The Good, The Bad and The Cautious:
Safety Level Cooperative Games

2 2

Yoram Bachrach!  Maria Polukarov?  Nicholas R. Jennings

"Microsoft Cambridge, United Kingdom
yobach@microsoft.com
*University of Southampton, United Kingdom

{mp3,nrj}eecs.soton.ac.uk

Abstract

We study safety level coalitions in competitive games. Given a normal form game, we define a cor-
responding cooperative game with transferable utility, where the value of each coalition is determined
by the safety level payoff it derives in the original—non-cooperative—game. We thus capture several
key features of agents’ behavior: (i) the possible monetary transfer among the coalition members; (ii)
the solidarity of the outsiders against the collaborators; (iii) the need for the coalition to optimize its
actions against the worst possible behavior of those outside the coalition. We examine the concept of
safety level cooperation in congestion games, and focus on computing the value of coalitions, the core
and the Shapley value in the resulting safety level cooperative games. We provide tractable algorithms
for anonymous cooperative games and for safety level cooperative games that correspond to symmetric
congestion games with singleton strategies. However, we show hardness of several problems such as
computing values in games with multi-resource strategies or asymmetric strategy spaces.

1 Introduction

Game theory analyzes the interactions of multiple self-motivated, rational agents, each wishing to max-
imize its own profits from the interaction. In such situations, an agent may not follow any centrally
“prescribed” behavior if deviating from it improves its utility, and so the study of stable outcomes in
games is the central topic in game theory. In non-cooperative (or, competitive) games, where agents take
individual actions, the prominent stability concept is Nash equilibrium—a strategy profile where no agent
has a beneficial unilateral deviation from. However, it does not take into account collective deviations by
groups of agents; to this end, the notion of strong equilibrium [2]—a strategy profile with no profitable
deviations by subsets of agents—extends Nash equilibrium to capture collective strategic behavior. Co-
operative (or, coalitional) games consider how coalitions of agents can cooperate, focusing on how the
utility is distributed among the agents. The core [7] of a coalitional game is composed by all possible
ways the agents can share the utility so that no subset of the agents has an incentive to deviate.

In a non-cooperative game, agents act not only selfishly but also independently, and base their deci-
sions on their individual interests. Thus, even when they are able to coordinate their actions, each agent
has to enjoy the outcome of cooperation, individually. However, in many scenarios, traditionally mod-
eled as non-cooperative games (e.g., auctions, network formation games, routing and congestion games),
a group (coalition) of agents may well need to jointly decide on the collective action and, also, make
monetary transfers to share the gains the coalition obtains. This requires applying tools from cooperative
game theory to non-cooperative domains (which rarely overlap with typical cooperative scenarios).

To this end, Hayrapetyan et al [8] proposed a framework for modelling coalitions in the context of
congestion games. In a classic congestion game [13], a set of agents shares a set of resources, and



an agent’s strategy is to choose a subset of resources to use, so that the sum of congestion-dependent
costs over its selected resources is minimized. In [8], the authors assume that the agents may collude,
aiming to maximize their collective welfare. Their model also allows monetary transfers. However, they
address cooperation from a somewhat different perspective than cooperative game theory, focusing on
the possible negative effect of collusion on the social welfare. Another work [3] deals with formation
of coalitions in VCG multi-unit auctions. However, there, it is assumed that the outsiders of a coalition
would always truthfully reveal their individual preferences and play according to them.

In contrast, this paper studies the stability and computational aspects of safety level coalitions in
competitive games. As opposed to a standard cooperative game, the utility of a coalition in such settings
depends not only on the action the members take, but also on the actions taken by the non-members. In
the worst case, the outsiders may decide to punish the members of the coalition and take actions that
minimize the collective utility of the collaborators. A coalition then may decide to maximize its (total)
utility under the worst case action of the non-members—we call this a joint safety level strategy. In other
words, in scenarios we consider the collaborators are “good” to each other by that they cooperatively
choose actions and share gains, and the non-collaborators may behave as “bad” adversaries who reduce
the collaborators’ utility. If the collaborators take this view and consider non-collaborators as adversaries,
they must be “cautious” and prepare for the worst-case choice of the non-collaborators, by using their
joint safety level strategy. To achieve this cooperation, the agents can agree on monetary transfers in the
form of an enforceable contract, allowing them to distribute the gains in a certain way. Solution concepts
such as the core and the Shapley value [17] can be used to predict what transfers would occur.

We apply the concept of safety level cooperation to the class of congestion games. These games, in
which selfish agents strategically choose from a common set of resources and derive individual utilities
that depend on the total congestion on each resource, are fundamental to a wide range of applications.
Examples include resource and task allocation, firm competition for production processes, routing prob-
lems, network design, and other kinds of resource sharing scenarios in distributed systems [12, 13, 14].
Such games are known to have Nash equilibria in pure strategies [13], and some of their restricted classes
are known to have strong equilibria in pure strategies [9, 15]. Also, much recent effort in algorithmic
game theory has gone into study of interesting subclasses of congestion games that are computationally
tractable [1, 10]. One important subclass is resource selection games, in which each agent is restricted to
choosing a single resource. The resource selection games are in a particular focus of our work.

