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Abstract. The Shapley Value is arguably the most important normative solution
concept in coalitional games. One of its applications is in the domain of networks,
where the Shapley Value is used to measure the relative importance of individual
nodes. This measure, which is called node centrality, is of paramount significance
in many real-world application domains including social and organisational net-
works, biological networks, communication networks and the internet. Whereas
computational aspects of the Shapley Value have been analyzed in the context
of conventional coalitional games, this paper presents the first such study of the
Shapley Value for network centrality. Our results demonstrate that this particu-
lar application of the Shapley Value presents unique opportunities for efficiency
gains, which we exploit to develop exact analytical formulas for Shapley Value
based centrality computation in both weighted and unweighted networks. These
formulas not only yield efficient (polynomial time) and error-free algorithms for
computing node centralities, but their surprisingly simple closed form expres-
sions also offer intuition into why certain nodes are relatively more important to
a network.

1 Introduction

The Shapley Value (SV) is a fundamental normative solution concept in coalitional
games. Given a scenario where agents are allowed to realize collective payoffs through
mutual co-operation, the SV postulates a fair method to evaluate each agent’s individual
contribution. One of the many applications of the SV is in the domain of networks,
where it is used to measure the importance of individual nodes, which is known as game
theoretic network centrality [1,2]. Although centrality plays a key role in many real-
life network applications, efficient algorithms for its measurement via the SV remain
unknown.

We now introduce the concept of “centrality”. In the networks context, it is often
paramount to determine which nodes and edges are more critical than others. Classic
examples include identifying the most important highways in a road network, the most
influential people in a social network or the most critical functional entities in a protein
network. As a result, the concept of centrality, which aims to quantify the importance of
individual nodes/edges in a network, has been extensively studied in network analysis.

Such a conventional centrality metric, however, suffers from the following drawbacks:
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1. By considering only the failure of individual nodes, it completely ignores real-world
situations where multiple nodes can fail simultaneously. For example, if the network
is so designed that no single node’s failure carries any consequence, but the failure
of certain specific pairs of nodes can bring down the entire network, the above cen-
trality metric would fail to give a higher centrality score to the nodes belonging to
these critical pairs.

2. Because each node is treated separately, the hidden assumption is that node failures
occur independently of each other. As a result, real-world phenomena such as cas-
cading node failures, that have been known to precipitate widespread disruption in
a very short time [3], are outside the scope of this centrality analysis.

In short, conventional centrality measures fail to recognize that in many network ap-
plications, it is not sufficient to merely understand the relative importance of nodes
as stand-alone entities. Rather, the key requirement is to understand the importance of
each node in terms of its utility when combined with other nodes [4]. For instance, in
the above infrastructure network, an ideal centrality measure would assign a score to
a node v based on the failure probabilities (and consequences thereof) of every sub-
set of nodes containing v, rather than just failure of the single node v. This approach
would automatically allow the ideal centrality measure to give due consideration to
real-world failure patterns such as cascading failures and simultaneous multiple node
failures. On the other hand, this flexibility, which comes from the ability to take into ac-
count the contributions of all possible combinations of nodes (rather than just one node
at a time), is absent in conventional centrality measures, which is a crucial limitation in
many applications.

Game theoretic network centrality [1,2] has been proposed as a framework that would
address this limitation. Given the network to be analysed, the idea is to define a co-
operative game where the agents (players) are the nodes of the network. Then the SV
of each agent (node) in this game is interpreted as a centrality measure because it rep-
resents the average marginal contribution made by each node to every possible combi-
nation of the other nodes. This paradigm of SV-based network centrality thus confers a
high degree of flexibility (which was completely lacking in traditional centrality met-
rics) to model real-world network phenomena. Indeed, this new paradigm has already
been proved to be more useful than traditional centrality measures for certain real-life
network applications [1,5].

From a computational perspective, however, evaluating game theoretic network cen-
trality using the original SV formula involves an analysis of the marginal contribution
of every node (i.e. player) to every coalition. Thus, given a network G(V, E), a direct
application of the SV formula involves considering O(2!V(%)1) coalitions. Such an ex-
ponential computation is clearly prohibitive for bigger networks (of, e.g, 100 or 1000
nodes). For such networks, the only feasible approach currently outlined in the literature
is Monte-Carlo sampling, which is not only inexact, but also very time-consuming.

