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a b s t r a c t

For linear time-invariant systems, any stabilizing controller for a given plant can be associated with
a supply rate with respect to which the plant in open-loop is half-line dissipative. We also prove the
equivalence between the stability of the interconnection of two systems and their half-line dissipativity
with respect to a supply rate and its negative.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, we show that interconnecting a plant with a
stabilizing controller can be interpreted as imposing on the plant
the requirement that its trajectories are dissipative with respect
to a dynamic supply rate induced by the controller. This supply
rate is represented by a two-variable polynomial matrix which can
be expressed in terms of the polynomial matrix representing the
controller, or equivalently of the matrices inducing a Lyapunov
function and its derivative for the closed-loop behavior.

To the best of the authors’ knowledge, and to their great
surprise, this result is not to be found in the literature, although
the relation between Lyapunov functions, stabilizing controllers,
and solutions of the Riccati equation (and consequently, storage
functions and dissipativity) has been studied by many authors.
Identifying stabilization and dissipation, a result eminently
reasonable if not altogether commonsensical, is also important
for the following reason. It is well known that, in the nonlinear
setting, one way of stabilizing a system is to interconnect to it a
passivating controller (see [1–4]): passivation is sufficient in order
to achieve closed-loop stability. However, Theorem 6 of this paper
states that, in the linear setting, stabilizing a plant amounts to
imposing dissipation on it: passivation with respect to a suitable
supply rate is necessary in order to achieve closed-loop stability.
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The second result presented in this paper is that stability of the
interconnection of two higher-order linear differential systems is
equivalent to the existence of a quadratic functional QΦ such that
one of the systems is QΦ-half-line dissipative, and the other one
is −QΦ-half-line dissipative. Moreover, the dissipation function
for QΦ (respectively, −QΦ ) can be chosen to be strictly positive
along the trajectories of the interconnected system. Furthermore,
we show how to compute such a supply rate QΦ starting from a
representation of the interconnected system. While preparing this
paper, the authors have been made aware of the recent results of
Takaba on the same topic; see [5].

In this article, we deal with plants and controllers described
by systems of higher-order linear differential equations, and we
consider control as interconnection (see [6]), rather than adopting
the usual ‘‘intelligent control’’ framework. There are good reasons
for this level of generality: on the one hand, modeling a physical
system from first principles hardly ever results in a state-
space description, which usually needs to be constructed from
the set of higher-order differential equations (possibly with static
constraints among the variables) describing the model (see [7]).
On the other hand, many physical and engineering situations put
into question the classical point of view of the controller as a
signal processor transforming inputs in outputs (see for example
the analysis of a simple door-closingmechanism illustrated in [6]).

The behavioral framework provides the right algebraic tools
and theoretical concepts for dealing with higher-order repre-
sentations; among these are the calculus of behaviors based on
one-variable polynomial algebra (see [8]), and the calculus of
functionals of the system variables and their derivatives based on
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two-variable polynomial algebra (see [9]). Moreover, the concept
of control as interconnection is central to the behavioral frame-
work. In this paper, these concepts and tools will be put to strenu-
ous use. In Section 2,we briefly review the definitions and concepts
necessary in the rest of the paper. Section 3 contains our result
equating dissipativity and stability in the linear case. We analyze
the relation between stability of interconnections and dissipativity
in Section 4. Section 5 draws the conclusions.

Notation. The space of n-dimensional real vectors is denoted by
Rn, and the space of m × n real matrices by Rm×n. If one of the
dimensions is not specified, a bullet • is used. Given twomatrices A
and Bwith the same number of columns, we denote with col(A, B)
the matrix obtained by stacking A over B. The ring of polynomials
with real coefficients in the indeterminate ξ is denoted byR[ξ ]; the
ring of polynomials with real coefficients in the indeterminates ζ
and η is denoted byR[ζ , η]. The set of n×m polynomialmatrices in
ξ is denoted by Rn×m

[ξ ], and that consisting of all n×m polynomial
matrices in ζ and η by Rn×m

[ζ , η]. We denote with C∞(R, Rw) the
set of infinitely often differentiable functions from R to Rw. The
set of infinitely differentiable trajectories with compact support is
denoted with D(R, Rw).