Our key results distinguish between symmetric settings where agents choose strategies from a com-
mon space, and asymmetric ones where each agent has its own collection of strategies. While in the
non-cooperative context, both symmetric and asymmetric models are anonymous, asymmetric models
lose anonymity when monetary transfers are allowed. For anonymous settings, we show that testing the
core (non-)emptiness, constructing a core imputation and testing whether an imputation is in the core are
in P when the computation of the coalitional values in the game is in P; we also show that the Shap-
ley value is in the core if it is not empty, and can be computed in polynomial time. These results hold
for all anonymous cooperative games'—not only those based on safety level coalitions. For congestion
games, we show that computing a coalition’s value is in P for singleton strategies and is NP-hard for
multiple-resource strategies, while for non-anonymous settings computing the value of even a singleton
or the grand coalition are NP-hard.

2 Preliminaries

We start with necessary game-theoretic definitions, and define congestion games.
A non-cooperative game in normal form is given by an agent set N = {1,..., N}, and for each agent
1 € N, a strategy space S; of its pure strategies and a payoff function U; : X;enS; — R specifying the

I'Not to be confused with “coalitional games in open anonymous environments” [21], which proposes anonymity-proof solutions
(with respect to the core and the Shapley value) which are robust under “false name” manipulations by the agents. In contrast, we
refer to cooperative games where the characteristic function is not “sensitive” to the agents’ identities—that is, all coalitions of the
same size get equal values.



award an agent gets at the outcome of the game. Denote by S¢ the set of partial strategy profiles of a
subset of agents C' C N, and by S_¢ = S\ ¢ the set of strategy combinations of all the agents outside
C; for a single agent i € N, denote S_; = Sy (4}. A strategy profile s € S is a Nash equilibrium
if for each agent ¢ € N and for each its strategy s, € S, the following holds: U;(s) > U;(s_;, s}).
A strategy profile is a strong Nash equilibrium if it is stable against deviations by coalitions: for any
C C N and s € Sc, there exists @ € C such that U;(s) > U;(s_;, s;). The safety level strategy for
agenti € N, s7'L, is the strategy maximizing its guaranteed utility, no matter what the other agents play:
s?L € argmax,, es, ming_,es_, Ui(si,5_;).

It is crucial that an agent’s payoff is determined by the profile of strategies played by all participants.
Some utility functions ignore the identities of the agents, and only take into account how many times
each strategy is played. These settings, where identities are irrelevant, are anonymous®. Given a set of

strategies S = {1,..., S}, astrategy s € S and an agent ¢ € N, the utility of ¢ playing s in an anonymous
game is a function mapping the set of partitions {(ml, oxs) ey e{l,...,N}, Zle z;j=N—-1
to real numbers. A related important subclass is that of symmetric games, where the payoffs for play-
ing a particular strategy are the same for different agents and depend only on the other strategies em-
ployed: if one can change the identities of the agents without changing the payoffs to the strategies,
then a game is symmetric. Formally, a game with strategy spaces given by S; = ... = Sy = Sis
symmetric if for any permutation 7 over N and an agent ¢ € N, we have U; (s1,...,8i,...,8n) =
Unr (i (s,r(l), ey Sa(i)s e s,T(N)), where s; = sy(;) forj =1,...,N.

Our analysis is also based on cooperative game theory, so we briefly review relevant notions. A trans-
ferable utility coalitional (or, cooperative) game is composed of a set N of N agents, and a characteristic
function v : 2N — R mapping any subset (coalition) of agents to a real value, indicating the total utility
these agents achieve together. We denote the set of all the agents excepti as N_; = N\ {i¢}. A coalitional
game is monotone if for all coalitions C’ C C' it holds that v(C”) < v(C), and is super-additive if for all
disjoint coalitions A, B C N we have v(A) + v(B) < v(A U B). In super-additive games, it is always
worthwhile for two sub-coalitions to merge, so eventually the grand coalition of all the agents will form.

The characteristic function only indicates the total gains a coalition can achieve, but does not specify
how these gains are distributed among the agents who formed it. An imputation (p1,...,pn) defines a
division of the gains of the grand coalition among its agents, where p; € R, such that Zi\il p; = v(N).
We call p; the payoff of agent i, and denote the payoff of a coalition C' as p(C') = >, pi. A basic
requirement for a good imputation is individual rationality: for any agent ¢ € N, p; > v({i}) (otherwise,
this agent is incentivized to work alone). Similarly, we say a coalition B blocks imputation (p1,...,pN)
if p(B) < v(B). If a blocked payoff vector is chosen, the coalition is somewhat unstable. The most
prominent solution concept based on such stability is the core [7]. The core is the set of all imputations
(p1,--.,pn) not blocked by any coalition, so that for any coalition C' C N holds p(C) > v(C).

Another solution concept is the Shapley value [17] which focuses on fairness, rather than stability.
The Shapley value fulfills several important fairness axioms [17, 20] and has been used to fairly share
gains or costs. For each agent, it depends on the agent’s marginal contribution to possible coalition
permutations. We denote by 7 a permutation (ordering) of the agents, and by 1I the set of all possible such
permutations. Given a permutation m = (i1, ...,iy) € II, the marginal worth vector, m™(v) € RY,
is defined by m7 = v ({i1}) and m] (v) = v ({i1,d2,...,ix}) — v ({i1,%2,...,ik—1}) for & > 1.
The convex hull of all the marginal vectors is called the Weber Set. It has been shown [19] that the
Weber set of any game contains its core. The Shapley value is the centroid of the marginal vectors:
() = 2 e m™ (V).