The above problem of exponential complexity in the number of agents is a fundamental
challenge associated with computing the SV. As a result, for conventional coalitional
games, this issue has received considerable attention in the literature. As an alterna-
tive to the straightforward (but exponential) listing of all possible coalitions, some au-
thors [6, 7] have proposed more efficient representations for coalitional games. In addi-
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tion to being concise for many games, these representations are expressly designed to
possess desirable computational properties, including efficient SV computation. Thus,
the choice of representation has been the foremost consideration for efficient SV com-
putation in the context of conventional coalitional games.

The networks domain, by contrast, poses a very different set of challenges:

1. Unlike conventional coalitional games, conciseness is usually not an issue in the
networks context. This is because the games that aim to capture network centrality
notions are completely specified by (a) the underlying network compactly repre-
sented as a graph, and (b) a concise closed-form characteristic function expression
for evaluating coalition values (please see next section for an example). Rather, the
issue here is that the exact specification for the characteristic function is dictated not
by computational considerations, but by the real-world application of game theoretic
network centrality.

2. Because the games in this paper are designed to reflect network centrality, the char-
acteristic function definition often depends highly non-trivially on the underlying
graph structure.

Therefore, the challenge we face in this paper is to efficiently compute the SV, given a
network and a game defined over it, where coalition values for this game are given by a
closed-form expression that depends non-trivially on the network. The key question here
is how to take advantage of (a) the network structure, and (b) the functional form for the
coalition values, so as to compute SVs efficiently, i.e, without the need to enumerate all
possible coalitions.

Against this background:

[1] Our key contribution in this paper is to demonstrate that it is possible to exactly
and efficiently compute SV-based network centralities of practical interest defined
on large networks which exceed thousands of nodes! By contrast, the only previ-
ously known method that scaled to such large networks was Monte-Carlo simula-
tion, which was neither exact nor particularly efficient.

[2] For four different measures of network centrality, we develop exact closed-form
formulas for the SVs. We present pseudo-codes of linear and polynomial time algo-
rithms to implement these formulas.

[3] We develop a closed-form polynomial time computable SV approximation for a fifth
measure of centrality defined on weighted networks.

[4] We test our algorithms on two real-life examples, (a) an infrastructure network rep-
resenting the topology of the Western States Power Grid, and (b) a collaboration
network from the field of astrophysics. The results show that the algorithms pro-
posed in this paper are not only accurate but also deliver significant speedups (upto
550x for the 16000+ node scientific collaboration network) over Monte-Carlo sim-
ulation.

The remainder of the paper is organized as follows. Section 2 presents an example of
how a coalitional game may be used to capture the notion of network centrality. Section
3 analyses four types of centrality-related coalitional games and presents polynomial
time SV algorithms for all of them. Conclusions follow.
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2 SV as a Centrality Measure

As mentioned in the introduction, the paradigm of game theoretic network centrality
based on the SV has been proposed in [1, 2] and further explored in [5]. This section
presents an example to illustrate the advantages of this paradigm over conventional
centrality measures.

Consider the notion of “closeness centrality” of a node in a graph G(V, E'), which is
traditionally defined as the reciprocal of the average distance of that node from other
(reachable) nodes in the graph [8]. This definition captures the intuitive idea that a
node “in close proximity to many other nodes” is more valuable by virtue of its central
location, and hence should be assigned a higher centrality score.

The above measure, however, fails to recognize the importance of combinations of
nodes. For example, consider a typical real-world application of closeness centrality:
that of disseminating a piece of information to all nodes in the network. At any time
point ¢ in the dissemination process, define the random variable C to be the subset of
nodes most actively involved in propagating the information. In this situation, a new
node added to C'; would make maximum contribution to the diffusion of information
only if it is “in close proximity to nodes that are not currently in close proximity to
any node in C;”. Thus, while conventional closeness centrality only takes into account
average proximity to all other nodes, the actual importance of a node in the real-world
application is based on a very different measure: proximity to nodes that are not in close
proximity to the random variable Cs.

