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Abstract—Multicarrier code-division multiple access (MC–
CDMA) can support high data rates in next-generation multiuser
wireless communication systems. Partial equalization (PE) is a
low-complexity technique for combining the signals of subcarriers
to improve the achievable performance of MC–CDMA systems in
terms of their bit error probability (BEP) and bit error outage
(BEO) in comparison with maximal ratio combining, orthogonal-
ity restoring combining, and equal-gain combining techniques. We
analyze the performance of the multiuser MC–CDMA downlink
and derive the optimal PE parameter expression, which minimizes
the BEP. Realistic imperfect channel estimation and frequency-
domain (FD) block-fading channels are considered. More explic-
itly, the analytical expression of the optimum PE parameter is
derived as a function of the number of subcarriers, number of
active users (i.e., the system load), mean signal-to-noise ratio
(SNR), and variance of the channel-estimation errors for the
aforementioned FD block-fading channel. We show that the choice
of the optimal PE technique significantly increases the achievable
system load for the given target BEP and BEO.

Index Terms—Channel estimation, fading channel, multicarrier
code-division multiple access (MC–CDMA), partial equalization
(PE), performance evaluation.

I. INTRODUCTION

MULTICARRIER code-division multiple access (MC–
CDMA) systems harness the combination of orthogonal

frequency-division multiplexing (OFDM) and code-division
multiple access (CDMA) to efficiently combat frequency-
selective fading and interference in high-rate multiuser commu-
nication [1]–[8]. Hence, they constitute promising candidates
for next-generation mobile communications [9]. Multipath fad-
ing destroys the orthogonality of the users’ spreading se-
quences, and thus, multiple-access interference (MAI) occurs.
In the downlink (DL) of classical MC–CDMA systems, MAI
mitigation can be accomplished at the receiver using low-
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complexity linear combining techniques [10]. Following the
estimation of the channel-state information (CSI), the signals
of different subcarriers are appropriately weighted and summed
using equal-gain combining (EGC) [2], maximum ratio com-
bining (MRC) [2], [11], orthogonality restoring combining
(ORC; also known as zero forcing) [2], [11], or threshold-based
ORC (TORC) [1], [2], [12]. The MRC technique represents the
optimal choice when the system is noise limited; by contrast,
when the system is interference limited, ORC may be employed
to mitigate the MAI at the cost of enhancing the noise [13].1

The minimum mean square error (MMSE) [14] criterion may
also be used to derive the equalizer coefficients, whereas an
even more powerful optimization criterion is the minimum bit
error ratio (MBER) criterion [15]. However, although MRC,
EGC, and ORC only require the CSI, the MMSE and MBER
equalizers are more complex, because they exploit additional
knowledge, e.g., the number of active users and the mean
signal-to-noise ratio (SNR).2

As an alternative, the partial equalization (PE) technique
in [17]–[19] weights the signal of the mth subcarrier by the
complex gain of

Gm =
H�

m

|Hm|1+β
(1)

where Hm is the mth subcarriers gain, and β is a parameter
with values in the range of [−1, 1]. It may be observed that
(1) reduces to EGC, MRC, and ORC for β = 0,−1, and 1,
respectively. Again, MRC and ORC are optimum in the extreme
cases of noise- and interference-limited systems, respectively,
and for each intermediate situation, an optimum value of the
PE parameter β can be found to optimize the performance [19].
Note that the PE scheme has the same complexity as the EGC,
MRC, and ORC, but it is more robust to channel impairments
and to MAI fluctuations. In [19], the bit error probability (BEP)
of the MC–CDMA DL that employs PE has been analyzed in
perfectly estimated uncorrelated Rayleigh fading channels. It
was also shown that, despite its lower complexity, the PE can
approximate the optimum MMSE scheme’s performance.

In practical situations, the signals of adjacent subcarriers
may experience correlated fading. A channel model, which

1ORC is often improved with the aid of TORC, in which a threshold is
introduced to cancel the contributions of the subcarriers gravely corrupted by
the noise, hence facilitating good performance at low complexity.

2More complex nonlinear multiuser equalizers, e.g., interference cancella-
tion (IC) and maximum likelihood (ML) detection, exploit the knowledge of
the interfering users’ spreading codes in the detection process at the expense of
higher receiver complexity [14], [16].
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enables us to account for both frequency-domain (FD) fading
correlation and FD interleaving, is the FD block-fading channel
(FDBFC) [20], [21].

In this paper, we analyze MC–CDMA systems using PE
in FD-correlated fading modeled by the FDBFC and using
realistic imperfect channel estimation. The mean BEP and bit
error outage (BEO) [22], [23] are characterized as a function
of the system parameters, e.g., the mean SNR, the number of
users, the number of subcarriers, the channel-estimation errors,
and the particular FDBFC model employed.

This paper is organized as follows. In Section II, the system
model and our assumptions are presented, whereas the decision
variable is derived in Section III. In Section IV, the BEP
and BEO performance is characterized, and the optimum PE
parameter is determined. In Section V, our analytical results
are provided and compared to our simulations, whereas in
Section VI, our conclusions are presented.

II. SYSTEM MODEL AND ASSUMPTIONS

In this section, we present our system model and assump-
tions, followed by the characterization of the signals at the
various processing stages.

A. Transmitted Signal

We consider the MC–CDMA architecture presented in
[2], where FD spreading is performed using orthogonal
Walsh–Hadamard (W–H) codes that have a spreading factor
(SF), which is equal to the number of subcarriers. Hence, each
data symbol is spread across all subcarriers and multiplied by
the chip assigned to each particular subcarrier, as shown in
Fig. 1(a).3 For binary phase-shift keying (BPSK) modulation,
the signal transmitted in the DL is given by

s(t) =

√
2Eb

M

Nu−1∑
k=0

+∞∑
i=−∞

M−1∑
m=0

c(k)
m a(k)[i]g(t − iTb)

× cos(2πfmt + φm) (2)

where Eb is the energy per bit, M is the number of subcarriers,
the indices k, i, and m represent the user, data, and subcarrier
indices, respectively, Nu is the number of active users, cm is
the mth spreading chip (taking values of ±1), a(k)[i] is the
symbol transmitted during the ith interval, g(t) is a rectangular
signaling pulse waveform with duration [[0, T ]] and a unity
energy, Tb is the bit duration of user k, fm is the mth subcarrier
frequency, and φm is the mth subcarrier phase. Furthermore,
Tb = T + Tg is the total MC–CDMA symbol duration, where
the time guard Tg is inserted between consecutive multicarrier
symbols to eliminate the intersymbol interference (ISI) due to
the channel’s delay spread.