We analyze the core and the Shapley value of cooperative games that arise when considering safety-
level coalitions in a given non-cooperative setting, and demonstrate this approach on congestion games.
In a congestion game (CG) [13], every agent has to choose from a finite set of resources. The utility of
an agent from using a particular resource depends on the number of agents using it, and its total utility
is the sum of utilities on its used resources. Formally, a congestion game I' = (N, R, (u,(+)),cg) i
described by the following components: a set N = {1,..., N} of agents; a set R = {ry,...,rg}

2See [6] for results on approximating equilibria in anonymous games.



of resources; an assignment u, : {1,...,N} — R, r € R, of resource utility functions, where for
any resource r € R, u,(k) is the resource utility (cost) for » when the total number of users of r is
k. Each agent i is allowed to choose a (non-empty) bundle of resources B C 2R, from a certain set
S; = {Bi,...,Bg,} of allowed bundles (where each B;» C R). We denote by s; € S; the strategy
(set of resources) chosen by agent i. Every N-tuple of strategies—a strategy profile—s = (8;)ieN
corresponds to an R-dimensional congestion vector h(s) = (h,(s)),cg Where h,(s) is the number of
agents who select resource r (we simply write h,. when it’s clear what profile we refer to). The utility
of i from s is: U;(s) = > _ ., ur(hr(s)). A congestion game is a resource selection game (RSG) if the
strategy space of every agent corresponds to a set of singletons. That is, agent ¢ chooses a single resource
from the given set, and its payoff from a strategy profile s = (s;);cn is given by U;(s) = us, (hs, ().

Remark 1. In a congestion game an agent’s utility only depends on the numbers of agents choosing
each resource but not on their identities, so congestion games are anonymous. Since the utility from
each particular resource is the same for each of its users, the utility any agent gets from playing a
particular strategy depends only on the other strategies selected, but not on who has chosen them. Thus
a congestion game is symmetric if (and only if) all agents in the game have identical strategy spaces. We
refer to symmetric congestion and resource selection games as SCGs and SRSGs, respectively.

Congestion games always have a pure strategy Nash equilibrium [13]. Resource selection games with
monotone utility functions also admit strong equilibria [9]. In fact, in RSGs with decreasing utilities, any
Nash equilibrium is strong. However, we show that coalitional stability is no longer guaranteed if utility
transfers are allowed.

3 Safety Level Cooperative Games

LetT' = (N7 (Si)ien s (Ui)ieN) be a normal-form game, where N is the set of agents, and S; and U;
denote, respectively, strategy spaces and utility functions of individual agents. In this context, we are
interested in scenarios where it makes sense to the agents to form coalitions and coordinate their actions
to optimize their collective gains. We take a safety level approach to analyzing gains of a coalition. Thus,
we assume that the coalition members attempt to maximize the minimal utility they would get under any
strategy choices of the non-members. We model coordination in the underlying normal-form game as a
coalitional game, where coalitional values are determined by the safety-level payoffs of each coalition.
To this end, we first extend the notion of a safety level to coalitional payoffs.

For coalition C' C N and strategy profile s = (s;)ien, let Uc(s) = D, Ui(s) be the total utility C
achieves under s. The utility of a coalition depends not only on the strategies chosen by its members, but
also on the choices of the non-members. Let B = N \ C denote the set of non-members. Now, a profile
s can be written as s = (sp, s¢), where s¢ = (si);cc and sp = (s;) ;. are partial strategy profiles.
Given the non-members’ strategy sp, the coalition could optimize for the total value it can achieve, by
choosing s¥, € argmax,_es. Uc(sp, sc), where S¢ = X;ccS; is the set of coalitional strategies of
C. This choice maximizes C’s utility for a specific strategy profile of B. What should the coalition C' do
without knowing how the non-members would behave? Staying on the “safe” side, C' can optimize the
utility guaranteed to it, no matters what the outsiders do, by maximizing its safety level, the worst case
utility the coalition obtains under all possible actions of the non-memers. The safety level of C' when it
chooses s¢ is: UgL(sC) = minses, Uc(sB, sc), and the safety level strategy of a coalition C' is the
coalitional strategy s{, € S that maximizes the safety level:

SL .
s¢ € arg max Ug~ (s¢) = arg max min Uc(sg,sc)
scE€ESc sc€Sc \sBpESpE

The safety level value of C'is the minimal utility it would get when using its safety level strategy:

U&= min Uc(sp,s¢) = max (min Uc(sB,sc))

SBESE sc€ESc \sBESE



A coalition’s safety level value is the utility the coalition can guarantee to itself as a whole when its
members cooperate. A key challenge determining how the members would share this value. To answer
this question, we define a safety level cooperative game (SLC-game) for I' as follows:

Definition 1 (Safety Level Cooperative Game). Given a (normal-form) gameT’ = (N, (S;);en > (Us)jen)
with agent set N, strategy space S; and utility function U; for each i € N, the induced safety level coop-
erative game (SLC-game) is a cooperative game over the same set N of agents, where the characteristic
function is the safety level value of coalitions in T': for each C C N, v(C) = U¢.

