for 20
acquaintances, this translates to approximately 80 trials). Therefore, an agent can just
randomly choose k acquaintances at a time step (in line 1). Moreover, this k can be
varied according to the situation. When an agent has free capacity that will otherwise
be wasted, k should be such that the whole of the remaining capacity is utilized for
reorganization. However, even when the agent is overloaded, reorganization might be
necessary. On such occasions, k is based on the percentage of successful reorganizations
in the previous time step. In more detail, at a time t, k is determined as

kt = max

⎧⎨
⎩

1 minimum limit
(Lx − lx)/R based on free-capacity
acqtsx ∗ changedx,t−1/kt−1 success ratio in prev. iteration

(7)

where acqtsx represents the number of acquaintances of ax, changedx,t−1 denotes the
number of relations of ax changed in the previous time step, and kt−1 is the k value
used in the previous time step. The minimum possible value of k is limited to 1, so
that at least one acquaintance is considered for reorganization in any time step. In
this way, free capacity is never wasted and, at the same time, an agent will carry out
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ALGORITHM 2: In terms of agent ax applying WoLF
1 if WxP 	= ∅ then // Set of pending SIs of ax
2 s ← arg-MaxOccuring{WxP} AND /∈ AccmSetx;
3 As ← agents providing service s;
4 ay ← randomly chosen from As;
5 f orm subrx,y;

end

reorganization even when it has a huge number of pending SIs by adapting k according
to its need for reorganization.

As described in Section 3.2, organizations can be open and/or dynamic in nature.
However, our method, detailed until now, might not work well for such organizations.
This is because, in open and dynamic organizations, some of the assumptions of the
method will be invalidated. For example, a new agent entering the system will not
have any past interactions with the existing agents, thereby resulting in zero value for
some of the attributes of the value function. Similarly, when the service set of an agent
changes, all of its past interactions will not provide the best picture for its usefulness
in the future to other agents. Therefore, now we extend our adaptation method so that
it performs well even in such open and dynamic organizations.

4.2. Open Organizations

When a new agent joins the organization, it needs to be assimilated into the structure
by the existing ones. However, for an agent to form a relation with a new agent, it has
to be able to predict how useful that new agent will be and in what type of relation. This
is not straightforward as there are no past interactions with the new agent on which to
base any utility calculations (as required by our method). Therefore, the agent is faced
with an explore versus exploit trade-off: whether to explore by forming an authority or a
peer relation with a new agent, or to reorganize with the past agents only by exploiting
the known information about them. This choice could be tackled by employing specially
designed “explorer agents,” whose sole task is to monitor the performance of all the
agents (including the new ones)[Maximilien and Singh 2005]. However, we do not use
such an approach because it requires special agents and that contradicts our self-
organization principles. Thus, our intention is to imbibe the adaptation method into
the task-solving agents without needing any external help.

Against this background, we find that a context-based exploration strategy is well
suited to our problem. The agent looks at its context to decide whether to explore or not.
For determining this context, we use the same intuition that is behind the well-known
“Win or Learn Fast” [Bowling and Veloso 2001] strategy. The WoLF principle is: “learn
quickly while losing, slowly while winning.” We use the same basis for differentiating
the context at the agents: an agent can either be considered winning (if it has unused
capacity) or losing (when it has a pending queue of SIs). Therefore, an agent that is not
overloaded will only follow Algorithm 1 by ignoring the new agents joining the system.
However, an agent with pending SIs will actively seek new subordinates to be able to
improve its delegation of SIs. This addition to the fundamental method is presented as
a pseudocode in Algorithm 2.

In more detail, an agent, when overloaded (checking in line 1), identifies which
particular service occurs the most in its waiting list that is not supplied by any of its
current subordinates (line 2). Then, in line 3, it searches through all of its acquaintances
(including the newly entered agents) for those offering that particular service. Finally,
in lines 4–5, it forms a superior-subordinate relation with one such randomly chosen
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agent.6 As a result, new agents will be assimilated quickly by the existing agents into
the structure. Moreover, these new agents will end up forming the relations where they
are most needed, thereby leading to a more equitable distribution of load across the
organization. In addition, a new agent offering services which are not much in demand
will be ignored (as the agents offering those services are winning anyway) and thus
not add any unnecessary management load. In contrast, when an agent leaves, the
others can easily reorganize using the method in Algorithm 1 without needing any
such additional step.