3Note that we adopted a time-continuous representation for analysis. This
approach is equivalent to practical implementation through the inverse fast
Fourier transform (IFFT) at the transmitter and FFT at the receiver, without
losses in generality.

Fig. 1. Transmitter and receiver block schemes. (a) Transmitter. (b) Receiver.

B. Channel Model

In the DL, the signal of different users undergoes the same
fading. We assume that the channel impulse response (CIR)
h(t) is time invariant for several MC–CDMA symbols, and
we employ an FD channel-transfer function (FDCHTF) H(f)
characterized by

H(f) � H(fm), for |f − fm| <
Ws

2
∀ m (3)

where Hm has real and imaginary parts of Xm and Ym,
respectively, whereas Ws is the bandwidth of each subcarrier.
Because a nondispersive Dirac-shaped CIR represents a fre-
quency flat-fading FDCHTF, this FDBFC assumption may
loosely be interpreted in practical terms as having a low-
dispersion CIR. We assume that, for each FD subchannel, the
channel-induced spreading of the rectangular signaling pulse is
such that the response to g(t), i.e., g′(t), still remains rectangu-

lar with a unity energy and duration of T ′ Δ= T + Td, with Td

being the time dispersion, which is lower than the guard time
Tg [3] (this approach will not limit the scope of our framework
but simplifies the analysis).

Again, we consider a FDBFC [20], [21], [24], [25] across M
subcarriers, which implies that the total number of subcarriers
can be divided into L independent groups of B = M/L subcar-
riers, as represented in Fig. 2, for which we have

HlB+1 = H̃l, for l = 0, 1, . . . , L − 1. (4)

Hence, it is possible to describe the FDCTF using L rather
than M coefficients H̃l. We assume that we have H̃l = αle

jϑl
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Fig. 2. Subcarrier spectrum in frequency BFC.

independent identically distributed (i.i.d.) random variables
(RVs) with H̃l = Xl + jYl and Xl, Yl ∼ N (0, σ2

H).

C. Received Signal

The received signal is given by

r(t) =

√
2Eb

M

Nu−1∑
k=0

+∞∑
i=−∞

L−1∑
l=0

B−1∑
b=0

αlc
(k)
lB+ba

(k)[i]g′(t − iTb)

× cos(2πflB+bt + ϑl) + n(t) (5)

where n(t) represents the additive white Gaussian noise
(AWGN) with a double-sided power spectral density (PSD) of
N0/2.

D. Imperfect Channel Estimation

We analyze the performance with imperfect CSI by assuming
a channel estimation error of El for each subcarriers block,
which is complex Gaussian distributed with zero mean and
a variance of 2σ2

E; thus, El ∼ CN (0, 2σ2
E).4 Hence, the lth

estimated complex FDCHTF coefficient is

Ĥl = Hl + El (6)

where we have Ĥl = α̂le
jϑ̂l and El = XEl + jYEl so that XEl,

YEl ∼ N (0, σ2
E). Note that XEl and YEl are i.i.d.

E. Assumptions

We also stipulate the following common assumptions for the
DL of a MC–CDMA system.

• The system is synchronous (different users and subcarriers
experience the same delay, because their differences were
perfectly compensated).

• The number of subcarriers is equal to the FD SF.

4This result is the case of pilot-assisted channel estimation, where the σ2
E

depends on the number and energy of pilot symbols [26]–[30].

• The number of subcarriers is sufficiently high to enable
the assessment of the BEP by exploiting the central limit
theorem (CLT) and the law of large numbers (LLN).

The approximations that will be derived from the CLT and
the LLN will all be verified by simulations. However, note
that, in standardized systems, e.g., Worldwide Interoperability
for Microwave Access (WiMAX) [31] and digital television
broadcast service–terrestrial (DVB-T) [32], the number of sub-
carriers is sufficiently high (e.g., 2000 or 8000) to justify these
assumptions.

III. DECISION VARIABLE

The performance evaluation and the PE parameter optimiza-
tion require the following analytical flow:

1) decomposition of the decision variable in useful, interfer-
ing, and noise terms;

2) statistical characterization of terms in item 1;
3) performance evaluation of conditioned and uncondi-

tioned BEP;
4) derivation of the optimum PE parameter;
5) BEO evaluation.
The signal of the qth subcarrier for the nth user at symbol

instant j after the correlation receiver [see Fig. 1(b)] is

z(n)
q [j] =

jTb+T∫
jTb

r(t)√
T

c(n)
q

√
2 cos

(
2πfqt + ϑ̂� q

B 	
)

dt. (7)

By substituting (5) in (7), we obtain (8), shown at the

bottom of the page. Here, nq[j]
Δ=
∫ jTb+T

jTb

√
2(c(n)

q /
√

T )n(t) cos(2πfqt + ϑ̂�(q/B)	)dt, and ul,b,q[j]
Δ=

(1/T )
∫ jTb+T

jTb
2 cos(2πflB+bt + ϑl) cos(2πfqt + ϑ̂�(q/B)	)dt.

It can be shown that nq[j] is a zero-mean Gaussian RV (GRV)
with a variance of N0/2. In addition, ulB+b,q[j] is independent
of index j and is given by

ulB+b,q[j] = ul,b,q =

{
cos

(
ϑl − ϑ̂� q

B 	
)

, for lB + b = q

0, otherwise.
(9)

Hence, (8) becomes

z(n)
q [j]=

√
Eb

M
δd

⎧⎪⎨⎪⎩α� q
B	cos

(
ϑ� q

B	−ϑ̂� q
B	
)

+

√
Eb

M
δd

Nu−1∑
k=0
k �=n

α� q
B	c

(k)
q c(n)

q cos
(
ϑ� q

B	−ϑ̂� q
B	
)⎫⎪⎬⎪⎭+nq[j]

z(n)
q [j] =

√
Eb

M

T

T ′

⎧⎪⎪⎨⎪⎪⎩
Nu−1∑
k=0

L−1∑
l=0

q+1
B

−1<l<
q
B

αlc
(k)
q c(n)

q a(k)[j]ul,q−lB,q[j] +
Nu−1∑
k=0

L−1∑
l=0

B−1∑
b=0

b �=q−lB

αlc
(k)
lB+bc

(n)
q a(k)[j]ul,b,q[j] + nq[j]

⎫⎪⎪⎬⎪⎪⎭
(8)
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where δd
Δ= 1/(1 + Td/T ) represents the loss of energy caused

by the channel-induced spreading of the rectangular signaling
pulse. For simplicity, because the ISI is avoided by using a
guard time, we will neglect the time index j in the following
discussion.