We will write SLC? to indicate that an SLC-game is induced by a game I'. However, regardless of
their underlying games I', all SLC-games have the following basic property:

Lemma 1. The SLC-games are monotonically increasing.

Proof. We need to show that for any C’, C such that C' C C we have v(C’) < v(C'). Intuitively, as C
includes more agents than C” and the agents in D = C'\ C” are coalition members for C' and outsiders for
C’, so they “help” the members of C' and “punish” the members of C”. Hence, the safety level value of a
larger coalition is greater then that of a smaller one. Formally, denote B =N\ C,so N\ C’ = BU D.
We have:

v(C") =U& = max ( min Uc/(sBUD,sc/)) < max (min UC/(sB,SD,sC/))

sgr€Scr \SBUDESBUD sgr€Scr \SBESB

< max min Uc(sg,sp,8c’) | < max [ min Uc(sg,sc) | =Us =v(C)
sgr€Scr \SBESB scE€Sc \sBESE

4 Safety Level Coalitions in Congestion Games

We now analyze safety level coalitions in congestion games and resource selection games. We also make
a distinction between symmetric settings where agents derive strategies from a common space, and asym-
metric settings where each agent has its own collection of strategies. While in the non-cooperative con-
text, both symmetric and asymmetric models are anonymous, asymmetric models lose anonymity when
monetary transfers are allowed. We show anonymous and non-anonoymous SLC-games have different
computational properties.

Consider a congestion game with agents N and resources R with resource utility functions w,.(+)
for r € R, and a coalition C C N. For any strategy profile s = (s;);eN, the congestion on each
resource is h(s) = (h,(s)),cg. and we can compute the utility U;(s) for each agent 7. C’s total utility
under s is Uc(s) = D icc Ui(s) = D ico D res, tr (hr(s)). Denote the number of C’s members
who use a resource 7 at a strategy profile s as hS (s) = |{i € C|r € s;}|. We can write: Uc(s) =

> rer hE(s) - uy (hy(s)). The coalitional value of C'in the corresponding SLC-game is:

v(C) =Us = Jmax <s;nei§13 TEZRhTC.(s) Uy (hr(S)))

Recall our notation of (S)CG and (S)RSG for (symmetric) congestion and resource selection games.
Note that SRSGs C RSGs C CGs and SRSGs C SCGs C CGs. Similar inclusions hold for the
corresponding safety level cooperative games, induced by (S)CGs and (S)RSGs.

4.1 Anonymous cooperative games

We consider the properties of SLC-games induced by the subclass of symmetric congestion games, where
all agents use a common set of strategies. We start with Lemma 2 below showing that these games satisfy
what we call anonymity, naturally defined as follows: we say a cooperative game is anonymous if any
two agents are equivalent—i.e., for every two agents ¢ # j and any coalition C' such that ¢ ¢ C and
j ¢ C wehave v(C U {i}) =v(CU{j}).



Lemma 2. All SLCSCC-games are anonymous.

Proof. Consider a coalition C that contains neither ¢ nor j. Since both ¢ and j have identical strategy
spaces, we get the same sets for min and max operators when computing coalitional safety level values
of CU{i} and C' U {j}. O

Now, for all anonymous cooperative games (and for SLC*“%-games in particular) we have that the
Shapley value vector (i) can be found in polynomial time and (ii) belongs to the core if the core of a given
game is not empty (see the following Lemmas 3 and 4; for proofs, see Appendix A):

Lemma 3 (Core of Anonymous Games). Let v be an anonymous cooperative game over N agents N,
with a non-empty core. Denote q = @ Then the symmetric payoff distribution (q,q,...,q) is an

imputation in the core.

Lemma 4 (Shapley Value of Anonymous Games). Let v be an anonymous cooperative game over N
agents N. Denote ¢ = LII\;I) Then the Shapley value is the symmetric payoff distribution (q,q, . .., q). If
the core exists, then the Shapley value is in the core.

Lemmas 3 and 4 require the non-emptiness of the core. However, some safety level cooperative games
have non-empty cores and others have empty cores (see Examples 1 and 2 below). Such examples can
occur even among the restricted class of SLC-games induced by symmetric, monotone resource selection
games, which always possess strong equilibria, highlighting the difference between the cooperative safety
level cooperative game’s core and strong equilibrium.

We now introduce aditional notation. In an anonymous game all agents are equivalent so the value
of a coalition only depends on the number of agents in the coalition and not their identities. Thus,
we can write the charactersitic function v as a function mapping the size of a coaltion to its value, so
v:{0,1,..., N} — R. We use the standard convention that v(0) = 0.

Example 1 (there exist SLCY“-games with non-empty core). The example is a SLC%5C -game with
N agents and R resources with identical, constant resource utility functions u.(k) = x € R for any
reR k=1,...,N. We show that any such game has a non-empty core.