This approach is useful because the agent is aware of its current context (how
quickly it is able to perform the SIs it is receiving) and drawbacks (which services
it needs help with) and therefore the exploration is not random but directed (seeking
only those acquaintances that can provide these overloaded services). The reverse, in
which nonoverloaded agents seek to form new relations with incoming agents, is not
productive because the relations at these agents are already sufficient for them to al-
locate and execute SIs efficiently. Thus adding more relations will only increase their
management load and delay tasks with unnecessary delegation without providing any
additional benefits. On the same lines, it is also not required for the agents to seek
help with services that are already being provided by their existing subordinates. This
is because the agent can delegate the SIs to these subordinates, without overloading
itself, and it is for the subordinates to seek help if required. In these scenarios, if the
subordinate is further delegating the SIs to its own subordinates, then the fundamen-
tal method itself, by design, enables the agents to recognize this and adapt accordingly
(thereby, reducing the chains of delegation). In summary, for open organizations, the
adaptation method includes this context-based exploration strategy, inspired by the
“WoLF” principle, in addition to the fundamental method.

4.3. Dynamic Organizations

As explained in Section 3.2, the dynamism of the organizations is caused by the chang-
ing service sets of agents. As agents gain new services and/or lose old ones, the relations
should be changed accordingly to reflect the changed circumstances. However, our adap-
tation method is based on all the past interactions between the agents. The method
of using the whole history of interactions as guidance for calculating utilities during
adaptation might not be the most suitable approach when the agents’ service sets are
changing, because the kind of interactions that they require might also change.

An obvious approach seems to be to partition utilities on the basis of the services, by
grouping the interactions by their services. But such an approach doesn’t work because
an agent losing a service doesn’t exclude it from being able to provide the service via
its subordinates and so on (this approach and its fallibility is explained in detail in
Section 4.2.2 in Kota [2009]). In contrast, the extension presented earlier (Section 4.2)
is somewhat useful for dynamic organizations as well, particularly when agents are
gaining new services. In more detail, when some agents gain new services, they can be
treated as “new agents” with respect to those services and thus considered for forming
subordinate relations by the “losing” or overloaded agents, just as described earlier in
Algorithm 2. However, the method is not helpful when agents might be losing services.
Moreover, even for the former case of agents gaining services, just using this method
will not be sufficient. This is because the agents are already burdened with the whole
history of interactions when their service sets were different. Therefore, they might

6ay is chosen randomly as otherwise the decision process will involve interacting and exchanging utilities
with all qualifying acquaintances, thus using up more computational capacity at ax while it is already
overloaded.
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Table I. Mapping of the Organization Type to Algorithm Required

Org. Type Closed Open
Static fundamental method fundamental method + exploration (WoLF inspired)
Dynamic fundamental method with decaying weights + exploration (WoLF inspired)

not be able to form the best relations for the changed circumstances despite actively
seeking specific-service-providing relations using the method.

A more successful approach is to give weights to the past agent interactions de-
pending on the time elapsed since they actually took place. This makes the adaptation
more responsive to changing scenarios. By recent interactions contributing more to
the utility function than the older ones, the adaptation will reflect the latest scenario
rather than the summary of the whole scenario until then. Thus, it will be suitable
for dynamic environments in which the kind of required interactions will be changing
with time.

In more detail, in the fundamental method, the values for the terms in Eq. (5)
are obtained by summing up the relevant agent interactions. During this summation,
all interactions were given the same importance. However, in this extended method,
weights are assigned to the individual interactions on basis of how far in the past
they had occurred. That is, the most recent interaction will have the maximum weight
and the older interactions will have lesser weights correspondingly. This decrease in
weights will be given by a “decay function.” The rate of decay can be tuned according to
the rate of dynamism of the organization. A highly dynamic organization (where agents
are losing and gaining services at a fast rate) should have a steeper decay function than
an organization with a slower rate of change. The pseudocode for this decay mechanism
is given in the Electronic Appendix.