2. Background material

2.1. Linear differential behaviors

A linear differential behavior is a linear subspaceB ⊆ C∞(R, Rw)
consisting of all solutions of a system of linear, constant-coefficient
differential equations in w variables. We denote with Lw the set
consisting of all linear differential behavior with w variables. B ∈

Lw can always be represented as

R


d
dt


w = 0, (1)

where R ∈ R•×w
[ξ ]. Eq. (1) is called a kernel representation of B,

and w is called themanifest variable of B.
Let R ∈ R•×w

[ξ ],M ∈ R•×m
[ξ ], and consider the equations

R


d
dt


w = M


d
dt


ℓ. (2)

Eq. (2) is called a hybrid representation of the external behavior

B := {w ∈ C∞(R, Rw) | ∃ℓ ∈ C∞(R, Rm) s.t. Eq. (2) holds}.

The set Bfull := {(w, ℓ) ∈ C∞(R, Rw+m) | Eq. (2) holds} is called
the full behavior of (2).

Associated with a system in Lw there are a number of integer
invariants (see [8]). In the following, we will refer frequently to
p(B), the number of output variables of B, also called the output
cardinality of the behavior B; and m(B) the number of input
variables of B, also called the input cardinality of the behavior B.
These numbers satisfy p(B) + m(B) = w.

The notion of autonomous behavior plays an important role in
this paper; we refer the reader to Ch. 3 of [8] for the definition, and
quote here only the following result.

Proposition 1. Let B ∈ Lw. The following statements are equivalent:

1. B is autonomous;
2. m(B) = 0;
3. p(B) = w;
4. There exists R ∈ Rw×w

[ξ ] such that det(R) ≠ 0 and B = ker R d
dt


.

2.2. Quadratic differential forms

Let Φ ∈ Rw×w
[ζ , η]; then Φ(ζ , η) =

∑N
h,k=0 Φh,kζ

hηk, where
Φh,k ∈ Rw×w and N ∈ N ∪ {0}. Φ(ζ , η) induces a quadratic
functional QΦ , called a quadratic differential form (QDF), as follows:

QΦ : C∞(R, Rw) −→ C∞(R, R),

QΦ(w) :=

N−
h,k=0


dhw

dth

T

Φh,k
dkw

dtk
.

Without loss of generality, in the following when dealing with
QDFs we assume that Φ(ζ , η) is symmetric, i.e. Φ(ζ , η) = Φ

(η, ζ )⊤. We denote the set of all symmetric w × w two-variable
polynomial matrices with Rw×w

s [ζ , η].
A QDF QΦ is called nonnegative, denoted QΦ ≥ 0, if QΦ(w) ≥ 0

for all w ∈ C∞(R, Rw), and positive, denoted QΦ > 0, if QΦ ≥ 0
and [QΦ(w) = 0] H⇒ [w = 0]. Let B ∈ Lw; then QΦ is called

nonnegative along B, denoted QΦ

B

≥ 0, if QΦ(w) ≥ 0 for all

w ∈ B. The concept of aQDF positive along B, denoted
B
> 0, follows

immediately.
We say that QΨ is the derivative of QΦ if

 d
dtQΦ


(w) :=

d
dt

(QΦ(w)) = QΨ (w) for all w ∈ C∞(R, Rw). In polynomial terms,
this relationship is equivalently expressed (see p. 1710 of [9]) as[
QΨ =

d
dt

QΦ

]
⇐⇒ [Ψ (ζ , η) = (ζ + η)Φ(ζ , η)]. (3)

Let B ∈ Lw; two QDFs QΦ1 and QΦ2 are called equivalent on B

(briefly, B-equivalent), denoted QΦ1
B
= QΦ2 , if QΦ1(w) = QΦ2(w)

for allw ∈ B. The following result (see Proposition 3.2 of [9]) holds
true.

Proposition 2. Let B = ker R
 d
dt


; then QΦ1

B
= QΦ2 if and only if

there exists F ∈ R•×•
[ζ , η] such that

Φ1(ζ , η) = Φ2(ζ , η) + R(ζ )⊤F(ζ , η) + F(η, ζ )⊤R(η). (4)

If (4) holds, in the followingwe also writeΦ1(ζ , η)
B
= Φ2(ζ , η).

If B ∈ Lw is autonomous, then each equivalence class of
QDFs under B

= admits a canonical representative, which we now
introduce. Let B = ker R

 d
dt


with R ∈ Rw×w

[ξ ] such that
det(R) ≠ 0; it can be proved (see Proposition 4.9 of [9]) that, if
Φ ∈ Rw×w

s [ζ , η], then there exists exactly one Φ ′
∈ Rw×w

s [ζ , η]

such that Φ ′ B
= Φ and (R(ζ )T )−1Φ(ζ , η)(R(η))−1 is a matrix

of strictly proper two-variable rational functions; Φ ′ is the R-
canonical representative of Φ .