Proof. Note that the value of any coalition in this domain, no matter what the non-members do, only
depends on the size of the coalition, so v(k) = xk. Thus, the simple payoff vector p = (z,...,x) is
in the core, since given any coalition C of size |C| we have p(C) = z|C| = v(C), and all the core
conditions hold. O

Example 2 (S LC°%5C _games may have empty core). Consider an SLCS5C game with N = 3 agents

and two resources {a,b} with identical resource utility functions u,(1) = 2;u.(2) = u,(3) = 1 for
r = a,b. The core of this game is empty.

Proof. We have v(0) = 0. Now compute v(1), the safety level of a single agent (out of 3 agents in total).
No matter which resource, a or b, the agent chooses, the worst case outcome is when the other 2 agents
also choose the same resource, giving the agent a utility of u,.(3) = 1; thus, we have v(1) = 1. Now
consider the safety level of 2 agents (out of 3). They can either choose to have both of them using the same
resource, or to use a different resource each. If they both are on the same resource, the worst case action
of the remaining agent is to also join that resource, and the utility of the coalition is 2u,.(3) = 2. If the
collaborators choose different resources, any choice of the remaining agent results in having 2 agents (one
member and one non-member of the coalition) on one resource and a single coalition member on the other
resource, resulting in a utility of u,(2) +u, (1) = 2+1 = 3 for the coalition. Thus, the safety level of any
pair of agents is v(2) = 3. A coalition of 3 agents is the grand coalition, whose best choice is to assign 2
agents on one resource, and 1 agent on the other resource, and so v(3) = u, (1) + 2u,(2) =2+ 2 = 4.
Thus, the characteristic function of this SLC-game is given by v(0) = 0,v(1) = 1,v(2) = 3,v(3) = 4.
Due to Lemma 3, if the game has a non-empty core, the imputation p = (%, %, %) should be in the core.
However, under this imputation the payoff for any two agents is less than the value of a coalition of the



pair: i.e., p({1,2}) = &, butv({1,2}) = v(2) = 3 > 3 = p({1,2}), which violates the core constraints.

Hence, the core is empty. O

Moreover, restricting or expanding the sets of the agents’ allowed strategies may cause the core to
change from being empty to being non-empty and vice versa:

Example 3 (Strategy Sets and the Core). Consider the game with 3 agents and 2 resources {a,b} from
the previous example, where the resource utility function is given by u,(1) = 2;u,(2) = u,(3) =1
for r = a,b. The core of this game is empty. Now add a third resource c with a constant utility of
uc(k) = 10 for k = 1,2,3, and expand each agent’s strategy set to allow selecting {c}. The resulting
game is anonymous, with characteristic function v(1) = 10,v(2) = 20,v(3) = 30, and its core is not
empty: the imputation p = (10, 10, 10) is in the core. On the other hand, if we take this new game, and
restrict each agent’s strategy set to allow selecting only {a} or {b}, we obtain the original game with an
empty core. Thus, extending strategy sets makes the core non-empty, and restricting them may empty it.

Now, consider the game with 3 resources {a,b, c}, where again u,(1) = 2;u,(2) = u,(3) =1
for r = a,b, but uc.(k) = 0.1 for k = 1,2,3. If the agents are restricted to choosing only ¢, i.e.
S1 = Ss = S3 = {{c}}, we have an anonymous game where v(1) = 0.1,v(2) = 0.2,v(3) = 0.3 which
has a non-empty core as p = (0.1,0.1,0.1) belongs to it. If we extend the strategy sets to also include a
and b, so that S1 = Sy = S35 = {{a}, {b}, {c}}, we get the game where v(1) = 1,v(2) = 3,v(3) = 3,
whose core is empty. Thus, extending strategy sets may make the core empty, and shrinking them makes
it non-empty.

Remark 2. Based on the above examples, one can see that the non-cooperative and cooperative concepts
of coalitional stability are rather different. While strong Nash equilibria always exist for (monotone)
resource selection games, the core of their corresponding SLC-games may be empty. The reason for that
is the following: while for any coalition there could be no deviation guaranteeing a better payoff to any
of the deviators, there might exist a coalition that can improve its total welfare—that is, even if some
agents may obtain worse individual utilities after the deviation, this loss will be covered by the gains
their co-deviators get.

In light of the above observations, testing the (non-)emptinness of the core in safety level cooperative
games is an important issue. It follows from the next Theorem 1 regarding anonymous cooperative
games, that for SLC°““-games this can be done efficiently if the computation of coalitional values is
easy; moreover, in this case, the construction of a core imputation and verification if a given imputation
is in the core are also computationally efficient:

Theorem 1 (Core Computation in Anonymous Games). In anonymous cooperative games, if computing
the value of any coalition can be performed in polynomial time, then the following problems are in P:
testing for core emptiness, constructing a core imputation (if one exists) and testing if an imputation p is
in the core.

Proof. In anonymous games the characteristic function is given as v : {0,1,..., N} — R—the function
that maps the size of a coalition to its value. This representation is simply a table, containing N numbers:
therefore, if computing the value of each coalition can be performed in polynomial time, then finding the
characteristic function is also so.