We now show how coalitional game theory can be used to construct a centrality measure
that faithfully models the above real-world importance of a node. Let C' be any subset
of nodes from the given network G(V, E). Then, for every such C, assign a value v(C')
given by

1
v(C) = Y .
e 1 + min{d(u,v)|u € C}

where d(u,v) is the distance between nodes u and v (measured as the shortest path
length between v and v in graph G).

The map v defined above captures a fundamental centrality notion: that the intrinsic
value of a subset of nodes C' in the context of a real-world application (such as infor-
mation dissemination) is proportional to the overall proximity of the nodes in C' to the
other nodes in the network. In effect, the map v carries the original definition of close-
ness centrality to a global level, where a measure of importance is assigned to every
possible combination of nodes.

The map v above is therefore a characteristic function for a coalitional game, where
each vertex of the network is viewed as an agent playing the game. It follows that if
a node v has a high SV in this game, it is likely that v would “contribute more” to an
arbitrary randomly chosen coalition of nodes C' in terms of increasing the proximity
of C' to other nodes on the network. Thus, computing the SVs of this game yields a
centrality score for each vertex that is a much-improved characterization of closeness
centrality.

The only difficulty in adopting such a game-theoretically inspired centrality measure is
the previously mentioned problem of exponential complexity in the number of agents.
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In the next section, we show how to overcome this difficulty and compute the SV for
many centrality applications (including the above formulation) in time polynomial in
the size of the network.

3 Algorithms for SV-based network centrality

In this section, we present 5 characteristic function formulations v(C'), each designed
for a different real-world application. While each formulation captures a different fla-
vor of centrality, they all embrace one fundamental centrality idea: that the definition
for v(C') must somehow quantify the sphere of influence of the coalition C' over the
other nodes. For instance, in our first game formulation, we start with the simplest pos-
sible idea that the sphere of influence of a coalition of nodes C' is the set of all nodes
immediately reachable (within one hop) from C. Subsequent games further general-
ize this notion of sphere of influence. For example, the second formulation specifies a
more sophisticated sphere of influence: one that includes only those nodes which are
immediately reachable in at least k different ways from C. The other three formula-
tions extend the notion of sphere of influence to weighted graphs. The third game, for
instance, defines sphere of influence as the set of all nodes within a cutoff distance of
C' (as measured by shortest path lengths on the weighted graph). The fourth and final
formulation is an extreme generalization: it allows the sphere of influence of C' to be
specified by an arbitrary function f(.) of the distance between C' and the other nodes.

Throughout this section, we assume the reader is familiar with concepts of graph theory,
including weighted and unweighted graphs, vertex degrees, neighboring vertices and
shortest paths. We do not define these concepts here but suggest the references [9, 10].
The terms “network” and “graph” are used interchangeably in this paper, as are the
terms ‘“node” and “vertex”. All the weighted graphs considered in this paper are pos-
itive weighted. We do not use digraphs in this paper, so all graphs are assumed to be
undirected.

We also assume familiarity with the concepts of co-operative game theory, including the
definition of coalitional games in characteristic function form and the Shapley Value.
We do not define these concepts here but suggest the references [11, 12].

We now set the notation for a general coalitional game played on a network. Given a
graph G(V, E) with vertex set V and edge set F, we use G to define a coalitional game
g(V(G),v) with set of agents V' (G) and characteristic function v. Here the agents of
the coalitional game are the vertices of the graph G. Thus a coalition of agents C' is
simply any subset of V' (G). The characteristic function v : 2V(%) — R can be any
function that depends on the graph G as long as it satisfies the condition () = 0. We
use the phrase “value of coalition C” to informally refer to v(C').

3.1 Game 1: v; (C) = #agents at-most 1 degree away

Given an unweighted, undirected network G(V, E). We first define “fringe” of a subset
C CV(G)astheset {v € V(G) : v € C (or) Ju € C such that (u,v) € E(G)}, i.e,
the fringe of a coalition includes all nodes reachable from the coalition in at most one
hop.