2.3. Dissipative behaviors

Let Φ ∈ Rw×w
s [ζ , η] and let B ∈ Lw be controllable (see Ch. 5

of [8] for the definition); thenB is said to be dissipative with respect
to the supply rate QΦ if∫

+∞

−∞

QΦ(w)dt ≥ 0 for all w ∈ B ∩ D(R, Rw); (5)

note that a controllable behavior always contains compact-support
trajectories. If it holds that


+∞

0 QΦ(w)dt ≥ 0 for all w ∈ B ∩

D(R, Rw), then B is said to be R+-half-line dissipative with respect
to the supply rate QΦ .

A QDF QΨ is a storage function for B with respect to the supply
rate QΦ if there holds the dissipation inequality

d
dt

QΨ (w) ≤ QΦ(w) for all w ∈ B ∩ D(R, Rw).
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A QDF Q∆ is a dissipation function for B with respect to QΦ if

Q∆

B

≥ 0 and
∫

+∞

−∞

QΦ(w)dt =

∫
+∞

−∞

Q∆(w)dt

for all w ∈ B ∩ D(R, Rw).

Storage functions, supply rates, and dissipation functions are
related as follows (see Theorem 4.3 of [10]).

Proposition 3. Let Φ ∈ Rw×w
s [ζ , η] and B = Ker R

 d
dt


∈ Lw

controllable. The following statements are equivalent:

1. B is dissipative with respect to the supply rate QΦ ;
2. There exists a storage function for Bwith respect to the supply rate

QΦ ;
3. There exists a dissipation function for B with respect to the supply

rate QΦ .

Given a supply rate QΦ , there exists a one-to-one relation between
storage functions QΨ and dissipation functions Q∆, defined by
the dissipation equality

d
dt

QΨ
B
= QΦ − Q∆, (6)

or equivalently (ζ + η)Ψ (ζ , η) + ∆(ζ , η) = Φ(ζ , η) + R(ζ )⊤

F(ζ , η) + F(η, ζ )⊤R(η) for some F ∈ R•×w
[ζ , η].

2.4. Lyapunov theory

A behavior B ∈ Lw is called asymptotically stable if

[w ∈ B] H⇒


lim
t→∞

w(t) = 0

.

Observe that ifB is asymptotically stable then it is autonomous, i.e.
it has no inputs. The following result connects asymptotic stability
and QDFs.

Proposition 4. B ∈ Lw is asymptotically stable if and only if for

every∆ ∈ Rw×w
s [ζ , η] such that Q∆

B
> 0 there existsΨ ∈ Rw×w

s [ζ , η]

such that QΨ

B
> 0 and d

dtQΨ
B
= −Q∆.

Proof. This result follows from Theorem 4.8 of [9]. �

The following definition will be extensively used in this paper.

Definition 5. Let B ∈ Lw be asymptotically stable, and Ψ , ∆ ∈

Rw×w
s [ζ , η]. A pair of QDFs (QΨ ,Q∆) is called a Lyapunov pair for B

if

1. Q∆

B
> 0,QΨ

B
> 0;

2. d
dtQΨ

B
= −Q∆.

If (QΨ ,Q∆) is a Lyapunov pair, thenQΨ is called a Lyapunov function
for B.

It follows from Proposition 4 that every asymptotically stable
behavior B ∈ Lw admits a Lyapunov pair. In the following,
we also call a ‘‘Lyapunov pair’’ a pair of two-variable polynomial
matrices (Ψ , ∆) inducing a Lyapunov pair (QΨ ,Q∆) according to
Definition 5.

2.5. Control as interconnection

The behavior B of the full interconnection of a plant P with
behavior BP and a controller C with behavior BC is defined as
B := BP ∩ BC : the plant trajectories are required also to satisfy
the laws imposed by the controller. If BP = ker RP

 d
dt


, BC =

ker RC
 d
dt


, then

B = BP ∩ BC = ker

RP


d
dt


RC


d
dt


 . (7)

In this paper,weonly consider regular interconnections; in algebraic
terms, this is equivalent to the row rank of col(RP , RC ) being the
sum of the row ranks of RP and RC , and with p(BP ∩ BC ) =

p(BP)+p(BC ) in termsof output cardinality (see SectionVII of [6]).