The decision variable v(n) is obtained by a linear combina-
tion of the PE-based weighting of the signals gleaned from each
subcarrier as

v(n) =
M−1∑
q=0

|Gq|z(n)
q (10)

where Gq is the qth PE gain given by (1). In particular, for
imperfect FDCHTF estimation and FDBFCs, we have

Gq =
Ĥ�

� q
B 	∣∣∣Ĥ� q

B 	
∣∣∣1+β

(11)

with |Gq| = |Ĥ�q/B	|−β = α̂−β
�q/B	 and ∠Gq = −∠Ĥ�q/B	 =

−ϑ̂�q/B	. Note that, for β = −1, 0, and 1, the coefficient in (11)
leads to the cases of MRC, EGC, and ORC, respectively. There-
fore, substituting (11) in (10), the decision variable becomes

v(n) = U (n)a(n) + I(n) + N (n) (12)

where U (n), I(n), and N (n) represent the useful, interfering,
and noise terms, respectively, of user n and are given by

U (n) =

√
Ebδd

M

M−1∑
q=0

Θq(β)

I(n) =

√
Ebδd

M

M−1∑
q=0

Nu−1∑
k=0
k �=n

Θq(β)c(n)
q c(k)

q a(k)

N (n) =
M−1∑
q=0

α̂−β

� q
B 	nq (13)

Θq(β) Δ=α� q
B 	α̂

−β

� q
B 	 cos

(
ϑ� q

B 	 − ϑ̂� q
B 	
)

. (14)

We observe that αl, α̂l, ϑl, and ϑ̂l are i.i.d. for different
subscripts l and the different ΘlB+b values are also i.i.d. for
different subscripts l, whereas we have ΘlB+b = ΘlB+b′ for
the same l. To derive the BEP, we derive the distribution of v(n)

from those of U (n), I(n), and N (n).5

A. Interference Term

The interference term of (13) can easily be rewritten as

I =

√
Ebδd

M

Nu−1∑
k=0
k �=n

a(k)
L−1∑
l=0

ΘlB(β)
B−1∑
b=0

c
(n)
lB+bc

(k)
lB+b. (15)

5To simplify the notation, we will neglect the index n in the following
discussion without loss of generality.

By exploiting the properties of the W–H spreading matrices, it
can be shown that, for all i integers and nonzero with values of
i that satisfy −n/B ≤ i ≤ −n/B + Nu − 1, we have

B−1∑
b=0

c
(n)
lB+bc

(k)
lB+b =

{ 0, k �= n + iB
B, k = n + iB, l ∈ L+

−B, k = n + iB, l ∈ L−
(16)

where L+ and L− are appropriately chosen to ensure cardi-
nalities #L+ = #L− = L/2 and L+ ∪ L− = 0, 1, . . . , L − 1.
Thus, the interference term of (15) becomes

I=

√
Ebδd

M

�−n+Nu−1
B 	∑

i=−� n
B 	

i�=0

a(n+iB)B

⎛⎜⎜⎜⎝
A

(i)
1︷ ︸︸ ︷∑

l∈L+

ΘlB(β)−
A

(i)
2︷ ︸︸ ︷∑

l∈L−

ΘlB(β)

⎞⎟⎟⎟⎠ .

(17)

For large values of L, we may apply the CLT to each
of the internal sums in (17), obtaining A

(i)
1 and A

(i)
2 ∼

N (E{ΘlB(β)}L/2, ζβL/2), where ζβ is the variance of Θ1−β
lB

defined as6

ζβ
Δ= E

{
Θ2

lB(β)
}− E {ΘlB(β)}2 (18)

whose expression is evaluated in Appendix A. Therefore,

A(i) Δ= A
(i)
1 − A

(i)
2 is distributed as N (0, Lζβ). By exploiting

the symmetry of the Gaussian probability density function
(pdf), i.e., a(n+iB)A(i) ∼ N (0, Lζβ), and capitalizing on the
independence of the terms a(n+iB) in (17), which ensure
that E{(a(n+iB)A(i))(a(n+i′B)A(i′))} = 0, ∀ i �= i′, and on the
sum of uncorrelated, thus independent, GRVs, we infer that the
interference term of (17) obeys the distribution I ∼ N (0, σ2

I ),
where we have

σ2
I = EbδdB

⌊
Nu − 1

B

⌋
ζβ . (19)

B. Noise Term

The noise term of (12) is given by

N =
M−1∑
q=0

α̂−β

� q
B 	nq =

L−1∑
l=0

α̂β
l

Nl︷ ︸︸ ︷
B−1∑
b=0

nlB+b . (20)

Because nlB+b of (20) represents i.i.d. GRVs, Nl ∼
N (0, (N0/2)B) and Nl are also i.i.d. GRVs, where N con-
sists of the sum of i.i.d. zero-mean RVs with a variance of
(N0/2)BE{α̂−2β

l }. Based on the CLT, we can approximate
the unconditioned noise term N as a zero-mean GRV with a
variance of

σ2
N = M

N0

2
E

{
α̂−2β

l

}
. (21)

6Note that ζβ does not depend on index l, and it is an i.i.d. RV.
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C. Useful Term

The useful term of (12) can be written as

U =

√
Ebδd

M

L−1∑
l=0

B−1∑
b=0

ΘlB+b(β) =

√
Ebδd

M
B

L−1∑
l=0

ΘlB(β).

(22)

By applying the CLT, U is assumed to be GRV with a mean and
a variance, respectively, of

μU =
√

MEbδdE {ΘlB(β)} (23)

σ2
U = EbδdBζβ . (24)

D. Independence of Interference, Noise, and Useful Terms

We now discuss the independence of the terms of
Sections III-A, B, and C in (12). The independence of the data
a(k) and the other variables (i.e., αl, A, and nl) guarantees
that the interference term I is uncorrelated with the noise term
N and with the useful term U . In addition, the independence
between nl and αl guarantees that N is uncorrelated with U
so that E{NU} = 0. Similarly, I , N , and U are uncorrelated
GRVs; hence, they are also independent.