Based on the fringe, we define the coalitional game g1 (V (G), v1) with respect to the
network G(V, E) by the characteristic function v, : 2(%) — R given by
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0 ifC =0
v (C) = {size(fringe(C)) else

This coalitional game has been extensively discussed in [1], where the authors motivate
the game by arguing that the SVs of nodes in this game constitute a centrality metric
that is superior to degree centrality for some applications. It is therefore desired to
compute the SVs of all nodes for this game. We shall now present an exact formula for
this computation rather than obtaining it through Monte-Carlo simulation as was done
in [1].

To evaluate the SV of node v;, consider all possible permutations of the nodes in which
v; would make a positive marginal contribution to the coalition of nodes occurring
before itself. Let the set of nodes occurring before node v; in a random permutation of
nodes be denoted C;. Let the neighbors of node v; in the graph G(V, E) be denoted
N¢(v;) and the degree of node v; be denoted degg (v;).

The key question to ask is: what is the necessary and sufficient condition for node v; to
marginally contribute node v; € N¢(v;) U {v;} to fringe(C;)? Clearly this happens if
and only if neither v; nor any of its neighbors are present in C;. Formally (Ng(v;) U
{v;}hynC; = 0.

Given that permutations are chosen uniformly at random for computing the SV, combi-
natorial arguments can be used to show that the above condition is satisfied with prob-
ability m. Denote by B,,.,, the Bernoulli random variable that v; marginally
contributes v; to fringe(C;). Thus:

1

B[Byu,) = Pl(Na(v) U{u;}) N G = 0] = s

Therefore, the Shapley Value SV, (v;), which is the expected marginal contribution of
v;, 1s given by:

1
SVa(vi) = Y, EBuul= ) 1+ dega(vy)

’UjE{’Ui}UNG(’Ui) ’Uje{vi}UNG(’Ui)

which is an exact closed-form expression for computing the SV of each node on the
network.

Algorithm 1 describes an O(V + E) procedure that directly implements the above
equation to compute the exact SVs of all nodes in the network. By contrast, Monte-
Carlo simulation requires O(V + E) operations for every iteration. Moreover, the results
obtained using Monte-Carlo are statistical in nature and may not be sufficiently accurate
unless a large number of iterations are carried out.
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: It is possible to derive some intuition from
Algorithm 1: Computing SVs for Game  the above formula. If a node has a high de-

1 gree, the number of terms in its SV sum-
Input: Unweighted graph G(V, E) mation above will also be high. But the
Output: SVs of all nodes in V (G) for terms themselves would be inversely re-

game g lated to the degree of neighboring nodes.

This gives the intuition that a node will

foreach v € V(G) do have high centrality not only when its de-

ShapleyValue[v] = m; gree is high, but also whenever its de-
foreach u € N¢(v) do gree tends to be higher in comparison
‘ ShapleyValue[v] += m§ to the degree of its neighboring nodes.
end In other words, power comes from being
end connected to those who are powerless, a
return ShapleyValue; fact that is well-recognized [13] by the

centrality literature.
3.2 Game 2: v5(C) = #agents with at-least k neighbors in C

We now consider a more general game formulation for an unweighted graph G(V, E),
where the value of a coalition includes the number of agents who are either in the
coalition or are adjacent to at least k£ agents who are in the coalition. Formally, we
consider game g, characterised by 15 : 2V(%) — R, where

w0y = [ if C =0
T v v e Con) |Ne(v)NC| > kY| else

Note that this game reduces to game g; for k = 1.

The motivation for this generalization is that in many real-life networks, the value of a
coalition is interpreted as the number of agents who can be “influenced” by the coali-
tion. For instance, in a viral marketing or innovation diffusion analysis [14], it is usually
assumed that an agent will “be influenced” only if atleast k£ of his neighbors have al-
ready been convinced, which suggests such a game formulation.

Adopting notation from the previous subsection, we again ask: what is the necessary
and sufficient condition for node v; to marginally contribute node v; € Ng(v;) U {v;}
to the value of the coalition C;?

Clearly, if degg (v;) < k, we have E[B,, o] = 0(vi,v)),i.e, E[By, ;] = 1 forv; = v,
and 0 otherwise.