The advantage of this approach of using the decay function is that it forces the
agents to learn at a faster rate, thus reflecting the increased dynamism of these kinds
of scenarios. At the same time, it does not make any additional assumptions and is
not specifically dependent on the type of changes to the organization (like changing
services or capacities). In this context, it is clear that this decaying weights approach is
on the same lines as a fixed rate reinforcement learning method. However, a principled
Q-learning approach was found wanting when we experimented with it. Specifically,
being based on some reward mechanism, it is unable to recognize the explicit connection
between performance and agent interactions. Furthermore, as this setting puts forth an
extremely large-scale multi-agent RL problem (a learner is required for each possible
pairing of agents), Q-learning is not able to learn useful action-state values despite
trying various learning rates and other parameters.

In this section, we have first presented the basics of our adaptation method suitable
for closed static organizations. Then, we discussed the extension and modifications
required for the method to function well in open and dynamic organizations. This
section is succinctly summarized by Table I.

5. EXPERIMENTAL EVALUATION

We demonstrate the effectiveness of our self-organization-based adaptation method
through experimental evaluation. We first describe the setup used for the experiments
and then present the obtained results. First we discuss the results of the experiments
on static closed organizations (Section 5.2) and then for static open organizations
(Section 5.3). Later on, we move onto dynamic organizations (Section 5.4). Additional
results on the structures formed by adaptation and performance of dynamic open
organizations are listed in the Electronic Appendix.
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5.1. Experimental Setup

We use the organization model described in Section 3 as our simulation platform. How-
ever, we make the assumption that all agents are at least acquainted with each other
by default. Therefore, no two agents will be strangers. We do this so to be able to fo-
cus solely on evaluating the structural adaptation method and isolate it from being
affected by the service discovery aspects. For ease of reference, we refer to our fun-
damental method (without the subsequent enhancements) as k-Adapt. Its extension
using context-based exploration, inspired by the WoLF principle, as discussed in Sec-
tion 4.2, is called wolf-k-Adapt. Similarly, the modified method presented in Section 4.3
is referred to as decay-adapt. Finally, the method incorporating both the exploration
strategy and the decay mechanism is referred to as wolf-decay-Adapt. To determine
the effectiveness of our approach, we compare its performance with two intuitive meth-
ods: Central and Random, that act as the benchmarks. Moreover, to compare with the
current state-of-the-art, we modify the token-based agent network adaptation method
presented by Glinton et al. [2008] so that it is suitable for agent organizations and
use it for comparison as well. As mentioned earlier in Section 2, this is the latest and
most relevant work dealing with adaptation in agent networks or organizations in a
decentralized fashion. Similarly, we compare with a few other variations of k-Adapt to
show the importance of all the components of our algorithm. All of these methods are
described next.

Central. This is a centralized allocation mechanism containing a central repository
that maintains information about the service sets and loads of all the agents in the
organization, and is accessible without cost to any agent. The agents do not need
to maintain any relations; whenever an agent needs to allocate an SI, it looks up the
repository seeking the most suitable agent (capable of the service and having maximum
free capacity at the time) and allocates to it. Thus, all allocations are one-step direct
delegations, and the agents do not use up any capacity for allocation. This method
gives an upper bound on the performance of an organization, but is not a practical or
robust solution because it involves maintaining an up-to-date and exhaustive central
repository with costless and instantaneous access to all agents.

Random. In terms of the k-Adapt method (Algorithm 1), this strategy involves an
agent randomly choosing some of its acquaintances for adaptation (line 1), and then
randomly choosing a reorganization action (line 8). Nevertheless, the rate of change is
adjusted so that the amount of reorganization is roughly equal to that caused by our
method (so that the performance of Random is not affected by the aggregation of reor-
ganization cost). Moreover, the number of relations in the organization is maintained
at a moderate level by varying the probability of forming or dissolving a relation. The
probability to form a relation by an agent is set as being inversely proportional to the
existing number of relations of that kind at the agent. Hence, an agent with very few
subordinates has a higher chance of forming an additional superior-subordinate rela-
tion than an agent with more subordinates and vice versa. In the same way, an agent
with more peers has higher probability of dissolving a peer relation than an agent with
less peers and so on. This enables the organization to be always reasonably connected.
Thus, this method represents a random structural adaptation strategy which does not
involve any reasoning (and therefore R = 0 for it) and constitutes the lower bound.