IV. PERFORMANCE EVALUATION

We now evaluate the BEP and the BEO, and we derive the
optimum PE parameter β.

A. BEP Evaluation

1) BEP: Given the decision variable (12) as z = Ua + I +
N and considering that I + N is a zero-mean RV with a
variance of σ2

I + σ2
N, the BEP conditioned on the variable U

becomes

Pb|U = Q

(
U√

σ2
I + σ2

N

)
(25)

where Q(x) is the Gaussian Q-function.
2) Unconditioned BEP: By applying the LLN (hence, U is

substituted by its mean value μU ), we obtain the approximation
for the unconditioned BEP as follows:

Pb � Q

(
μU√

σ2
I + σ2

N

)
. (26)

By substituting (19), (21), and (23) into (26), we obtain

Pb � Q

⎛⎝√√√√ Ebδd (E {Θl(β)})2

Ebδd
B
M

⌊
Nu−1

B

⌋
ζβ + E

{
α̂−2β

l

}
N0
2

⎞⎠ (27)

where the expression of E{α̂−2β
l }, E{Θl(β)}, and ζβ are given

in Appendix A. By defining the mean SNR at the receiver as

γ
Δ=

2σ2
HEbδd

N0
(28)

we arrive at the BEP expression in (29), shown at the bottom of
the page. Here, Γ(·) is the Euler gamma function [33], and

Π
(

σ2
E

σ2
H

)
Δ= 1 −

σ2
E

σ2
H(

1 − σ4
E

σ4
H

) (30)

Σ
(

σ2
E

σ2
H

, β

)
Δ= 1 −

σ2
E

σ2
H(

1 − σ4
E

σ4
H

)
⎡⎣1 +

( 1
2−β

1−β

)
(
1 + σ2

E
σ2
H

)
⎤⎦ . (31)

The BEP approximation provided by (29) is derived by ap-
plying the LLN to the unconditioned BEP expression given
by (25). An exact evaluation of the BEP would require the
averaging of (25) over the useful term. However, because we
are not interested in the BEP exact expression and because (29)
is a monotonic decreasing function with respect to its argument,
the value of β that minimizes (29) represents the minimum also
for the exact BEP given by (25), as will be verified in Section V
through our simulations.

B. System Load for a Target BEP

By fixing the BEP to a target value P �
b , we now derive

the system load, sL
Δ= (1/L)�(Nu − 1/B)	, from (29) as a

function of the other systems parameters, which is given by

sL =

Π2

(
σ2
E

σ2
H

)
[Q−1(P �

b )]2
Γ2

(
3−β
2

)
−
(

1+
σ2
E

σ2
H

)−1

2γ Γ(1 − β)

Σ
(

σ2
E

σ2
H
, β
)

Γ(2 − β) − Π2
(

σ2
E

σ2
H

)
Γ2

(
3−β
2

) . (32)

C. BEO

In wireless communications, where small-scale fading is su-
perimposed on large-scale fading (i.e., shadowing), another im-
portant performance metric is given by the BEO [22], [23], [34],
which is defined as the probability that the BEP exceeds the
maximum tolerable level (i.e., the target BEP P �

b ) and given by

Po
Δ= P {Pb > P �

b } = P {γdB < γ�
dB} (33)

Pb � Q

⎛⎜⎜⎝
√√√√√√ γ Π2

(
σ2
E

σ2
H

)
Γ2

(
3−β
2

)
1
L

⌊
Nu−1

B

⌋
γ
[
Σ
(

σ2
E

σ2
H
, β
)

Γ(2 − β) − Π2
(

σ2
E

σ2
H

)
Γ2

(
3−β
2

)]
+ 1

2

(
1 + σ2

E
σ2
H

)−1

Γ(1 − β)

⎞⎟⎟⎠ (29)
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where γdB = 10 log10 γ, and γ�
dB is the SNR (in decibels),

which ensures that Pb(γ�) = P �
b . We consider the case of a

shadowing environment in which γ is log-normal distributed
with parameters of μdB and σ2

dB (i.e., γdB is a GRV with a mean
of μdB and variance of σ2

dB) [35]. Hence, the BEO is given by

Po = Q

(
μdB − γ�

dB

σdB

)
. (34)

By inverting (29), we can derive the required SNR γ�, enabling
the derivation of the optimal β for a target BEP and a given
system load as7

γ� =
Γ(1 − β)

(
1 + σ2

E
σ2
H

)−1

Π−2
(

σ2
E

σ2
H

)
Γ−2

(
3−β
2

)
2

[invQ(P �
b )]2

− 2sL

⎡⎣ Σ

(
σ2
E

σ2
H

,β

)
Γ(2−β)

Π2

(
σ2
E

σ2
H

)
Γ2( 3−β

2 )
− 1

⎤⎦ . (35)

Given the target BEP and BEO, we obtain the required value of
μdB from (35) and (34) (i.e., the median value of the SNR) that
can be used for wireless system design, because it is strictly
related to the link budget when the path-loss law is known.

D. Optimum PE Parameter

We aim at finding the optimum value of the PE parameter
β(opt) defined as that particular value of β within the range [−1,
1], which minimizes the BEP in (29) as

β(opt) Δ= arg min
β

{
Pb

(
β, γ,

σ2
E

σ2
H

)}
. (36)

Because the BEP is monotonically decreasing as a function of
β, we obtain (37), shown at the bottom of the page.8 It will be
shown in Section V that, although the adoption of the CLT and

7invQ denotes the inverse of the Gaussian Q-function.
8Because the optimization is based on the derivation of the BEP,

Pb(β, γ, σ2
E/σ2

H), with respect to β (and not with respect to γ, which is
considered a parameter), nothing would change in the analysis if we assume
a channel-estimation process based on the training sequence of M symbols. In
this case, the normalized estimation error variance would result in σ2

E/σ2
H =

1/Mγ, and it could easily be exploited by simply substituting its value.

the LLN may lead to a less-accurate BEP expression for a low
number of subcarriers and users, it still results in an accurate
value for the optimum β.