To fulfil the core constraints, the following must hold for an imputation p: Zf;l pi = v(N) = v(N),
and VC,p(C) > v(C). Consider testing whether an imputation p satisfies this. It is easy to check if
Zfil pi = v(N) = v(N). However, testing the condition VC, p(C) > v(C) seemingly requires 2V
similar tests. Order the agents according to their payment, so that p;;, < p;, < ... < p;,. Denote
by Cj the coalition C' = {iy,14a,...,ix}. Note that if the core constraint p(C') > v(C) holds for
Cy = {i1,142,...,ix}, it must also hold for any coalition of size k, as C, is the minimally paid coalition
of size k. Thus, to test if p is a core imputation, it is enough to test whether p(Cy) > v(Cy) for
k € {1,2,...,N}. If the core constrains hold for all C1,...,Cy, they hold for any coalition C, and



if they do not, we have a violated cosntraint. Since there are only N such checks, this can be done in
polynomial time.

Now consider testing for core-emptiness and constructing a core imputation. Due to Lemma 3, if the
core is non-empty, the symmetric imputation (¢, g, ..., q) where ¢ = =y~ Mmust be in the core. Since g
can be computed in polynomial time, this imputation can also be computed in polynomial time. We can
then test whether it is in the core. If it is in the core, we have constructed a core imputation, and if it not

in the core, then the core is empty. O

However, the computation of safety levels and the values of coalitions in SLC-games, can be a non-
trivial task, as the safety level strategies of the agents are not even robust to small changes of game
parameters. For instance, we show that even changing only the total number of agents can result in very
different safety level strategies, even in simple anonymous settings.

Example 4 (Number of Agents and Safety Level Strategies). Consider an SLC*®5C-game with two

resources {a, b} with resource utility functions given by uq(k) = € for k = 1,...,5 an a small positive
6 and up(k) = 1Vk = 1,...,4, up(5) = 0. Assume there are N = 4 agents playing the game and
compute the value of a coalition C of 3 agents (out of 4). Since uy(-) is constant up to congestion of 4,
any agent in C who choses b is guaranteed a utility of 1 on that resource. On the other hand, any agent
in C who chooses a only gets a utility of € on that resource. Thus v(3) = 3 -1 = 3, and the safety level
strategy of C'is to have all its agents choosing the resource b. Now, consider the same resources and
resource utility functins when there are N = 5 agents, and consider again a coalition C of 3 agents. If
C places all agents in b, a possible strategy for the remaining 2 agents is to both join b, resulting in a
total utility of 3up(5) = 3 - 0 = 0 for the coalition. Alternatively, the coalition can have 2 agents using
a and 1 agent using b. For this strategy in Sc, any strategy in S\ ¢ of the remaining 2 agents results in
all agents on a getting a utility of € and all those on b getting 1, resulting in a total coalitional utility of
1-€+42-1 =2+ e This is the safety level strategy for the coalition C, so v(3) =2 + €.

Nevertheless, for SLC 5% _games we can compute a coalition’s value in polynomial time:
Theorem 2. For SLCSRSCG _games, computing safety level strategies and values is in P.

Proof. We provide a dynamic programming algorithm. Given an SLC%5G_game with R resources, for
any k = 1,..., Rlet v, denote the k-subgame, played on the first k£ resources: that is, vy, is the restriction
of the original game where the agents are only allowed to select one of the first k resources—i.e., for each
i € Nwehave S; = {r1,72,...,7} C R. Note that vy, is also an SLCSF5%_game. We denote by v; 1
the value of a coalition of 7 agents in the k-subgame with ¢ + j agents: to compute v; ; , we must find a
safety level strategy for a coalition of 7 agents when there are additional j non-members, and the agents
are only allowed to select one of the first k£ resources. We prove that the following recursive formula
holds:

Viik = max min Viep i—gk—1+P- U +
Wik peiio, i}<q€{1’2 YYYY j}( pri—ak—1+ D up(p Q)))

Consider a coalition C' of i agents, who are currently using the safety level strategy in the (k — 1)-
subgame with additional j agents. The coalition assigns ¢, agents to use resource x (where x < k — 1),
so that Zf;ll ¢, = t. The worst case response of the non-members in this subgame is assigning b,

resources to use resource x, (wWhere x < k — 1), so that 25;11 b, = j. We can describe a strategy for C'
in the k-subgame in terms of moving some p agents from the first £ — 1 resources and assigning them to
the resource k. Any strategy for C in the k-subgame can be described as having p < 4 coalition members
using resource k, and a partition of the ¢ — p remaining agents to the first k¥ — 1 resources (which is a
strategy for a coalition C’ of 7 — p agents in the k& — 1-subgame), for some choice of p < i. Each such
a partial strategy profile s implies a response from the non-members N \ C which similarly can be
described as a choice of ¢ < j non-members using resource k and a partition of the ; — ¢ remaining
non-members to the first k — 1 resources (which corresponds to a strategy profile of a non-member agent
set B’ of j — ¢ agents in the k — 1-subgame). The safety level strategy for a coalition C' in the k-subgame
is therefore a composition of the safetly level strategy for a coalition of |C| — p in the k — 1-subgame and
p agents using resource k for some p < |C]. O



Thus, by Theorems 1 and 2, for SLC*#5G_games we can efficiently test the core non-emptinness,
construct a core imputation or, given one, check if it belongs to the core. These results do not extend to
all SLCS)CG _games. When agents are allowed multiple-resource strategies (even if these are derived
from a common set), computing colitional values becomes hard.