Token. Glinton et al. [2008] use a token-based algorithm for decentralized adaptation
of links in a task-solving agent network. However, as we discussed in Section 2, their
method is not directly applicable to our domain since it only enables the agents to form
or delete links, but does not let them to choose between different types of links (or
relation-types, as in an organization). Therefore, to fit it into our problem domain, we
created two versions of their method: In Token-all, the agents use the same set of to-
kens, irrespective of the relation-types, for adaptation. At the time of forming/dissolving
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a relation, they randomly choose the type of relation to modify, whereas in Token-type,
the agents use a different set of tokens for each relation type. Therefore, the adapta-
tion process for each of the relation-types runs independently of the others, though
making sure that there are no conflicts. We use both these versions of their approach
for comparison. The token-based algorithm also contains several parameters like TTL
(Time-To-Live of the token) and MAX DEGREE (maximum links allowed at an agent)
which we fine-tuned after extensive analyses to obtain the best possible performance
and present those results.

free-Adapt. For this method, the reorganization load coefficient R is set to 0. It
represents the case when the reorganization can be considered resource-free. Thus, it
is the same as k-Adapt but differs only in line 1, where all the acquaintances are chosen
for reorganization instead of just k. This makes it a theoretical upper bound for the
performance of k-Adapt.

all-Adapt. This is the same as free-Adapt, differing only in R, which is set to the
same value as in k-Adapt and not 0. Now, while the profit obtained by the organiza-
tion (prof itORG in Eq. (4)) represents the organization’s performance, there are two
independent simulation variables that are of interest: (i) distribution of services across
agents and (ii) similarity across tasks. Next we discuss them.

Distribution of services across agents. The degree of heterogeneity of the agents in
the organization depends on the distribution of services across them. This is a relevant
parameter because the significance of the organization structure is greater when the
agents are heterogeneous. In such a case, an efficient structure will need to connect
every agent with all those agents providing services relevant to it and alongside help
in load distribution. In contrast, for homogeneous agents, load distribution is the only
feature that can be influenced by the structure. We distributed the services among
the agents using a parameter called Service Probability (SP). That is, an agent ax is
allocated a service si with a probability SP. Thus, when SP is 0, every agent is capable
of a unique service only (as every agent should offer at least one service and every
service should be offered by at least one agent). When it is 1, every agent is capable
of every service. Since, the services are allocated on the basis of a probability, there is
always randomness in the way they are allocated to the agents.

In static organizations, the service sets of the agents are unchanging across a sim-
ulation run. Hence, in our experiments for static organizations, we vary SP from 0 to
0.5 only (since we verified that beyond 0.5, when the agents are quite homogeneous,
the structures did not influence the performance significantly). However, in dynamic
organizations, SP will be changing within a simulation run as the agents gain or lose
services. Now, agents can gain or lose services gradually or suddenly. Moreover, they
might initially lose services and then start gaining them and vice versa. To capture
these various scenarios, we vary SP in the following ways in our experiments: (i) SP
increases from 0 to 0.25 at a uniform rate and vice versa; (ii) SP increases at a uni-
form rate from 0 to 0.25 and then decreases back to 0 and vice versa; (iii) SP changes
suddenly from 0 to 0.25 midway through the simulation and the other way round. We
implement this variation in SP by adding or removing (depending on the case) ser-
vices from the service sets of the agents at time steps randomly chosen from a uniform
distribution (except in case (iii) where it is midway at t = 2000), so that the resultant
service distribution conforms to the required value. When an agent loses a service, it is
forced to reallocate the SIs in its queue requiring that service and waiting for execution
to appropriate related agents as it can no longer perform those SIs itself.