Setting the derivative of the argument in (37) with respect
to β to zero, we can derive the optimum value of β as the
implicit solution of (38), shown at the bottom of the page (for
details refer to Appendix B). Here, the parameter ξ quantifies
the degree that the system is noise limited (low values) or
interference limited (high values) and is defined as

ξ
Δ= γ

2
L

⌊
Nu − 1

B

⌋
(39)

χ

(
σ2

E

σ2
H

)
Δ=

1
2

σ2
E

σ2
H(

1 − σ4
E

σ4
H

)(
1 + σ2

E
σ2
H

) . (40)

E. Case of Ideal Channel Estimation

In the case of ideal CSI (i.e., σ2
E/σ2

H approaching zero) and
for channels with uncorrelated FDCHTFs over the subcarriers,
it is easy to verify that Π(0) = 1 and χ(0) = 0, and then, (38)
becomes

ξ =

⎛⎝ 1

Ψ
(

3−β
2

)
− Ψ(1 − β)

+ β − 1

⎞⎠−1

(41)

confirming the results obtained in [19] for the ideal conditions,
which are used as a benchmark.

F. Coded Systems

Note that (29) is the BEP of an uncoded system. Thus, a
question may arise: Can the methodology for obtaining the opti-
mum β in uncoded systems also be applied to coded system? By
remembering that we are not interested in the value of the BEP
itself but in the value of the PE parameter β, which minimizes
the BEP, we may assert that, for coded systems where the code-
word error probability is a monotonic function of the uncoded
BEP, the derivation of the optimum value of β that minimizes

β(opt) = arg max
β

⎧⎪⎨⎪⎩
γΠ2

(
σ2
E

σ2
H

)
Γ2

(
3−β
2

)
1
L

⌊
Nu−1

B

⌋
γ
[
Σ
(

σ2
E

σ2
H
, β
)

Γ(2 − β) − Π2
(

σ2
E

σ2
H

)
Γ2

(
3−β
2

)]
+ 1

2

(
1 + σ2

E
σ2
H

)−1

Γ(1 − β)

⎫⎪⎬⎪⎭ (37)

ξ =

⎡⎢⎢⎢⎣Π

(
σ2
E

/
σ2
H

)
+

χ

(
σ2
E

/
σ2
H

)
β−1

(
1− 2β−1

1+σ2
E

/σ2
H

)
Ψ( 3−β

2 )−Ψ(1−β)
+ Π

(
σ2

E

/
σ2

Hs
)
(β − 1) −

χ

(
σ2
E

/
σ2
H

)
(

1+σ2
E

/
σ2
H

) (2β − 1)

⎤⎥⎥⎥⎦
−1

(
1 + σ2

E

/
σ2

H

) (38)
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Fig. 3. BEP as a function of β for different values of ε
Δ
= σ2

E/σ2
H when Nu =

M = 1024, L = M/16, and γ = 10 dB.

the uncoded BEP is equivalent to finding the value of β that
minimizes the codeword error probability for the SNR value
that accounts for the code rate. One example of the application
of this relation and its relative proof are given in Appendix C.
Hence, the aforementioned framework can be applied to the
coded systems of interest. For further investigation on coded
MC–CDMA systems, see [25] and [36]–[38].

V. NUMERICAL RESULTS

In this section, we report numerical results on the BEP and
the BEO for the DL of a MC–CDMA system that employs PE.
Our results are also compared with those of other combining
techniques. Both ideal and nonideal channel estimation are
considered in FDBFCs. The FDBFC estimation errors are taken
into account in terms of the normalized estimation error ε

Δ=
σ2

E/σ2
H. The value of σ2

h is considered to be equal to 1/2.9 We
set the number of subcarrier to M = 1024, and L = 64 is for
the FDBFC.10

In Fig. 3, the BEP given by (29) is shown as a function
of the PE parameter β for different values of the normalized
estimation error ε when the system is fully loaded (Nu = M =
1024) and γ = 10 dB. The impact of channel estimation errors
on the optimum value of β that minimizes the BEP can be
observed. In particular, we note that, as the estimation error
increases, the optimum value of β shifts to the left (i.e., toward
a less interference-limited situation). In fact, to be effective,
ORC (i.e., β = 1) requires accurate CSI; when this condition is
not guaranteed, the ORC does not perform close to the optimal
solution. The analytical results are also compared to our Monte
Carlo simulations in Fig. 3. It is evident that, although the BEP
approximation becomes less accurate for β < 0 (due to the
adoption of the LLN), a good agreement can be observed for
the optimum values of β, confirming that the method adopted
is valid for deriving the PE parameter β(opt). In Fig. 4, the

9Thus, the mean channel gain is normalized to 1 for each subcarrier.
10This means that each group consists of B = 16 totally correlated

subcarriers.

Fig. 4. Optimum value of β as a function of ξ (in decibels) for different values
of normalized estimation error ε

Δ
= σ2

E/σ2
H.

Fig. 5. BEP versus the mean SNR γ adopting the optimum β in case of per-

fect CSI, varying the normalized estimation errors ε
Δ
= σ2

E/σ2
H. Comparison

between NU = M = 1024 and NU = M/8 = 128, with L = M/16.

optimum value of β is plotted as a function of ξ (in decibels)
as defined in (39), i.e., as a function of different combinations
of γ, Nu, B, and L. It can be observed that, for high values of
ξ, increasing the estimation errors shifts down the curves, thus
requiring a reduction of β, which means that, in interference-
limited situations (high ξ), as the estimation error increases,
having β � 1, i.e., using the ORC, is no longer optimal. In
fact, the accuracy of CSI has a substantial impact on the ORC
(β = 1) rather than on the EGC (β = 0) and MRC (β = −1).
Monte Carlo simulation results are also provided in Fig. 4,
showing a good agreement with respect to the choice of the
optimum β.

Fig. 5 shows the BEP as a function of the mean SNR
γ for different levels of estimation errors and system loads
(Nu = M and Nu = M/8). The results were plotted for the
optimum value of β in conjunction with perfect CSI [i.e., for
each SNR, the value of β is derived from (38)]. The analytical
results evaluated from (29) are compared with our simulation
results, again showing an agreement in the region of interest
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Fig. 6. BEP versus the number of active users, varying the normalized

estimation errors ε
Δ
= σ2

E/σ2
H, when γ = 10 dB. Comparison among different

combining techniques (i.e., different values of β).

