
UNIVERSIDADE FEDERAL DO AMAZONAS
DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA

EXPLOITING SAFETY PROPERTIES IN
BOUNDED MODEL CHECKING FOR

TEST CASES GENERATION OF C
PROGRAMS

Herbert Oliveira Rocha, Lucas Cordeiro
Raimundo Barreto and José Netto

2SAST'2010UFAM/DCC/PPGI

Outline

1. Introduction

2. Background

3. Related Work

4. Proposed Method

5. Experimental Results

6. Conclusions and Future Work

7. Questions?

3SAST'2010UFAM/DCC/PPGI

Software Applications
Introduction

4SAST'2010UFAM/DCC/PPGI

Introduction

• Area of research in formal verification;
• Software categories.

Model Checking

• State space explosion problem;
• Integration with test environments;

The main challenges

• According to [Baier and Katoen 2008]1 safety
properties are often characterized as “nothing bad
should happen”.

And what are we proposing?

Model Checking

1- Principles of Model Checking. MIT Press. 2008

5SAST'2010UFAM/DCC/PPGI

Introduction -> Background

What is Model Checking?

The procedure normally generates an exhaustive search in the
state space model to determine whether a given “property” is
valid or not [Baier and Katoen 2008]2.

2- Principles of Model Checking. MIT Press. 2008

6SAST'2010UFAM/DCC/PPGI

Introduction -> Background

Efficient SMT-Based Bounded Model Checker (ESBMC)

ESBMC3 is a bounded model checker for embedded
ANSI-C software based on SMT (Satisfiability Modulo Theories)
solvers, which allows [Cordeiro et al. 2009] 4:

 Out-of-bounds array indexing;
 Division by zero;
 Pointers safety
 Dynamic memory allocation;
 Data races;
 Deadlocks;
 Unwinding of the loops;
 Underflow e Overflow;
 Softwares Multi-threaded.

3- http://users.ecs.soton.ac.uk/lcc08r/esbmc/
4- SMT-Based BoundedModel Checking for Embedded ANSI-C Software. ASE 2009.

7SAST'2010UFAM/DCC/PPGI

Introduction -> Background

Exploting Safety Properties in Software Testing Strategies

• Software testing is the process of executing a
program with the goal of finding faults [Myers and
Sandler 2004]5

What is software testing?

The CUnit Framework

The problem is "how to creat test cases aimed at
checking safety properties?"

5- The Art of Software Testing. John Wiley & Sons. 2004

8SAST'2010UFAM/DCC/PPGI

Introduction -> Background -> Related Work

Related Work

Test sequences generation from LUSTRE descriptions: GATEL.
[Marre e Arnould, 2000]6

Scenario-oriented modeling in Asml and its instrumentation for
testing. [Barnett et al. 2003]7

Test generation with Autolink and Testcomposer.
[Schmitt et al. 2000]8

Execution generated test cases: How to make systems
code crash itself. [Cadar and Engler 2005]9

6- Test sequences generation from LUSTRE descriptions: GATEL. ASE. 2000
7- Scenario-oriented modeling in Asml and its instrumentation for testing. SCESM. 2003
8- Test generation with Autolink and Testcomposer. SAM. 2000
9- Execution generated test cases: How to make systems code crash itself. 12th MCS, Stanford Technical Report CSTR 2005-04. 2005

9SAST'2010UFAM/DCC/PPGI

Introduction -> Background -> Related Work -> Proposed Method

Proposed Method

1 2

3 4

5

10SAST'2010UFAM/DCC/PPGI

Introduction -> Background -> Related Work -> Proposed Method

In order to explain the main steps of the proposed…

11SAST'2010UFAM/DCC/PPGI

Introduction -> Background -> Related Work -> Proposed Method

First step: Identification of Safety Properties

1

2

3

Result_ESBMC.txt

12SAST'2010UFAM/DCC/PPGI

Introduction -> Background -> Related Work -> Proposed Method

Second step: Safety Properties Information Collection

result_claims.txt

Result_ESBMC.txt

13SAST'2010UFAM/DCC/PPGI

Introduction -> Background -> Related Work -> Proposed Method

Third step: Asserts Inclusion

(i) First phase

14SAST'2010UFAM/DCC/PPGI

Introduction -> Background -> Related Work -> Proposed Method

Third step: Asserts Inclusion

(ii) Second phase

15SAST'2010UFAM/DCC/PPGI

Introduction -> Background -> Related Work -> Proposed Method

Fourth step: Implementing Unit Test in CUnit Framework

16SAST'2010UFAM/DCC/PPGI

Introduction -> Background -> Related Work -> Proposed Method

Fifth step: Running CUnit Tool

17SAST'2010UFAM/DCC/PPGI

Introduction -> Background -> Related Work -> Proposed Method -> Experimental Results

Experimental Results

The steps of the proposed method have been implemented using
the ESBMC v1.11, and the framework CUnit v2.1.

Number Module LOC Identified Violated
1 EUREKA_bf20_det.c10 49 33 0

2 EUREKA_Prim_4_det.c10 78 30 0

3 SNU_bs_nondet.c11 120 7 0

4 SNU_crc_det.c11 125 15 0

5 SNU_insertsort_nondet.c11 94 14 6

6 SNU_qurt_det.c11 164 6 0

7 SNU_qsort-exam_det.c11 134 49 -

8 SNU_select_det.c11 122 39 6

9 WCET_cnt_nondet.c12 139 16 0

10 Oximeter_log_det.c13 177 4 2

10- www.ai-lab.it/eureka/bmc.html
11- http://archi.snu.ac.kr/realtime/benchmark
12- http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
13- Semiformal verification of embedded software in medical devices considering stringent hardware constraints . ICESS 2009.

Codes are available at : https://sites.google.com/site/fortesmethod/

18SAST'2010UFAM/DCC/PPGI

Introduction -> Background -> Related Work -> Proposed Method -> Experimental Results

Identifying and verifying errors

This task is not trivial

A specific Oximeter_log_det.c a code fragment

1. void insertLogElement (Data8 b){

2. buffer[next] = b ;

3. next = (next+1)% buffer_size ;

4.}

Properties Identified:

1. next < 6400 -> Line 2

2. “(unsigned int)buffer size != 0 -> Line 3

void initLog(Data8 max)

19SAST'2010UFAM/DCC/PPGI

Introduction -> Background -> Related Work -> Proposed Method -> Experimental Results

Verification Results

First situation

Second situation

20SAST'2010UFAM/DCC/PPGI

Background -> Related Work -> Proposed Method -> Experimental Results -> Conclusions and Future Work

Conclusions and Future Work

• The experimental results, although preliminary, have shown to be
very effective;

• We identify some improvements;
• About code structure and block delimiters;
• About the verifying pointer and dynamic memory allocation.

Proposed Method

• We intend to investigate the application of verification techniques,
such as:
• Running code on symbolic inputs [Cadar and Engler 2005]14;
• Mutation testing[Jia and Harman 2010]15.

Future work

14- Execution generated test cases: How to make systems code crash itself. 12th MCS, Stanford Technical Report CSTR 2005-04
15- An analysis and survey of the development of mutation testing. IEEE TSE 2010

21SAST'2010UFAM/DCC/PPGI

Questions ??

Related Work -> Proposed Method -> Experimental Results -> Conclusions and Future Work -> References -> Questions?

Thank you for your attention!

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21