Similarity between tasks. The other simulation parameter of importance is the kind
of tasks entering the system. The tasks presented to the organization over the period
of a simulation run may be completely unrelated to each other or they may have some
common SIs and dependency links. This is interesting because, when tasks are similar,
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the organization structure should be able to adapt to the recurring task structures,
thereby increasing the efficiency of the organization. Moreover, the presence of simi-
larities in the tasks is an existing phenomenon in the real world faced by computing
systems. For our experiments, we determine the similarity between the tasks belonging
to a simulation run on the basis of what we call patterns: stereotypical task components
used to represent frequently occurring combinations of SIs and dependency links. Like
tasks, patterns are also composed of SIs, but are generally smaller in size. Instead
of creating tasks by randomly generating SIs and creating dependency links between
them, tasks can be constituted by connecting some patterns by creating dependency
links between the SIs belonging to the patterns. In this way, the dependencies between
the SIs may follow some frequent orderings (resulting from the dependencies internal
to a pattern occurring in several tasks) and some random dependencies (due to the
dependencies created between the patterns). Thus, this method of generation enables
us to control the similarity between the tasks using the number of patterns (NoP) as
the parameter. In our experiments, we consider two scenarios: (i) completely dissimilar
tasks (NoP = ∞) and (ii) highly similar tasks (NoP = 5). In addition to these, the set
of patterns being used within a simulation run can also be varied to represent chang-
ing characteristics of the task environment. Experiments based on this are detailed in
Section 5.2.5 of Kota [2009].

All our experiments comprise 1000 simulation runs for every data point to achieve
statistically significant results. All the results are shown with 95% confidence inter-
vals (the errors bars are very close to the marking symbol in the graphs), obtained by
multiplying the standard error by 1.96 (z-test). For every simulation, the set of agents
and services is first generated and then the services are assigned to the agents on
the basis of SP. Next, the set of tasks is generated using NoP. In our experiments,
we use a maximum of 25 initial agents in the organization. We have conducted other
experiments with bigger numbers of agents (reaching up to 100) and found similar
trends as shown here (some sample results can be found in Section A.3 of Kota [2009]).
Also, static organizations face 1500 tasks over 2000 time steps to constitute one simu-
lation run, while dynamic organizations face 3000 tasks over 4000 time steps for one
simulation run. We provided more simulation time for dynamic organizations so that
it is sufficient for the changes in the organization (like changing service sets or task
pattern sets) to take place. The tasks arrive at an uniform rate, and are assigned to
randomly chosen agents in the organization (those then have to initiate the allocation
process for the respective tasks). We do not consider any hot-spots for arrival of tasks
because those scenarios are captured by the settings containing similar tasks and het-
erogeneous agents. This is because in these settings, the particular agents providing
those recurring services act as hot-spots since they end up being swamped with the SIs
that make up the patterns.

Moreover, we set the total number of services (|S|) equal to the number of agents |A|
(though the distribution will vary according to SP). We set C at 0.25 and M at 0.5 (so
that any allocation process will take up at least half a computational unit). Also, we set
R at 0.25 and D at 1. The values of these coefficients are explicitly considered by our
adaptation method as part of the utility calculations and, therefore, we did not find any
interesting trends by varying them over time or over simulations. The maximum size
of a pattern is limited to 8 so that, on average, three patterns are required to compose
a task (which can have a maximum of 25 SIs). We observed broadly similar patterns
with other parameter settings.

Finally, the set of agents A, is kept constant for closed organizations, while for the
open ones, a randomly chosen number of temporary agents are added, as described in
Section 3. The results shown here are of experiments where the start-times and life-
times are chosen from a uniform distribution. However, we also conducted experiments
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with a combination of distributions for start-times (uniform and normal) and life-times
(normal and geometric) and found the resultant trends similar.

We present the results in terms of the percentage of the maximum profit that is
obtained by the organization (averaged over the 1000 simulation runs as described
before). The maximum profit is given by the profit obtained by Central as it represents
the theoretical upper bound. For static organizations, the results are presented as
graphs plotting the profit obtained for the methods over an increasing SP along the
x-axis (increasing the homogeneity of agents). However, for dynamic organizations, SP
itself varies within a simulation run. Therefore, the results are presented in a table
format for each of the scenarios depicting a particular kind of variance in SP.