Fig. 7. System load versus β, giving the target BEP P �
b = 10−1 (red), P �

b =

10−2 (black), and P �
b = 10−3 (green) for different normalized estimation

errors ε
Δ
= σ2

E/σ2
H.

for uncoded systems (i.e., Pb ∈ [10−2, 10−1]).11 However, we
remark that the goal of this paper is not the exact derivation of
an analytical formula for the BEP itself but, rather, the specific
value of β for which the BEP is minimum. In Fig. 6, the BEP
is shown as a function of the number of active users Nu for
different values of β while varying the normalized channel-
estimation error and considering γ = 10 dB. Note that the
choice of β = 0.5 results in a better performance for almost
any system load, except for very low system loads, for which
the optimum combiner is the EGC (β = 0).

In Fig. 7, the maximum achievable system load that results
in a specific target BEP is plotted for different normalized
estimation errors as a function of β according to (32). It can be
observed that the closer β is to the optimum according to (38),
the higher the attainable system load becomes. The presence of
the estimation error decreases the maximum achievable system

11Note, in fact, that although the noise term N in (20) is a weighted sum of
GRVs, the term I in (15) is constituted by a weighted sum of non-GRVs, thus
the adoption of the CLT to assert their independence, because Gaussian and
uncorrelated lead to an approximation.

Fig. 8. Median SNR versus β, giving P �
b = 10−2 and P �

o = 10−2 for

different estimation errors ε
Δ
= σ2

E/σ2
H and system loads.

Fig. 9. BEO versus μdB for different estimation errors ε
Δ
= σ2

E/σ2
H and

P �
b = 10−2. Comparison among different combining techniques.

load and, as previously observed, slightly shifts the optimal
value of β to the left toward −1 (MRC).

In Fig. 8, the median SNR μdB, maintaining the target BEO
of Po = 10−2,12 is shown as a function of β for different system
loads sL. Note that the higher the system load, the narrower the
range of β values that satisfy the target BEO. Finally, in Fig. 9,
the BEO is presented as a function of μdB for P �

b = 10−2 and
for a half-loaded system when the EGC, ORC, and PE using
β = 0.5 are adopted.13 Note that the PE-associated β = 0.5
outperforms both the ORC and EGC. Moreover, the BEO is less
affected by the presence of estimation errors compared with the
classic estimation techniques, confirming that a suitable choice
of the PE parameter facilitates a performance improvement with
respect to classical combining techniques while maintaining the
same complexity.

12The target BEO is defined with respect to a target BEP equal to 10−2

according to (35).
13Note that β = 0.5 is close to the optimum value in terms of BEO when

half-loaded systems are considered.
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VI. CONCLUSION

In this paper, we have analyzed the DL performance of a
MC–CDMA system that adopts PE at the receiver with non-
ideal channel estimation conditions and correlated FDBFC. We
derived the optimum value of the PE parameter that minimizes
the BEP, showing a beneficial performance improvement over
the traditional linear combining techniques, e.g., EGC, MRC,
and ORC. We have demonstrated that the optimum value of the
PE parameter does not significantly change in the presence of
less accurate CSI, implying that a system designer may adopt
the optimum value of the PE parameter determined for perfect
CSI conditions, despite having channel-estimation errors. We
also compared the analytical results with our simulation results
to confirm the validity of the analytical framework.

APPENDIX A

In this Appendix, we evaluate the expression of the fol-
lowing values: 1) E{α̂−2β

l }; 2) E{Θl(β)}; 3) E{Θ2
l (β)};

and 4) ζβ(α) = E{Θ2
l (β)} − (E{Θl(β)}2. Here, α̂l are

Rayleigh distributed with a pdf of p
α̂l

(x) = (x/σ2
H +

σ2
E) exp[−(x2/2(σ2

H + σ2
E))]. It is known that [33]

+∞∫
0

xa−1 exp[−px2] dx =
1
2
p−

a
2 Γ

(a

2

)
, a > 0 (42)

where Γ(z) represents the Euler gamma function [33]. Hence,
we have

E

{
α̂−2β

l

}
=

+∞∫
0

x−2β x

σ2
H + σ2

E

e
− x2

2(σ2
H

+σ2
E) dx

=
(
2σ2

H

)−β
(

1 +
σ2

E

σ2
H

)−β

Γ(1 − β). (43)

Based on (14) and by neglecting the index l (because we are
studying i.i.d. RVs), we arrive at

Θl(β) =
[
(X + XE)2 + (Y + YE)2

]−(β+1)/2

× [X(X + XE) + Y (Y + YE)] .

We define the auxiliary variables X̂ = X + XE, X̂ ∼
N (0, σ2

H + σ2
E), and Ŷ ∼ N (0, σ2

H + σ2
E). By exploiting the

independence and zero mean of X , Y , XE, and YE, we
can write E{X̂Ŷ } = 0, E{X̂XE} = σ2

E, and E{Ŷ YE} = σ2
E.

Hence

E {Θl(β)} = L1 − L2 (44)

where

L1 = E

{[
X̂2 + Ŷ 2

] 1−β
2

}
L2 = E

{[
X̂2 + Ŷ 2

]− 1+β
2
(
X̂XE + Ŷ YE

)}
.

Because X̂ and Ŷ are uncorrelated and, thus, independent

GRVs, by defining r
Δ=
√

X̂2 + Ŷ 2 and rE
Δ=
√

X2
E + Y 2

E ,

they are Rayleigh distributed, and φ
Δ= ∠X̂ + jŶ , as well as

φE
Δ= ∠XE + jYE, are uniformly distributed in [0, 2π[. Thus,

L1 becomes

L1 = E{r1−β} =

+∞∫
0

r1−β r

σ2
H + σ2

E

e
− r2

2(σ2
H

+σ2
E) dr

=
(
2σ2

H

) 1−β
2

(
1 +

σ2
E

σ2
H

) 1−β
2

Γ
(

3 − β

2

)
(45)

and for the joint pdf of GRVs in polar coordinates (i.e., for
X̂ = r cos φ, Ŷ = r sin φ, XE = rE cos φE, YE = rE sin φE),
L2 becomes

L2 =

∞∫
0

∞∫
0

2π∫
0

2π∫
0

r−(1+β)rrE cos (φ − φE)

×
exp

{
−
[

r2

2σ2
H

+
(

1
2σ2

H
+ 1

2σ2
E

)
r2
E

]}
4π2σ2

E (σ2
H − σ2

E)

× exp
[
rrE cos (φ − φE)

σ2
H

]
|rrE| dφ dφE dr drE. (46)

By exploiting the properties of periodic functions, it can be
shown that

1
2π

2π∫
0

cos(φ − φE) exp
[
rrE

σ2
H

cos(φ − φE)
]

dφ = I1

(
rrE

σ2
H

)

where I1(z) is the modified Bessel function of the first order.14

Consider that, for a, b > 0,
∫ +∞
0 t2I1(bt) exp[−at2]dt =

(b/4a2)eb2/4a [33], L2 results in

L2 =

∞∫
0

r1−β

σ2
E (σ2

H − σ2
E)

exp
[
− r2

2σ2
H

]

×
r exp

⎡⎣ r2

4σ4
H

(
1

2σ2
H

+ 1
2σ2

E

)
⎤⎦

4σ2
H

(
1

2σ2
H

+ 1
2σ2

E

)2 dr

=

σ2
E

σ2
H(

1 − σ4
E

σ4
H

) (
2σ2

H

) 1−β
2

(
1 +

σ2
E

σ2
H

) 1−β
2

Γ
(

3 − β

2

)
.