3. Stabilization is dissipation

Let BP ∈ Lw be controllable, and let B ⊂ BP ; then it can be
proved (see Theorem 6 of [6]) that there exists BC such that the
regular full interconnection of BP and BC satisfies BP ∩ BC = B;
consequently B can be described as in (7) for some full row-rank
RP and RC . In this paper we assume that B is asymptotically stable,
and consequently autonomous; this implies (see statement 4 of
Proposition 1) that det (col(RP , RC )) ≠ 0.

The main result of this section is the following.

Theorem 6. Let BP ∈ Lw be controllable, and let B ⊂ BP be
asymptotically stable. Let (QΨ ,Q∆) be a Lyapunov pair for B. There
exist QΨ ′

B
= QΨ and Q∆′

B
= Q∆ such that

1. BP is R+-half-line dissipative with respect to d
dtQΨ ′ + Q∆′ ;

2. QΨ ′ ≥ 0 and Q∆′

B
> 0.

Moreover, let BC ∈ Lw be such that the regular full interconnection
BC ∩ BP = B, and let RC ∈ R•×w

[ξ ] induce a full row-rank kernel
representation of BC . There exists Y ∈ Rw×w

[ζ , η] such that

(ζ + η)Ψ ′(ζ , η) + ∆′(ζ , η)

BP
= Y (η, ζ )⊤RC (η) + RC (ζ )⊤Y (ζ , η). (8)

Proof. Let BC ∈ Lw be such that the regular full interconnection
BC ∩ BP = B, and let RC ∈ R•×w

[ξ ] induce a full row-rank kernel
representation of BC . Consider the kernel representation (7) of B.
Conclude from d

dtQΨ
B
= −Q∆ and from Proposition 2 that there

exists Y ∈ Rw×w
[ζ , η] such that

(ζ + η)Ψ (ζ , η) = −∆(ζ , η) +

[
RP(ζ )
RC (ζ )

]⊤

Y (ζ , η)

+ Y (η, ζ )⊤
[
RP(η)
RC (η)

]
.

Now let Ψ ′ and ∆′ be the col(RP , RC )-canonical representatives of
Ψ and ∆, respectively. From Proposition 4.10 and Corollary 4.11

of [9], it follows that Ψ ′ > 0 and ∆′
≥ 0. Moreover, from ∆

B
> 0

and∆
B
= ∆′, it also follows that∆′

B
> 0. FromΨ ′ B

= Ψ and∆′ B
= ∆,

it also follows that d
dtQΨ +Q∆

B
=

d
dtQΨ ′ +Q∆′ ; consequently, there

exists Y ′
∈ Rw×w

[ζ , η] such that

(ζ + η)Ψ ′(ζ , η) = −∆′(ζ , η) +

[
RP(ζ )
RC (ζ )

]⊤

Y ′(ζ , η)

+ Y ′(η, ζ )⊤
[
RP(η)
RC (η)

]
.
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Partition Y ′(ζ , η) =


Y ′
P (ζ , η)

Y ′
C (ζ , η)


corresponding to the partition of

RP (ξ)
RC (ξ)


, where Y ′

P ∈ Rp×w
[ζ , η] and Y ′

C ∈ R(w−p)×w
[ζ , η]; then

(ζ + η)Ψ ′(ζ , η) + ∆′(ζ , η) = RP(ζ )⊤Y ′

P(ζ , η) + Y ′

P(η, ζ )⊤RP(η)

+ RC (ζ )⊤Y ′

C (ζ , η) + Y ′

C (η, ζ )⊤RC (η). (9)

Now define Σ(ζ , η) := RC (ζ )⊤Y ′

C (ζ , η) + Y ′

C (η, ζ )⊤RC (η); it

follows from (9) that d
dtQΨ ′ + Q∆′

BP
= QΣ . From this equality,

it follows that


+∞

−∞
QΣ (w)dt =


+∞

−∞
Q∆′(w)dt for all w ∈

BP ∩ D(R, Rw); moreover, since ∆′
≥ 0, it follows that Q∆′ is a

dissipation function and that BP is Σ-dissipative. From the fact
that the storage function QΨ ′ > 0 and from Theorem 6.3 of [9],
it follows that BP is R+-half-line dissipative with respect to QΣ .
This concludes the proof of the first part of the theorem.