5.2. Results for Static Closed Organizations

Observing the results for static closed organizations, we find that in both the sce-
narios with dissimilar (Figure 4(a)) and similar tasks (Figure 4(b)), k-Adapt performs
consistently better than Random, Token-all, and Token-type. The difference in their
performance narrows down (from the peak of 40% of profit to 10%) as the similarity of
agents increases. This is because a smart method is correspondingly less useful when
all the agents are homogeneous, as the significance of the structure itself diminishes.
As the agents become homogeneous and everyone can provide most of the services, the
task allocation problem reduces to a load distribution problem. In this case, random
policies will perform well too because the incoming load (or tasks in our case) is also
randomly distributed amongst the agents. Also, we see that k-Adapt and free-Adapt
perform better when SP = 0 than for slightly higher values of SP because, as SP in-
creases and more agents are capable of a given service, Central continues performing
perfect allocations (as it has up-to-date information about loads on all agents), while
the agents in the organizations using our method have no way of knowing which rela-
tions have free capacities. However, the performance increases for higher values of SP
because the average capacity available for any given service becomes larger as agents
are capable of more services, thus leading to better task completion times. This is also
the reason why Random, Token-all, and Token-type improve with increasing SP. It is
also noticeable that Token-type improves at a faster rate than Token-all. This supports
our contention that when different types of relations (or links) are possible between the
agents, considering them distinctly during adaptation provides a better performance.
We also conducted experiments by varying R from 0 to 0.9 (see Figure 4(c)) and found
that the fall in the performance of k-Adapt is gradual and minimal, while it is drastic in
all-Adapt. In fact, for higher values of R, the profit of all-Adapt goes below 0, meaning
the cost is more than the reward obtained. This shows that metareasoning is a crucial
aspect in an adaptation process and cannot be ignored. We see that the performance
of k-Adapt is always close to that of free-Adapt, thus confirming the efficacy of our
metareasoning approach.

5.3. Results for Static Open Organizations

In the case of static open organizations, we find that wolf-k-Adapt performs consid-
erably better than Random, Token-all, and Token-type when tasks are both dissimilar
(Figure 4(d)) and similar (Figure 4(e)). More importantly, k-Adapt, which does not make
use of exploration based on the WoLF principle, degrades rapidly as the similarity be-
tween agents increases. This shows that the context-based exploration is very useful
for assimilating new agents into the organization and maintaining the performance.

Furthermore, Figure 4(f) gives us an insight into what is happening to the orga-
nization when the agents are added and removed. For this experiment, we fixed the
start-time at 500 and life-time at 1000 for the temporary agents. The graph shows
the sum of the computations of all pending SIs in the organization (left y-axis) across
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Fig. 4. Results for static organizations.

the time duration of the simulation, and shows the corresponding reorganization rate
in terms of the number of relations changed in a time step (right y-axis). For these
experiments, we fixed SP = 0.20 and NoP = 0. We observe a gradual fall in the load
starting at time = 500 corresponding to when temporary agents are added. Also at
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Table II. Profit for Dynamic Closed Organizations with Dissimilar Tasks

SP variance wolf-decay-Adapt wolf-k-Adapt Random Token-all Token-type
0 → 0.25 gradually 93.5% ±0.3 88.6% ±0.3 76.2% ±0.4 46.3% ±1.3 58.6% ±0.9
0.25 → 0 gradually 88.2% ±0.4 77.9% ±0.4 72.4% ±0.5 42.1% ±1.3 50.2% ±0.9
0 → 0.25 → 0 gradually 92.1% ±0.3 86.5% ±0.3 74.8% ±0.4 44.8% ±1.3 54.7% ±0.9
0.25 → 0 → 0.25 gradually 90.4% ±0.3 80.9% ±0.3 74.6% ±0.4 45.4% ±1.3 57.7% ±0.9
0 → 0.25 at t = 2000 91.8% ±0.3 87.3% ±0.3 74.2% ±0.4 44.1% ±1.3 48.7% ±1.0
0.25 → 0 at t = 2000 90.7% ±0.3 80.4% ±0.4 74.8% ±0.4 51.6% ±1.2 53.5% ±0.8