(47)

Consequently, (44) becomes

E {Θl(β)}=
(
2σ2

H + 2σ2
E

) 1−β
2

⎡⎣1−
σ2
E

σ2
H(

1 − σ4
E

σ4
H

)
⎤⎦Γ

(
3 − β

2

)
.

(48)

14The modified Bessel function of the nth order is defined as In(z) =

(1/π)
∫ π

0
cos nθez cos θdθ.
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Following the same methodology, we derive

E
{
Θ2

l (β)
}

=L3 − 2L4 + L5

L3 = E

{
(X̂2 + Ŷ 2)1−β

}
L4 = E

{
(X̂2 + Ŷ 2)−β(X̂XE + Ŷ YE)

}
L5 = E

{
(X̂2 + Ŷ 2)−(β+1)(X̂XE + Ŷ YE)2

}
(49)

where

L3 =

+∞∫
0

r2−2β r

(σ2
H + σ2

E)
exp

[
− r2

2 (σ2
H + σ2

E)

]
dr

=
(
2σ2

H

)1−β
(

1 +
σ2

E

σ2
H

)1−β

Γ(2 − β) (50)

L4 = (2σH)1−β

(
1 +

σ2
E

σ2
H

)1−β
σ2
E

σ2
H(

1 − σ4
E

σ4
H

)Γ(2 − β) (51)

L5 =

∞∫
0

∞∫
0

r1−2βr3
E

exp
{
−
[

r2

2σ2
H

+
(

1
2σ2

H
+ 1

2σ2
E

)
r2
E

]}
σ2

E (σ2
H − σ2

E)

×
(

R1(r, rE) + R2(r, rE)
2

)
dr drE. (52)

Here

R1(r, rE) Δ=
1

4π2

2π∫
0

2π∫
0

exp
[
rrE

σ2
H

cos (φ − φE)
]

dφ dφE

= I0

(
rrE

σ2
H

)
(53)

R2(r, rE) Δ=
1

4π2

2π∫
0

2π∫
0

cos [2(φ − φE)]

× exp
[
rrE

σ2
H

cos(φ − φE)
]

dφ dφE

= I2

(
rrE

σ2
H

)
(54)

where I0(z) and I2(z) are the modified Bessel func-
tions of orders 0 and 2, respectively. By substituting (53)
and (55) in (52) and considering that

∫ +∞
0 (1/2)[I0(bt) +

I2(bt)]t3 exp[−at2] = ((2a + b2)/8a3) exp[(b2/4a)], for a,
b > 0 [33], L5 results in

L5 =

∞∫
0

r1−2β
exp

[
− r2

2σ2
H

]
σ2

E (σ2
H − σ2

E)

×

⎧⎪⎨⎪⎩
2
(

1
2σ2

H
+ 1

2σ2
E

)
+
(

r
σ2
H

)2

8
(

1
2σ2

H
+ 1

2σ2
E

)3 exp

⎡⎢⎣
(

r
σ2
H

)2

4
(

1
2σ2

H
+ 1

2σ2
E

)
⎤⎥⎦
⎫⎪⎬⎪⎭ dr

=

σ2
E

σ2
H

(
Q1 + σ2

E
σ2
H
Q2

)
(
1 − σ4

E
σ4
H

)(
1 + σ2

E
σ2
H

) (55)

with

Q1
Δ=

+∞∫
0

r1−2β exp

⎡⎣− 1
2σ2

H

⎛⎝ 1

1 + σ2
E

σ2
H

⎞⎠ r2

⎤⎦ dr

=
1
2
(
2σ2

H

)1−β
(

1 +
σ2

E

σ2
H

)1−β

Γ(1 − β) (56)

Q2
Δ=

+∞∫
0

r3−2β

σ2
H

(
1 + σ2

E
σ2
H

) exp

⎡⎣− 1
2σ2

H

⎛⎝ 1

1 + σ2
E

σ2
H

⎞⎠ r2

⎤⎦ dr

=
(
2σ2

H

)1−β
(

1 +
σ2

E

σ2
H

)1−β

Γ(2 − β). (57)

By substituting (56) and (57) in (55), we obtain

L5 =
(
2σ2

H

)1−β
(

1 +
σ2

E

σ2
H

)1−β
σ2
E

σ2
H(

1 − σ4
E

σ4
H

)

×
⎡⎣1 −

( 1
2−β

1−β

)
(
1 + σ2

E
σ2
H

)
⎤⎦Γ(2 − β). (58)

Now, by substituting (50), (51), and (58) into (49), we find that

E
{
Θ2

l (β)
}

=
(
2σ2

H

)1−β
(

1 +
σ2

E

σ2
H

)1−β

Σ
(

σ2
E

σ2
H

, β

)
Γ(2 − β)

(59)

where

Σ
(

σ2
E

σ2
H

, β

)
Δ= 1 −

σ2
E

σ2
H(

1 − σ4
E

σ4
H

)
⎡⎣1 +

(
1
2 − β1 − β

)(
1 + σ2

E
σ2
H

)
⎤⎦ . (60)

By exploiting (48) and (59), we finally arrive at

ζβ(α) =
(
2σ2

H

)1−β
(

1 +
σ2

E

σ2
H

)1−β

×
[
Σ
(

σ2
E

σ2
H

, β

)
Γ(2−β)−Π2

(
σ2

E

σ2
H

)
Γ2

(
3−β

2

)]
(61)

where

Π
(

σ2
E

σ2
H

)
Δ= 1 −

σ2
E

σ2
H(

1 − σ4
E

σ4
H

) . (62)

APPENDIX B

We derive the optimum value of the PE parameter β(opt),
defined as that particular value of β within the range [−1, 1],
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which minimizes the BEP. Because the BEP is monotonically
decreasing as a function of β, we have (37).