The second part of the theorem follows easily from the
argument used in the proof of the first part. This concludes the
proof. �

Remark 7. Theorem 6 shows that interconnecting a plantBP with
a stabilizing controller BC in a regular and full interconnection
imposes on the plant the requirement that it be R+-half-line
dissipativewith respect to a supply rateQΣ respectively associated
with a Lyapunov pair (Ψ , ∆) and to the stabilizing controller as
follows. We can define QΣ :=

d
dtQΨ +Q∆, i.e. QΨ to be the storage

function and Q∆ to be the dissipation function for QΣ ; or we can
define QΣ to be the QDF induced by the two-variable polynomial
matrix on the right-hand side of (8), where the representation
of the controller is explicitly present. These two QDFs are BP -
equivalent, and consequently for both of them Eq. (6) holds. Note
that QΣ is in general a dynamic, not a static, supply rate.

Remark 8. Stabilizing a plant using energy methods is a well-
known technique in the nonlinear setting; see [1–4]. The first
part of Theorem 6 shows that every stabilizing controller can be
interpreted as imposing dissipation on the plant. In the linear case,
stabilization is always dissipation.

Remark 9. The relation between the supply rate associated with
a Lyapunov pair and a controller BC yielding an asymptotically
stable closed-loop behavior B is rather loose. On the one hand,
given BC , there are many Lyapunov pairs for B and consequently
many supply rates; on the other hand, given a Lyapunov pair for B,
for any controller C yielding B there exists some Y ∈ Rw×w

[ζ , η]

satisfying (8).

The following result – which we state without proof because
of lack of space – consists for the first part of Kuijper’s
parameterization of stabilizing controllers (see Theorem 3.3
of [11]). The second part shows how a supply rate can be expressed
in terms of the parameters of a controller C yielding B.

Proposition 10. Let (7) and

w = M


d
dt


ℓ

0 = D


d
dt


ℓ

be a minimal kernel, respectively hybrid representation of an
autonomous asymptotically stable subbehavior B of BP = ker RP d
dt


. Then there exist C0 ∈ Rm(B)×w

[ξ ] and N ∈ Rw×p(B)
[ξ ] such

that[
RP
C0

] 
N M


=

[
Ip(B) 0
0 Im(B)

]
.

Moreover, BC = ker RC
 d
dt


∈ Lw satisfies BP ∩BC = B if and only

if there exist G ∈ Rm(B)×p(B)
[ξ ] and U ∈ Rm(B)×m(B)

[ξ ] unimodular,
such that

RC = GRP + UDC0. (10)

Let G, U, and D be matrices such that (10) holds. Let (Ψ ′, ∆′) be a
col(RP , RC )-canonical Lyapunov pair for B. Then there exist matrices
YP , YC ∈ R•×•

[ξ ] such that

(ζ + η)Ψ ′(ζ , η) + ∆′(ζ , η)

BP
= YC (ζ )⊤ (G(η)RP(η) + U(η)D(η)C0(η))

+ (G(ζ )RP(ζ ) + U(ζ )D(ζ )C0(ζ ))⊤ YC (η).

Using this result, one can show how one supply rate expressed in
terms of one controller yieldingB can be expressed in terms of any
other controller yielding the same closed-loop behavior.We do not
enter into these details.

3.1. The state-space case

In order to illustrate the result of Theorem 6, in this section we
consider the specialization of our results to the case of state-space
systems.

We first consider the case of a controllable plant d
dt x = Ax+ Bu

stabilized by static feedback u = −Kx. The set of all x-trajectories
for which there exists a u satisfying these equations is described by
the usual closed-loop state equations d

dt x = (A − BK) x.
Now let (P,D) be a Lyapunov pair for the closed-loop behavior,

i.e. P > 0, D > 0, and d
dt x

⊤Px = −x⊤Dx for all x satisfying
d
dt x = (A − BK) x. Since the state variable x is minimal, this is
equivalent to (A − BK)⊤ P + (A − BK) P = −D.

Consider now the quadratic form QΦ acting on the trajectories
col(x, u) of the plant defined by

QΦ(x, u) :=

x⊤ u⊤

 [
K⊤B⊤P + PBK PB

B⊤P 0

] [
x
u

]
= x⊤


K⊤B⊤P + PBK


x + u⊤B⊤Px + x⊤PBu. (11)

Observe that along the trajectories of the plant Bu =
d
dt x− Ax, and

consequently

QΦ(x, u) = x⊤

K⊤B⊤P + PBK


x

+


d
dt

x − Ax
⊤

Px + x⊤P


d
dt

x − Ax

x.