CsCG

Theorem 3. Computing the value of a coalition in SL -games is NP-hard.

Proof. We reduce from Exact-Cover-By-3-Sets (X3C). Consider an X3C instance, with a set S =
{1,2,...,3m} of 3m elements, and triplets Si,...,S, where S; C S and |S;| = 3. We are asked
whether there is an exact cover of S that uses exactly m (disjoint) triplets. We construct an SLCS¢C-
game, where each element r € S corresponds to a resource r (that is, S corresponds to R)), where each
resource s utility function satisfies u,.(1) = 1; u,.(k) = 0 for k > 2. The SLC®““-game has N = m
agents, and an agent is allowed to choose any resource triplet, S;, from the given collection of triplets—
that is, the strategy space of any agent i is given by S; = {S1,..., S, }. This is an anonymous game. Let
v(N) be the value of the grand coalition. We show that if the X3C is a “yes” instance, v(N) = 3m and
if it is a “no” instance then v(IN) < 3m. Suppose the X3C is a “yes” instance, and let S;,, Si,, ..., S,
be the triplets in the exact cover. Let agent x choose the resources in .S,, (for € {1,...,m}). Since S
is an exact cover, each resource 7 is selected exactly once, so v(IN) = 3m. On the other hand, if the X3C
is a “no” instance, any choice of m (or more) triplets S;, , . .., .S;,, results in choosing at least one of the
resources, 7, more than once. Thus, the congestion on this resource results in a utility of O for all agents
using it, so v(N) < 3m. O

4.2 Non-anonymous settings

We now turn to consider general, asymmetric settings where agents may have different strategy spaces.
First, we observe that though these settings are anonymous in the original—non-cooperative—context,
their corresponding SLC-games are not such:

Lemma 5. The SLCCC-games are, in general, non-anonymous.

Proof. To see this, consider a simple (though extreme) example, in which there exists an agent, say 1,
that has an exclusive right to use a special resource rewarding its user with a very high utility, H. Now,
any coalition C' that includes i can guarantee to itself the utility of at least H, regardless of what the rest
of agents do, while any coalition C'\ {i} U {j}, j € N \ C, will never achieve this value. O

Next, we show that losing anonymity results in high complexity of computing safety level values even
for “degenerate” coalitions consisting of only a single agent:

Theorem 4. Computing values of singleton coalitions in SLC®%-games is coNP-hard.

Proof. We reduce from the dominating-set (DS) problem. In DS, we are given a graph G = (V, E), and
have to decide if there is a dominating vertex set of size at most K. A dominating vertex set is a vertex set
V' C V such that for every v € V, either v € V' or (u,v) € E for some u € V’. Denote |V| = m. We
create an SLC“%-game instance as follows: The resources correspond to the vertices 1, and we define
one additional resource, r* (so, R = m + 1). The congestion function for resources r € V' is given by
u,(1) = H where H > 3m is a very high value; u, (k) = 0 for & > 2, and for the “special” resource we
have u« (k) =2m —k+1fork=1,...,m+ 1; u,~ (k) = 0 for k > m + 2. For any vertex resource
r € V we define an agent a,,, who can choose any single resource which is a neighbour of v or resource
r*,50S,, = {{u}|u €V, (u,v) € E}YU{{r*}}. There is also additional agent, a*, whose only strategy
is to select all the resources together, so S, = {R = {v|v e VU {r*}}.

Since agent a* literally has no choice but using its only strategy, the value it obtains only depends on
the choices of the other agents. Note that if in a strategy profile s, a* there exist a vertex resource 7 so
that a* is its only user, then a* obtains a value of at least H from s. Thus, to minimize a*’s utility, each
of the vertex resources must be used by some other agent. Now, if there is no dominating set of size K,



this requires more than K other agents, and hence, at most m — K — 1 other agents can use 7* in such a
profile, so v({a*}) > 2m — (m — K — 1) = m+ K + 1. If there is a K dominating set, the K outsiders
can choose this dominating set, so a* obtains a utility of 0 from the vertex resources, and having m — K
outsiders on 7* results on the utility of 2m — (m — K) = m + K for ¢* from r*, so v({a*}) = m + K.
Thus, v({a*}) > m + K if and only if the DS instance is a “no” instance. O

Obviously, in the non-anonymous setting, different coalitions—even of the same size—may have
different values. While by Theorems 3 and 4 computing the values of coalitions is hard, one may try to
find a maximal value a coalition of size (at most) k, where 1 < k < N, can achieve. However, this option
is ruled out as well, by the following theorem:

CCG

Theorem 5. Finding the value of the grand coalition in SL -games is NP-hard.