Table III. Profit for Dynamic Closed Organizations with Similar Tasks

SP variance wolf-decay-Adapt wolf-k-Adapt Random Token-all Token-type
0 → 0.25 gradually 74.7% ±1.1 70.0% ±1.7 55.7% ±1.9 28.6% ±1.4 40.4% ±1.2
0.25 → 0 gradually 78.8% ±1.0 67.7% ±1.0 47.1% ±0.9 22.6% ±1.3 31.8% ±1.0
0 → 0.25 → 0 gradually 76.5% ±1.0 70.8% ±1.0 53.7% ±1.0 29.1% ±1.3 38.4% ±1.1
0.25 → 0 → 0.25 gradually 76.3% ±0.9 66.3% ±1.0 50.6% ±1.0 26.8% ±1.3 35.1% ±1.1
0 → 0.25 at t = 2000 76.3% ±1.0 71.4% ±1.0 51.3% ±1.1 22.7% ±1.4 27.9% ±1.1
0.25 → 0 at t = 2000 82.1% ±0.9 71.1% ±0.9 50.1% ±1.0 32.7% ±1.2 35.5% ±0.9

time = 1500, there is a quick drop and immediate increase because, when the tempo-
rary agents leave, the SIs pending at them are reassigned to the permanent agents.
This reassignment requires at least a time step, after which only they are visible as
pending load again. Also, the rate of growth of pending load is higher once the agents
leave (as seen by the higher gradient). Looking at the reorganization rate, we find that
it is high in the beginning and then settles down to an almost uniform rate. Later, there
is a sudden jump in the rate when the agents are added and this gradually falls back to
the earlier value at around time = 700. This shows that our adaptation process is able
to reach its earlier stable state in reasonable time. As expected, we also find another
blip in the rate when the agents are removed. This time, it settles much more quickly
as the permanent agents are able to easily reform the older structure that existed prior
to the addition of the temporary agents.

5.4. Results for Dynamic Closed Organizations

We see that for dynamic closed organizations, wolf-decay-Adapt consistently per-
forms significantly better than the other methods in both the scenarios with dissim-
ilar (Table II) and similar (Table III) tasks. It is notable that for dissimilar tasks,
wolf-decay-Adapt is able to reach 90% of the maximum profit which is 5–10% better
than wolf-k-Adapt and 15% better than Random, while being around 35–40% better
than the Token methods. In this context, we also observe that the performance of
wolf-k-Adapt when the service probability SP (introduced in Section 5.1) is reduced is
worse than when SP is increased. This is because in organizations using wolf-k-Adapt,
the agents form relations on the basis of all of their past allocations. However, when the
agents start losing services, some of those allocations are no longer possible. However,
the agents continue to maintain the relations due to the burden of the long history,
thereby reducing their efficiency. This is not the case with increasing SP where agents
gain services because allocations that happened in the past will still be possible. Of
course, newer kinds of allocations will also be possible which wolf-decay-Adapt is ca-
pable of identifying much more quickly than wolf-k-Adapt by giving more weight to
recent interactions.

In these set of results and also in all of the following, we find that the performance
of all the methods is better for dissimilar tasks than similar ones. This is because, for
similar tasks, the load is high on the particular agents providing those more frequent
services and this load cannot be distributed as equitably by the agents with their local
views as the Central method can with its global view. In a similar vein, we also notice
that the gap in the performance between the “adapt” methods and Random or “token”
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methods is much more for similar than dissimilar tasks. This reinforces our assertion
that our adaptation approach is able to identify the patterns across tasks (when they
occur) and adapt the structure according to them in an emergent fashion (since the
agents are only adapting locally). Another interesting phenomenon to observe is that
varying SP gradually over the simulation or suddenly in the middle of the simulation
does not affect the performance of any of the methods significantly. We believe this is
because the effects of agents gaining/losing services slowly over the total time period
averages out to result in the same kind of performance when agents are gaining/losing
all of the services only at the middle of the time period.

In summary, we find that, on average, our adaptation method performs at 80% of the
omniscient centralized allocation method. Furthermore, on average, it is 20% better
than a random reorganization approach (reaching up to a maximum of 45%). More
importantly, it is 40% better on average than the token-based methods (reaching a
maximum of 60%). The results for open and dynamic organizations show that the
respective enhancements, context-based exploration inspired by the WoLF principle
and decaying weights, are crucial for maintaining the performance. We see that, on
average, the performance of the method with the respective enhancement is 8% better
than without it.