Setting to zero the derivative of the argument in (37)

with respect to β and defining Γ′(x) Δ= dΓ(x)/dx, as well
as remembering that Γ((3 − β)/2) �= 0 for −1 ≤ β ≤ 1, we
obtain

− Γ′
(

3−β

2

)
Γ
(

3−β

2

)

×
{
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⌊
Nu−1
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⌋
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}

= Γ2
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2

)

×
{

1
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⌋
γ

×
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(
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E
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)
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(
σ2

E

σ2
H

, β

)
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Γ
(
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)
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(
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2

)]

− 1
2

(
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E

σ2
H

)−1

Γ′(1−β)

}
(63)

where

Σ′
(

σ2
E

σ2
H

, β

)
Δ=

∂

∂β
Σ
(

σ2
E

σ2
H

, β

)

=

σ2
E

σ2
H(

1 − σ4
E

σ4
H

)(
1 + σ2

E
σ2
H

) 1
2(1 − β)2

. (64)

Because Γ′(x) = Ψ(x)Γ(x), where Ψ(x) is the logarith-
mic derivative of the Gamma function (the so-called

Digamma function) defined as Ψ(x) Δ= d ln(Γ(x))/dx [33]
and after some further mathematical manipulations, we
obtain (

1+
σ2

E

σ2
H

)−1

Γ(1−β)
[
−Ψ

(
3−β

2

)
+Ψ(1−β)

]

= γ
2
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⌊
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B

⌋{
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(
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E
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, β

)
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+ Σ
(

σ2
E

σ2
H

, β

)
Γ(2−β)

[
Ψ
(

3−β

2

)
−Ψ(2−β)

]}
. (65)

By exploiting that Γ(x + 1) = xΓ(x) and Ψ(x + 1) = Ψ(x) +
1/x [33], considering that Γ(1 − β) �= 0 for −1 ≤ β ≤ 1 and
1 − β �= 0, β < 1, and through (40), we obtain[

Ψ
(

3−β

2

)
−Ψ(1−β)

]
= γ

2
L

⌊
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B

⌋(
1+
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σ2
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)
⎧⎨⎩χ

(
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E

σ2
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)
β−1

+

⎡⎣Π
(
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E
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(β−1)−

χ
(
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E
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(
1+ σ2

E
σ2
H

) (2β−1)

⎤⎦
×
[
Ψ
(

3−β

2

)
−Ψ(1−β)+

1
β−1

]⎫⎬⎭ . (66)

Based on the definition of the parameter ξ in (39), we can derive
the optimum value of β as the implicit solution of (38).

APPENDIX C

Here, we aim to demonstrate that the framework for ob-
taining the PE parameter β that minimizes the uncoded BEP
is also valid when hard-decision binary Bose–Chaudhuri–
Hocquenghem (BCH) codes are employed. To this purpose, we
show that the codeword error probability Pe is a monotonic
increasing function of the uncoded BEP Pb. The averaged
codeword error probability is related to the averaged uncoded
BEP as follows:

Pe(n, k, t, γ, β) = F

[
n, t, Pb

(
k

n
γ, β

)]
(67)

where n is the codeword length, k is the number of information
bits, t is the number of correctable errors, with the errors
assumed independent of each other, and

F (n, t, x) Δ= 1 −
t∑

i=0

(
n

i

)
xi(1 − x)n−i. (68)

By deriving (67) with respect to β, we obtain

∂Pe(n, k, t, γ, β)
∂β

=
∂F (n, t, x)

∂x

∂Pb

(
k
nγ, β

)
∂β

. (69)

Hence, if F (n, t, x) is a monotonic function of x, then the
sign of the derivative in (69) only depends on the sign of
∂Pb((k/n)γ, β)/∂β (i.e., the value of β that minimizes the

uncoded Pb for an equivalent average SNR fixed to γ′ Δ=
(k/n)γ also minimizes the coded error probability). We aim to
prove that

f(x) Δ=
∂F (n, t, x)

∂x
≥ 0 ∀n, k ∈ N . (70)

By substituting (68) in (70), we have

f(x) = n(1 − x)n−1 −
t∑

i=1

(
n

i

)
(i − nx)xi−1(1 − x)n−i−1

(71)
and f(x) ≥ 0 if and only if

t∑
i=1

(
n

i

)((
i

nx

)
− 1

)((
x

1 − x

))i

≤ 1. (72)
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Assuming x ≤ 1/n, with i ≥ 1, we have i/(nx) ≥ 1/(nx) ≥
1; thus, ((i/nx) − 1) ≥ 0, and (x/(1 − x)) ≥ 0. Therefore,
(72) is the sum of positive terms, and because t ≤ n, we have

t∑
i=1

(
n

i

)(
i

nx

)
−1

(
x

1−x

)i

≤
n∑

i=1

(
n

i

)(
i

nx

)
−1

(
x

1−x

)i

.

(73)

Hence, the proof is concluded if

n∑
i=1

(
n

i

)(
i

nx
− 1

)(
x

1 − x

)i

= 1. (74)

We can write

n∑
i=1

(
n

i

)(
i

nx
− 1

)(
x

1 − x

)i

=
1

nx
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i=1

(
n

i

)
i

(
x

1 − x

)i

−
n∑

i=1

(
n

i

)(
x

1 − x

)i

. (75)

Based on the binomial formula

n∑
i=1

(
n

i

)
yi = (1 + y)n − 1 (76)

and by deriving both members of (76) in y, we obtain

n∑
i=1

(
n

i

)
iyi = ny(1 + y)n−1. (77)

By considering y = (x/1 − x), (76) and (77) lead to

n∑
i=1

(
n

i

)(
x

1−x

)i

=
[
1+

(
x

1−x

)]n

−1=
(

1
1−x

)n

−1

(78)
and

n∑
i=1

(
n

i

)
i

(
x

1 − x

)i

=n

(
x

1 − x

)[
1 +

(
x

1 − x

)]n−1

=nx

(
1

1 − x

)n

(79)

respectively. By substituting (78) and (79) in (75), we obtain

n∑
i=1

(
n

i

)(
i

nx
− 1

)(
x

1 − x

)i

= 1 (80)

which ends the proof. �
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