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Introduction

• Area of research in formal verification;
• Software categories.

Model Checking

• State space explosion problem;
• Integration with test environments;

The main challenges

• According to [Baier and Katoen 2008]1 safety
properties are often characterized as “nothing bad
should happen”.

And what are we proposing?

Model Checking

1- Principles of Model Checking. MIT Press. 2008
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Introduction -> Background

What is Model Checking? 

The procedure normally generates an exhaustive search in the
state space model to determine whether a given “property” is
valid or not [Baier and Katoen 2008]2.

2- Principles of Model Checking. MIT Press. 2008
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Introduction -> Background

Efficient SMT-Based Bounded Model Checker (ESBMC)

ESBMC3 is a bounded model checker for embedded
ANSI-C software based on SMT (Satisfiability Modulo Theories)
solvers, which allows [Cordeiro et al. 2009] 4:

 Out-of-bounds array indexing;
 Division by zero;
 Pointers safety
 Dynamic memory allocation;
 Data races;
 Deadlocks;
 Unwinding of the loops;
 Underflow e Overflow;
 Softwares Multi-threaded.

3- http://users.ecs.soton.ac.uk/lcc08r/esbmc/
4- SMT-Based BoundedModel Checking for Embedded ANSI-C Software. ASE 2009.
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Introduction -> Background

Exploting Safety Properties in Software Testing Strategies

• Software testing is the process of executing a
program with the goal of finding faults [Myers and
Sandler 2004]5

What is software testing?

The CUnit Framework

The problem is "how to creat test cases aimed at 
checking safety properties?"

5- The Art of Software Testing. John Wiley & Sons. 2004
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Introduction -> Background ->  Related Work

Related Work

Test sequences generation from LUSTRE descriptions: GATEL. 
[Marre e Arnould, 2000]6

Scenario-oriented modeling in Asml and its instrumentation for
testing. [Barnett et al. 2003]7

Test generation with Autolink and Testcomposer.
[Schmitt et al. 2000]8

Execution generated test cases: How to make systems
code crash itself. [Cadar and Engler 2005]9

6- Test sequences generation from LUSTRE descriptions: GATEL. ASE. 2000
7- Scenario-oriented modeling in Asml and its instrumentation for testing. SCESM. 2003
8- Test generation with Autolink and Testcomposer. SAM. 2000
9- Execution generated test cases: How to make systems code crash itself. 12th MCS, Stanford Technical Report CSTR 2005-04. 2005
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Proposed Method

1 2

3 4

5
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In order to explain the main steps of the proposed…
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First step: Identification of Safety Properties

1

2

3

Result_ESBMC.txt
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Second step: Safety Properties Information Collection

result_claims.txt

Result_ESBMC.txt
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Third step: Asserts Inclusion

(i) First phase
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Introduction -> Background ->  Related Work -> Proposed Method

Third step: Asserts Inclusion

(ii) Second phase
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Introduction -> Background ->  Related Work -> Proposed Method

Fourth step: Implementing Unit Test in CUnit Framework
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Introduction -> Background ->  Related Work -> Proposed Method

Fifth step: Running CUnit Tool
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Experimental Results

The steps of the proposed method have been implemented using
the ESBMC v1.11, and the framework CUnit v2.1.

Number Module LOC Identified Violated
1 EUREKA_bf20_det.c10 49 33 0

2 EUREKA_Prim_4_det.c10 78 30 0

3 SNU_bs_nondet.c11 120 7 0

4 SNU_crc_det.c11 125 15 0

5 SNU_insertsort_nondet.c11 94 14 6

6 SNU_qurt_det.c11 164 6 0

7 SNU_qsort-exam_det.c11 134 49 -

8 SNU_select_det.c11 122 39 6

9 WCET_cnt_nondet.c12 139 16 0

10 Oximeter_log_det.c13 177 4 2

10- www.ai-lab.it/eureka/bmc.html
11- http://archi.snu.ac.kr/realtime/benchmark
12- http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
13- Semiformal verification of embedded software in medical devices considering stringent hardware constraints . ICESS 2009.

Codes are available at : https://sites.google.com/site/fortesmethod/
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Introduction -> Background ->  Related Work -> Proposed Method -> Experimental Results

Identifying and verifying errors

This task is not trivial

A specific Oximeter_log_det.c a code fragment

1. void insertLogElement ( Data8 b ){

2.    buffer[next] = b ;

3.    next = (next+1)% buffer_size ;

4.}

Properties Identified:

1. next < 6400 -> Line 2

2. “(unsigned int)buffer size != 0 -> Line 3

void initLog(Data8 max)
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Verification Results

First situation

Second situation
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Conclusions and Future Work

• The experimental results, although preliminary, have shown to be 
very effective;

• We identify some improvements;
• About code structure and block delimiters;
• About the verifying pointer and dynamic memory allocation.

Proposed Method

• We intend to investigate the application of verification techniques, 
such as:
• Running code on symbolic inputs [Cadar and Engler 2005]14;
• Mutation testing[Jia and Harman 2010]15.

Future work

14- Execution generated test cases: How to make systems code crash itself. 12th MCS, Stanford Technical Report CSTR 2005-04
15- An analysis and survey of the development of mutation testing. IEEE TSE 2010
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Questions ??

Related Work -> Proposed Method -> Experimental Results -> Conclusions and Future Work -> References -> Questions?

Thank you for your attention!
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