6. CONCLUSIONS

This article addresses the problem of developing decentralized structural adapta-
tion methods for problem solving agent organizations based on the paradigm of self-
organization. More specifically, using a simple organization model as a framework, we
presented a structural adaptation method that can be applied individually and locally
by all the agents in order to improve the organization’s performance. In agent organi-
zations, the structure is defined by the relations between the agents and a particular
relation existing between two agents affects both the involved agents. Therefore, using
our method, a pair of agents jointly estimate the utility of changing their inter-relation
and take the appropriate action accordingly. Moreover, our method also enables an
agent to metareason about when and with whom to initiate this adaptation delib-
eration. Additionally, we extend our method so that it performs well even in open
organizations which have agents moving in and out of the system. The extension en-
ables poorly performing agents to actively seek out suitable relations among the new
agents entering the system and then delegate some of their excess load to them. We
also modified our method to tackle dynamic organizations wherein the properties of
the agents might be changing with time. For such dynamic scenarios, the weights asso-
ciated with the past interactions of the agents (during utility calculations) decay with
time. Therefore, more recent interactions contribute more to the utility than older ones,
thus helping the agents keep up with the changes to the agent properties.

We experimentally evaluated our approach by varying interesting parameters like
heterogeneity of agents and similarity of tasks, and the openness and dynamism of the
organizations. We found that our method performs at 80% (average) of a centralized
omniscient method while the current decentralized agent-network adaptation methods
only manage to reach 40% (average). Both the enhancements to our basic method,
context-based exploration and decaying weights, are found useful for maintaining the
good performance in the face of open and dynamic organizations.

It is evident that our adaptation method works purely by redirecting agent interac-
tions, thereby changing the organization structure. A key advantage of this approach is
that it does not entail any modifications to the agents themselves or their internal char-
acteristics. Therefore, it is applicable even in situations where the internal properties
of the agents (like computation capacity or services provided) in the organizations can-
not be altered by the adaptation method. Moreover, the method inherently takes into
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account the cost of adaptation and the cost of reasoning about adaptation in addition
to the achievable improvement to the organization through adaptation. This makes
it suitable for any kind of environment as long as the constants of the environment
are known. Since the adaptation method is purely agent-based, decentralized, and
continuous over time, it satisfies the principles of self-organization discussed in Sec-
tion 1. Also, having been developed on an abstract organization platform, the method is
generic and applicable to cooperative multiagent systems requiring sustained intera-
gent interactions for achieving task objectives in a resource-constrained environment.
It is useful if these interactions are resource-intensive and are regulated by some kind
of an organization structure.

The aforementioned characteristics mean that our adaptation method can be used by
the individual components of a distributed computing system to manage themselves, as
it will enable them to continuously adapt their interactions with the other components
in the system in a local and robust fashion. Hence, the work documented in this
article demonstrates a simple and robust, decentralized approach for continuous self-
adaptation of problem-solving agent organizations, thereby providing an important
component for the development of autonomic systems.

Though our organization model was sufficient to serve as a platform for developing
the adaptation method, it also provides some avenues for future work. For example,
currently the performance is measured by cost and task completion times and does not
take into account aspects like quality of service and does not limit other resources like
memory and network bandwidth. Extending the model to incorporate these features
might throw up more challenges to the adaptation method, like optimizing against
different types of constraints concurrently or improving from among the different set
of performance measures available.

In a similar vein, our adaptation method makes no assumptions about knowing
anything about the dynamism of the system. It functions solely on the history of inter-
actions and does not make use of any information (if available) about the kind of tasks
that might be coming in the future or the kind of changes expected in the organiza-
tion’s agents. We plan to extend our method such that the agents can adapt proactively
when such information is available to them. For example, if they are provided with a
probability distribution of the kind of task patterns expected to be seen in the future,
it can be taken into account during adaptation so that the organization structure is
better prepared to handle these tasks.

By focusing on an abstract model, we have managed to develop a generic adapta-
tion method and tested it empirically in a similarly generic fashion. Nevertheless, the
applicability of the adaptation methods also needs to be tested in real-life scenarios.
Though autonomic systems are not prevalent as yet, there exist grid systems that per-
form extensive work-flow-based tasks like large-scale complex scientific calculations or
supply-chain and procurement processes for large businesses. The adaptation method
could be incorporated in any such suitable distributed computing system and verified
whether it helps in improving the performance. Doing this will not only reaffirm the
results presented here, but also possibly uncover newer challenges that might crop up
during deployment in real-life systems.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.
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