From this last expression, straightforward manipulations yield
that, for all trajectories col(x, u) satisfying d

dt x = Ax + Bu, it holds
that

QΦ(x, u) =
d
dt


x⊤Px


+ x⊤


K⊤B⊤

− A⊤

Px

+ x⊤P (BK − A) x

=
d
dt


x⊤Px


+ x⊤Dx,

wherewe have used the fact that (A − BK)⊤ P+(A − BK) P = −D.
It follows that the plant behavior is dissipative with respect to the
supply rate QΦ ; moreover, since the storage function P is positive
definite, it follows that the plant is in fact R+-half-line dissipative.

To see how the computations sketched previously fit within
the result of Theorem 6, define the variable w := col(x, u), and
observe that the plant behavior BP is represented in kernel form
by RP(ξ) :=


ξ In − A −B


, and that the controller behaviorBC is
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represented in kernel form by RC (ξ) :=

K Im


. The closed-loop

behavior B = BP ∩ BC has the kernel representation induced by

R(ξ) := col(RP(ξ), RC (ξ)) =

[
ξ In − A −B

K Im

]
. (12)

Now, using Lemma 6.3-11 of [12] and the definition of R-
canonical representative, it is straightforward to see that X ∈

R(n+m)×(n+m)
s [ζ , η] is R-canonical if and only if it is of the form

X =


X1 0
0 0


, where X1 ∈ Rn×n

s . Consequently, the R-canonical
Lyapunov pair is of the form

Ψ :=

[
P 0
0 0

]
and ∆ :=

[
D 0
0 0

]
,

for some P > 0, D > 0. The matrix Y ′ of the proof of Theorem 6 is

Y ′
:=

[
P 0

B⊤P 0

]
;

it is straightforward to verify that it satisfies

(ζ + η)

[
P 0
0 0

]
= −

[
D 0
0 0

]
+ R(ζ )⊤Y ′(η) + Y ′(ζ )⊤R(η).

Moreover, the matrix on the right-hand side of Eq. (8) is[
K⊤

Im

] 
B⊤P 0


+

[
PB
0

] 
K Im


,

i.e., the matrix inducing the quadratic form QΦ defined in (11).
We now consider the case of the (regular, full) interconnection

of a state-space plant d
dt x1 = A1x + B1u1 with trajectories

col(x1, u1) and of a dynamic controller d
dt x2 = A2x + B2u2

with trajectories col(x2, u2) under the interconnection constraints
u2 = x1, u1 = x2. Denote the dimensions of the (minimal) state
variables xi with ni, i = 1, 2. The closed-loop behavior is described
by the equations

d
dt

[
x1
x2

]
=

[
A1 B1
B2 A2

] [
x1
x2

]
.

Let P =


P11 P12
P⊤
12 P22


induce a Lyapunov function for the closed-loop

behavior; i.e. d
dt


x⊤

1 x⊤

2


P


x1
x2


= −


x⊤

1 x⊤

2


D


x1
x2


along the

trajectories of the closed-loop behavior, with D =


D11 D12
D⊤
12 D22


> 0;

equivalently, in view of the minimality of the state variables,[
A1 B1
B2 A2

]⊤ [
P11 P12
P⊤

12 P22

]
+

[
P11 P12
P⊤

12 P22

] [
A1 B1
B2 A2

]
= −

[
D11 D12

D⊤

12 D22

]
. (13)

Now define the following quadratic functional of the plant
variables and their derivatives:

QΦ(x1, u1) := 2

x⊤

1 P12 + u⊤

1 P22
 

−B2x1 +
d
dt

u1 − A2u1


; (14)

observe that QΦ arises from a combination of the controller
dynamics and of the Lyapunov matrix P , and that it also involves
derivatives of the input variable u1. Use (13) to check that

−

[
B⊤

2
A⊤

2

] 
P⊤

12 P22

−

[
P12
P22

] 
B2 A2


=

[
D11 D12

D⊤

12 D22

]
+

[
A⊤

1
B⊤

1

] 
P11 P12


+

[
P11
P⊤

12

] 
A1 B1


.

Use the last equality and the fact that along the trajectories of the
plant A1x1 + B1u1 =

d
dt x1 to verify that

QΦ(x1, u1) =
d
dt


x⊤

1 u⊤

1


P

[
x1
u1

]
+


x⊤

1 u⊤

1


D

[
x1
u1

]
;

now conclude from P,D > 0 that the plant is dissipative with
respect to QΦ .