For degc(n;) > k, we split the argument into two cases. If v; # v;, the condition for
marginal contribution is that exactly (k — 1) neighbors of v; already belong to C; and
vj ¢ C;. On the other hand, if v; = v;, marginal contribution happens if and only if C;
originally consisted of at most (K — 1) neighbors of v;.

So for degi(v;) > k and v; # v;, we have

_ (dega(vj) — 1\ (k — D)I(1 + dega(v;) — k)! 1+ dega(vj) — k
EBonn,) = ( -1 ) 0+ dega(op))l  dega(o;)(1 + degal(o;))
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And for degg(v;) > k and v; = v;,
we have

B k

1+ dega(vi)

As before, the SVs are given by sub-
stituting the above formulas into:

> E[By.u]

v;ENg(vi)U{v; }

E[B'Umvi]

SV, (vi) =

Although this game is a generaliza-
tion of game g1, it can still be solved
to obtain the SVs of all nodes in
O(V + E) time, as formalised by Al-
gorithm 2.

Algorithm 2: Computing SVs for Game 2

Input: Unweighted graph G(V, E), positive
integer k
Output: SVs of all nodes in V(G) for game
92

foreach v € V(G) do
ShapleyValue[v] = min(1
foreach u € N¢(v) do
ShapleyValue[v] +=

dega (u)—k+1 .
max (0, degG(U§(1+degG(u)) ):

k .
 Trdega() )b

end
end
return Shapley Value;

An even more general formulation of the game is possible by allowing k to be a function
of the agent, i.e, each node v; € V(G) is assigned its own unique attribute k(v;). This
translates to an application of the form: agent ¢ is convinced if and only if atleast k; of
his neighbors are convinced, which is a frequently used model in the literature [14].

The above proof does not use the fact that & is constant across all nodes. So this general-
ized formulation can be solved by a simple modification to the original SV expression:

k(vl)

SV (vi) = 1+ dega(v;)

1+ dega(vy) — k(vj)
degc (vj)(1 + dega (v)))

>

v;ENgG(v;)
The above equation (which is also implementable in O(V + E) time) assumes that
k(v;) <1+ degg(v;) for all nodes v;. This condition can be assumed without loss of
generality because all cases can still be modeled (we set k(v;) = 1 + degg(v;) for the
extreme case where node v; is never convinced no matter how many of its neighbors
are already convinced).

3.3 Game 3: v3(C) = #agents at-most dyfr away

Hitherto, our games have been confined to unweighted networks. But in many applica-
tions, it is necessary to model real-world networks as weighted graphs. For example,
in a co-authorship network, each edge is often assigned a weight proportional to the
number of joint publications the corresponding authors have produced [15].

This subsection extends the game g; to the case of weighted networks. Whereas game
g1 equates v(C) to the number of nodes located within one hop of some node in C, our
new formulation in this subsection equates v(C') to the number of nodes located within a
distance d.yofr Of some node in C. Here, distance between two nodes is measured as the
length of the shortest path between the nodes in the given weighted graph G(V, E, W),
where W : E — R™ is the weight function.

Formally, we define the game g3, where for each coalition C' C V(G),
ifC =0

w(€) = 1"
s size({v; : Ju; € C | distance(v;, vj) < dewott}) — else
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We shall now show that even this highly general centrality game g3 is amenable to
analysis which yields an exact formula for SVs. However, in this case the algorithm

for implementing the formula is not linear
V2log(V)) complexity.

in the size of the network, but has O(V E +

Let us introduce some extra notation. Define the extended neighborhood Ng (vj s eutoff) =

{vk # v; : distance(vg, v;) < deueote}s 1€,

the set of all nodes whose distance from v;

is at most deyeofr. Denote the size of N (vj, deuofr) by dega (vj, deutofr)-

With this notation, the necessary and sufficient condition for node v; to marginally con-
tribute node v; to the value of coalition C; is: distance(v;, v;) < deuorr and distance(v;, vi) >
deuoft VUi, € C;. That is, neither v; nor any node in its extended neighborhood should
be present in C;. But from the discussion of previous subsections, we know that the

probability of this event is exactly W

of node v; in game gs is:

SVgs (vi) =

>

v; €{v; UNG (V4 ,deutoft)

Algorithm 3 works as follows: for each
node v in the network G(V, E), the
extended neighborgood Ng (v, deutofr)
and its size degg (v, deuofr) are first
computed using Dijkstra’s algorithm in
O(E+Vlog(V)) time [16]. The results
are then used to directly implement the
above equation, which takes maximum
time O(V?). In practice this step runs
much faster because the worst case sit-
uation only occurs when every node is
reachable from every other node within
deutoft- Overall the complexity of the al-
gorithm is O(V E + VZlog(V)).