Proof. We reduce from Maximum Satisfiability (MAX-SAT). In MAX-SAT, one is given a Boolean for-
mula, and is asked to determine the maximum number of clauses that can be satisfied by any assignment.
Given a MAX-SAT instance, we construct an S LCCG—game as follows. There is a resource for each
clause, and an agent for each variable. An agent for variable x can either choose all the clauses satis-
fied by x or all the clauses satisfied by = (thus choosing an assignment for variable z). The resource
utility function is u, (k) = %, k = 1,...,N, for each resource r. Thus, if k agents choose a clause,
each of them gets the utility of % from the clause, and all of them together get the total utility of 1 from
that clause. Thereby, given a strategy profile, its total value to the grand coalition equals exactly the
number of satisfied clauses. Hence, the maximal value the grand coalition can achieve is the MAX-SAT
solution. O

5 Conclusions

We defined a safety level cooperative game induced by a normal form game, and examined this concept
on the class of congestion games. We showed that for symmetric resource selection games the safety
level of a coalition can be computed in polynomial time, and so several problems related to the core, a
core imputation, and the Shapley value are polynomial time decidable. However, computing coalitional
safety levels of congestion game (even a symmetric one) with multiple-resource strategies is NP-hard.
For non-symmetric games, even computing the value of singleton coalitions or the grand coalition is hard.

This suggests a number of open questions for future research. First, other solution concepts should
be investigated in the context of safety level cooperative games. In particular, the least-core [11]) and
the nucleolus [16] (which exists even if the core is empty), and the Banzhaf index [4] (an alternative to
the Shapley value), should be considered. Second, the application domain should be extended to other
scenarios, rather than just those of congestion games. One key domain for such analysis are auctions
of various kinds. Finally, perhaps the most important task is that of finding tractable classes of games,
where the hardness results we have demonstrated for congestion games would not hold. In this direction,
encouraged by the example of resource selection games, we first of all intend to examine the classes of
games for which the computation of a Nash equilibrium can be done in polynomial time. Immediate
candidates include the matroid congestion games [1] and congestion-averse games [5, 18]; we are also
interested if the tractability of the computation of coalitional values in these classes depends on the
anonymity property same way it did for RSGs.
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A Missing Proofs

Below are the proofs omitted from the main text.

Lemma 3 (Core of Anonymous Games). Let v be an anonymous cooperative game over N agents N,

with a non-empty core. Denote q = @ Then the symmetric payoff distribution (q,q,...,q) is an
imputation in the core.
Proof. An imputation p = (p1, ..., px) must fulfil two requirements to be in the core: (i) >, nDi =

v(N), and (i) VC, >,.pi > v(C). Consider a core imputation p = (p1,...,pn). If p; = p; for
any i,j € N, then denote ¢ = p; = p; and due to the first requirement we have p(N) = 3, ¢ =

g enl=q-Nsog= L}\?) as required. Otherwise, take agents 7 and j whose payoffs are maximal

and minimal, respectively, so p; > p;. Let ¢’ = @ and p' = (p1,p2,..-,p0; = ¢, s.sp) =
q',...,pn) be a new imputation. Denote d = »Z*, so p; = p; + 2d. The imputation p’ is “more
balanced” than p, as i’s payment drops: p; = p; — d, while j’s payment rises: p; = p; + d. We show
that p’ is also a core imputation. Any coalition C such that i, 7 ¢ C has equal total payments in p and
Pt p'(C) = p(C). Hence, if p(C') > v(C) we also have p’(C') > p(C) and the core conditions for C
hold. Also note that for any coalition C' such that both ¢ and j are in C' we also have p/(C') = p(C) so
all the core conditions hold. Now, since p;- > p;, for any coalition C' with i ¢ C and j € C we have
p'(C) > p(C) > v(C). Finally, consider a coalition C' with ¢ € C' and j ¢ C" in p/, this coalition C' gets
a lower payoff of p'(C) = p(C) —d. Let C; = C'\ {i} U {j}. We have p(C) = p(C;) — p; +p; =
p(C;) — (pj + 2d) + p; = p(Cj) + 2d. Thus, p'(C) = p(C) —d = p(C;) + d. Now, since the
core conditions hold for Cj, i.e. p(C;) > v(Cj), we have that p’(C') > v(C;) + d. Since the game is
anonymous, we have v(C;) = v(C) (the difference between C; and C is the exchange of two agents), so
p'(C) > v(C) + d. Hence, p’ is a core imputation.

We can repeat the process of converting a core imputation to a “more balanced” core imputation.
After at most N such steps, the maximal differece between any two payments, max; ; |p; — p;| drops by
half. Thus, after sufficient number of iterations and up to any required accuracy, we obtain the balanced
imputation p* = (¢, ¢, . .., q) which is also a core imputation, as required. O

Lemma 4 (Shapley Value of Anonymous Games). Let v be an anonymous cooperative game over N

agents N. Denote q = # Then the Shapley value is the symmetric payoff distribution (q,q, . ..,q). If
the core exists, then the Shapley value is in the core.

Proof. Due to the properties of the Shapley value [17, 20], the payoff for any two equivalent agents i, j
in the Shapley value must be the same, so ¢;(v) = ¢;(v).® Since the game is anonymous, we have
¢;(v) = ¢;(v) for any two agents, ¢, j. Thus, the Shapley value is ¢(v) = (z,z, ..., x) for some value
x. Since by definition of the Shapley value we have Zf\; x = v(N) we get that x = g = L}:) Due to

Lemma 3, if the core is non-empty, then ¢(v) = (q,q,. .., q) is in the core. O

3In fact, this is one of the axioms characterizing the Shapley value.
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