To see how these computations fit within the result of
Theorem 6, observe that the closed-loop behavior is represented
in kernel form by the matrix[
RP(ξ)
RC (ξ)

]
:=

[
ξ In1 − A1 −B1

−B2 ξ In2 − A2

]
.

It is a matter of immediate verification using the definition of R-
canonical representative and Lemma 6.3-11 of [12] to see that
col(RP , RC )-canonical Lyapunov pairs are induced by constant
matrices. Let P and D be a Lyapunov pair; then Theorem 6 states
that the plant is dissipative with respect to the supply rate induced
by[

−B⊤

2
ζ In2 − A⊤

2

] 
P⊤

12 P22

+

[
P12
P22

] 
−B2 ηIn2 − A2


,

and that along the trajectories of the plant this supply rate is
equivalent to that induced by the two-variable polynomial matrix
(ζ + η)P + D. Observe that this supply rate acting on the plant
variables is precisely the QDF QΦ defined in (14).

4. Stable interconnections and dissipation

The main result of this section is a theorem showing that the
regular, full interconnection of two linear, time-invariant systems
B1 and B2 is stable if and only if there exists a QDF QΦ such that
B1 and B2 are dissipative with respect to the supply rate QΦ and
−QΦ , respectively.

Theorem 11. Let Bi ∈ Lw be controllable behaviors, i = 1, 2. The
following statements are equivalent.
1. The regular full interconnection of B1 and B2 is asymptotically

stable.
2. There exist QDFs QΦ,QΨ ≥ 0 and Q∆ ≥ 0 with the following

properties:
(2.a) B1 is dissipative with respect to QΦ

B1
=

d
dtQΨ + Q∆, and B2

is dissipative with respect to −QΦ

B2
=

d
dtQΨ + Q∆;

(2.b) Q∆

B1∩B2
> 0.

3. There exists a supply rate QΦ with the following properties:
(3.a) B1 is R+-half-line dissipative with respect to QΦ , and B2 is

R+-half-line dissipative with respect to −QΦ ;

(3.b) The dissipation function Q∆ satisfies Q∆

B1∩B2
> 0.

Proof. We begin by proving the equivalence of statements (1)
and (2).
(1) H⇒ (2): Let Ri ∈ Rp(Bi)×w

[ξ ], i = 1, 2, induce full row-
rank kernel representations of Bi, and define R := col(R1, R2).
Since B1 ∩ B2 is asymptotically stable, for every R-canonical ∆ ∈

Rw×w
s [ζ , η] the two-variable polynomial Lyapunov equation

(ζ + η)Ψ (ζ , η) = −∆(ζ , η) + R(ζ )⊤Y (η) + Y (ζ )⊤R(η)

has an R-canonical solution Ψ ∈ Rw×w
s [ζ , η] (see Proposition 4.4

of [13]). Now choose ∆ such that Q∆ ≥ 0 and Q∆

B1∩B2
> 0; from

Theorem 4.12 of [9] it follows that QΨ ≥ 0. Now rewrite the above
equation as
(ζ + η)Ψ (ζ , η) + ∆(ζ , η) = R(ζ )⊤Y (η) + Y (ζ )⊤R(η)

= R1(ζ )⊤Y1(η) + Y1(ζ )⊤R1(η)

+ R2(ζ )⊤Y2(η) + Y2(ζ )⊤R2(η),

where Yi ∈ Rp(Bi)×w
[ξ ], i = 1, 2, are defined from a partition of Y

compatiblewith the partition of R. From the last equality, it follows
that
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(ζ + η)
1
2
Ψ (ζ , η) +

1
2
∆(ζ , η) −


R1(ζ )⊤Y1(η) + Y1(ζ )⊤R1(η)


= (ζ + η)


−

1
2
Ψ (ζ , η)


−

1
2
∆(ζ , η)

+ R2(ζ )⊤Y2(η) + Y2(ζ )⊤R2(η).

Now define

Φ(ζ , η) := (ζ + η)


1
2
Ψ (ζ , η)


+

1
2
∆(ζ , η) − R1(ζ )⊤Y1(η) − Y1(ζ )⊤R1(η),

and observe that along B1 = ker R1
 d
dt


it holds that QΦ

B1
=

d
dt 1

2QΨ


+

1
2Q∆. Also, along B2 = ker R2

 d
dt


it holds that Q−Φ

B2
=

d
dt

 1
2QΨ


+

1
2Q∆. This concludes the proof of (1) H⇒ (2).