We make one final observation: that the
above proof does not depend on dyof
being constant across all nodes. Indeed,
each node v; € V(@) may be assigned
its own unique value deyofr(v; ), where
v(C) would be the number of agents
v; who are within a distance deyofr(v;)
from C. For this case, the above proof
gives:

v :distance(v;,v;)
<deutott (V)

Therefore, the exact formula for SV

vj 7dcutoff) :

1
1+ d@gG(Uj, dcutoff)

Algorithm 3: Computing SVs for Game 3

Input: Weighted graph G(V, E, W),
dcutoff >0
Output: SVs of all nodes in G for game g3

foreach v € V(G) do
DistanceVector D = Dijkstra(v,G);
extNeighbors(v) = (J; extDegree(v) = 0;
foreach u € V(G) such that u # v do
if D(u) < dculoff then
extNeighbors(v).push(u);
extDegree(v)++;
end
end

end
oreach v € V(G) do
ShapleyValue[v] =

="

1 .
14+extDegree(v)’
foreach u € extNeighbors(v) do
Shapley Value[v] +=

1

1+extDegree(u) ;
end

end
return Shapley Value;

1
1+ dega (Uj ) dcutuff(vj))
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34 Gamed: v4(C) =3, cy (g f(distance(v;, C))

This subsection further generalizes game g3, again taking motivation from real-life net-
work problems. In game g3, all agents at distances dagent < deuroft contributed equally
to the value of a coalition. However, this assumption may not always hold true because
in some applications, we intuitively expect agents closer to a coalition to contribute
more to its value. For instance, we expect a Facebook user to exert more influence over
his immediate circle of friends than over “friends of friends”, even though both may
satisfy the d .y criterion. Similarly, we expect a virus-affected computer to infect a
neighboring computer more quickly than a computer two hops away.

In general, we expect that an agent at distance d from a coalition would contribute f(d)
to its value, where f(.) is a positive valued decreasing function of its argument. More
formally, we define the game g4 where the value of a coalition C' is given by:

0 ifC =0
v (C) =

Zl)iEV(G) f(d(v;,C))  else
where d(v;, C) is the minimum distance min{distance(v;, v;)|v; € C'}.
It is possible to solve for SVs in the above formulation by constructing a marginal
contribution network (MC-Net) [7]. However, the MC-Net so constructed would have
O(V?3) rules. In the discussion below, we give a more efficient algorithm that runs
in O(VE + VZ2log(V)). This is a considerable improvement because most real-world
networks for which this formulation computes centralities are sparse, i.e, E ~ O(V).
The key question to ask is: what is the expected value of the marginal contribution of

v; through node v; # v; to the value of coalition C;? Let this marginal contribution be
denoted M C(v;,v;). Clearly:

0 if distance(v;, v;) > d(vj, C;)

M) = {f(diStance(Uiavj)) = f(d(v;, Cy))  else

Let D,, = {dy,ds...djy|—1} be the distances of node v; from all other nodes in the
network, sorted in increasing order. Let the nodes corresponding to these distances be
{w1, wa...w)y|—1 } respectively. Let k;;+1 be the number of nodes (out of these [V'|—1)
whose distances to v; are < distance(v;, v;). Let Wg,;+1 = v; (i.e, among all nodes that
have the same distance from v; as v;, v; is placed last in the increasing order).

We use literal w; to mean w; € C; and the literal w; to mean w; ¢ C;. Define a
sequence of boolean variables p, = T; AWi AWz A ... AW foreach 0 < k < |V| — L.
Finally denote expressions of the form M C(v;, v;| F') to mean the marginal contribution
of v; to C; through v; given that the coalition Cj satisfies the boolean expression F'.

MC(’Ui, Uj |pkz‘j+1 A wkij“rQ) = f(dkijJrl) - f(dkij+2)
MO(Ui7vj |pkij+2 A wkij+3) = f(dk’z:j-i-l) - f(dklj+3)

MC(vi,vjlpv)—2 Awv—1) = f(di;+1) — f(djv)-1)
MC(vi,v;lpjv-1) = f(dk,;+1)
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With this notation, we obtain expressions for M C(v;,v;) by splitting over the above
mutually exclusive and exhaustive (i.e, covering all possible non-zero marginal contri-

butions) cases.

The probabilities Pr(ps A wg41) are found by elementary combinatorics which gives:

k!

1

Pr(pk A ’Ujk+1) =

(k+2)!

V14+ky; <kELZ|V|—-2
(k+1)(k+2) J Vi

Using the M C(v;, v;) equations and the probabilities Pr(px A wg41):

V|- .
f(distance(v;, v;)) — f(dr+1) f(distance(v;, v;))
E[MC(vi,v5)] =
MO (vs, v;) ) ;k &+ 1)k +2) i V]
[V]—2

_ f(distance(v;, vj)) Z fdg+1)
(

kij +2

oo DR +2)

For v; = v;, a similar analysis produces:

E[MC(v;,v)] = f(0) — > (

Finally the exact SVs are given by:

SV (i) = Y E[MC(v;,v;)]
v; €V(G)

Algorithm 4 implements the above
formulas. For each vertex v, a vec-
tor of distances to every other ver-
tex is first computed using Dijk-
stra’s algorithm [16]. This yields
a vector D, that is already sorted
in increasing order. This vector is
then traversed in reverse, to com-
pute the backwards cumulative sum

> %. At each step of the
backward traversal, the SV of the
appropriate node w is updated ac-
cording to the E[M C(w,v)] equa-
tion. After the traversal, the SV of
v itself is updated according to the
E[MC(v,v)] equation. This pro-
cess is repeated for all nodes v so
that at the end of the algorithm, all
SVs have been computed exactly in
O(VE + V2log(V)) time.

[Vi-2

f(dr1)

£ (k+1D)(k+2)

Algorithm 4: Computing SVs for Game 4

Input: Weighted graph G(V, E, W), function
f Rt - RT

Output: SVs of all nodes in G for game g4

Initialise: Vv € V(G) set ShapleyValue[v] =

foreach v € V(G) do

[Distances D, Nodes w] = Dijkstra(v,G);

sum = 0; index = [VI-1; prevDistance = -1,

prevSV =-

while index > 0 do

if D(index) == prevDistance then

| currSV = prevSV;
else

‘ currSV = % sum;
end
ShapleyValue[w(index)] += currSV;
sum += L(Pndea))

index(1+index)’
prevDistance = D(index), prevSV = currSV;
index--;
end

Shapley Value[v] += f(0) — sum;
end
return Shapley Value;




12 K.V. Aadithya B.Ravindran T.P. Michalak N.R. Jennings

4 Summary and conclusions

|Game|Graph| v(0) | Complexity | The table to the left presents a brief
g1 | UW | < 1 degree away V+E summary of the SV algorithms dis-
g2 | UW |> k neighbors € C V+E cussed in this paper. These algorithms
7 W < dewor away  |VE + VZlogV enable efficient centrality computa-

W d(0;.CY) [VE + VZlogV tion for many real-world applications
g4 Z“i fd(vi, ©)) + og including the analysis of social net-

{W = weighted, UW = unweighted} works, information diffusion, spread

of epidemics, biological and biochemical networks, viral marketing and internet/web
phenomena.

The conclusion is that many centrality-related co-operative games of interest played on
real-life networks can in fact be solved for SVs analytically. The resulting algorithms
are not only error-free but also run in polynomial time and in practice, much faster than
Monte-Carlo methods. Approximate closed-form expressions and algorithms can also
be constructed for some classes of games played on weighted networks. Simulation re-
sults (please see on-line appendix) show that these approximations are quite acceptable.
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