(2) H⇒ (1): Consider that under assumptions (2.a) there exist
polynomial matrices Yi ∈ Rp(Bi)×w

[ξ ], i = 1, 2, such that

Φ(ζ , η) = (ζ + η)Ψ (ζ , η) + ∆(ζ , η) + R1(ζ )⊤Y1(ζ , η)

+ Y1(ζ , η)⊤R1(η)

−Φ(ζ , η) = (ζ + η)Ψ (ζ , η) + ∆(ζ , η) + R2(ζ )⊤Y2(ζ , η)

+ Y2(η, ζ )⊤R2(η).

Adding the two equations and rearranging, we obtain

−

R(ζ )⊤Y (ζ , η) + Y (η, ζ )⊤R(η)


= (ζ + η)2Ψ (ζ , η)

+ 2∆(ζ , η),

where R := col(R1, R2) and Y := col(Y1, Y2). From (2.b) andΨ ≥ 0,
it follows that QΨ is a Lyapunov function for ker R

 d
dt


= B1 ∩B2.

This concludes the proof of the equivalence of (1) and (2).
In order to prove the equivalence of statements (2) and (3),

recall from Theorem 6.3 of [9] that half-line dissipativity is
equivalent to the existence of a nonnegative storage function. �

Remark 12. The result of Proposition 1, p. 438, of [5] can be
translated into our notation as follows. Let BP and BC be
controllable behaviors, and assume that BP is dissipative with
respect to a QDF QΦ with nonnegative storage function, and that
BC is strictly dissipative with respect to −QΦ , i.e., there exists
ϵ > 0 such that

 0
−∞

QΦ(w)(t)dt ≥ ϵ
 0
−∞

‖w(t)‖2dt for all
infinitely differentiable w ∈ B of compact support; then the
interconnection BP ∩ BC is asymptotically stable. The result of
Theorem11provides a necessary condition for asymptotic stability
of the interconnection; moreover, the proof shows how the supply
rateQΦ is related to a Lyapunov pair for the interconnected system.

4.1. The state-space case

We now consider the application of Theorem 11 to controllable
state-space systems d

dt x = Ax + Bu and constant state-feedback
controllers u = −Kx. Consider first the case in which the
interconnected system is asymptotically stable, and let P = P⊤ >
0 and D = D⊤ > 0 be a Lyapunov pair. Define the following
quadratic functional acting on infinitely differentiable trajectories
col(x, u):

QΦ(x, u) =
1
2

d
dt


x⊤Px


+

1
2
x⊤Dx − 2x⊤P


d
dt

x − Ax − Bu


,

and observe that, since P and D form a Lyapunov pair, i.e.,
1
2

d
dt


x⊤Px


+

1
2x

⊤Dx = 0 along the trajectories of the
interconnected system, it also holds that

QΦ(x, u) = −
1
2

d
dt


x⊤Px


−

1
2
x⊤Dx + 2x⊤PB⊤ (Kx + u) .

It is straightforward to check that the set of trajectories satisfying
d
dt x = Ax + Bu is dissipative with respect to QΦ , while the
set of trajectories of the controller u = −Kx is dissipative with
respect to −QΦ ; indeed, along these trajectories the functional
QΦ , respectively −QΦ , equal 1

2
d
dt


x⊤Px


+

1
2x

⊤Dx. Observe that
the dissipation function x⊤Dx for the plant is a function of the
state only, and does not involve the input, as happens in general
(see Theorem 6.2 of [10]); moreover, the controller has a nonzero
storage function even if it is memoryless. The implication (1) H⇒

(2) of the theorem is thus verified; the converse implication is
essentially a restatement of the well-known passivity theorem.

5. Conclusions

Theorem 6 states that stabilization by regular full interconnec-
tion is equivalent to the controller imposing dissipation on the
trajectories of the plant, and that the supply rate imposed by the
controller is associated with a Lyapunov pair for the closed-loop
behavior. Theorem 11 states that the interconnection of two sys-
tems is stable if and only if one of them is half-line dissipative with
respect to a supply rateQΦ , and the otherwith respect to−QΦ . Cur-
rent research efforts are aimed at deriving analogous results for the
case of linear distributed systems, and at investigating their use for
the computation of stabilizing controllers.
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