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Abstract. Anonymity is a security property of paramount importance, as we
move steadily towards a wired, online community. Its import touches upon sub-
jects as different as eGovernance, eBusiness and eLeisure, as well as personal
freedom of speech in authoritarian societies. Trust metrics are used in anonymity
networks to support and enhance reliability in the absence of verifiable identities,
and a variety of security attacks currently focus on degrading a user’s trustworthi-
ness in the eyes of the other users. In this paper, we analyse the privacy guarantees
of the Crowds anonymity protocol, with and without onion forwarding, for stan-
dard and adaptive attacks against the trust level of honest users.

1 Introduction

Protecting online privacy is an essential part of today’s society and its importance is in-
creasingly recognised as crucial in many fields of computer-aided human activity, such
as eVoting, eAuctions, bill payments, online betting and electronic communication. One
of the most common mechanisms for privacy is anonymity, which generally refers to the
condition of being unidentifiable within a given set of subjects, known as the anonymity
set.

Many schemes have been proposed to enforce privacy through anonymity networks
(e.g. [6, 15, 19, 24, 25]). Yet, the open nature of such networks and the unaccountability
which results from the very idea of anonymity, make the existing systems prone to
various attacks (e.g. [10, 18, 22, 23]). An honest user may have to suffer repeated
misbehaviour (e.g., receiving infected files) without being able to identify the malicious
perpetrator. Keeping users anonymous also conceals their trustworthiness, which in turn
makes the information exchanged through system transactions untrustworthy as well.
Consequently, a considerable amount of research has recently been focussing on the
development of trust-and-reputation-based metrics aimed at enhancing the reliability of
anonymity networks [7–9, 11, 31, 33].

Developing an appropriate trust metric for anonymity is very challenging, due to the
fact that trust and anonymity are seemingly conflicting notions. Consider for instance
the trust networks of Figure 1. In (a) peer A trusts B and D, who both trust C. Assume
now that C wants to request a service from A anonymously, by proving her trustworthi-
ness to A (i.e., the existence of a trust link to it). If C can prove that she is trusted by
D without revealing her identity (using e.g. a zero-knowledge proof [3]), then A cannot
distinguish whether the request originated from C or E. Yet, A’s trust in D could be
insufficient to obtain that specific service from A. Therefore, C could strengthen her re-
quest by proving that she is trusted by both D and B. This increases the trust guarantee.
Unfortunately, it also decreases C’s anonymity, as A can compute the intersection of
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Fig. 1. Trust networks [3]

peers trusted by both D and B, and therefore restrict the range of possible identities for
the request’s originator, or even identify C uniquely. Indeed, consider Figure 1(b). Here
the trust level between two principals is weighted, and trust between two non-adjacent
principals is computed by multiplying the values over link sequences in the obvious
way. Assume that the reliability constraint is that principal X can send (resp. receive) a
message to (from) principal Y if and only if her trust in Y is not lower than 60%. Prin-
cipal E can therefore only communicate through principal D. So, assuming that trust
values are publicly known, E cannot possibly keep her identity from D as soon as she
tries to interact at all. These examples document the existence of an inherent trade-off
between anonymity and trust. The fundamental challenge is to achieve an appropriate
balance between practical privacy, and acceptable network performance.

Community-based reputation systems are becoming increasingly popular both in the
research literature and in practical applications. They are systems designed to estimate
the trustworthiness of principals participating in some activity, as well as predict their
future behaviour. Metrics for trustworthiness are primarily based on peer-review, where
peers can rate each other according to the quality they experienced in their past mutual
interactions [12, 13, 20]. A good reputation indicates a peer’s good past behaviour, and
is reflected in a high trust value. Recent research in this domain has raised fundamental
issues in the design of reputation management systems for anonymous networks. In
particular,

1. what metrics are suitable for computing trust for a given application field?
2. how to ensure the integrity of the peers’ trust values, i.e., how to securely store and

access trust values against malicious peers?
3. how to ensure that honest users accurately rate other members?

The latter issue requires a mechanism to distinguish a user’s bad behaviour resulting
from her being under attack, from a deliberately malicious behaviour. This is a chal-
lenging and fundamental problem. Indeed, if we cannot accurately tell these two sit-
uations apart, malicious users will target honest members in order to deteriorate their
performance, and hence reduce other members’ trust in them, while maintaining their
apparent good behaviour. Thus, honest users may in the long term end up enjoying
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very low trust levels, while attackers might see their reputation increased, and so they
increase their probability of being trusted by others. Over time this will, of course,
severely affect the system’s anonymity performance. Nevertheless, although a consid-
erable effort has recently been devoted to tackle the first two issues [7, 8, 31], to the best
of our knowledge the latter has been so far relatively ignored.

In this paper we investigate the effect of attacks to the trust level of honest users on
the security of existing anonymity networks, such as the Reiter and Rubin’s Crowds
protocol [28] and onion routing networks [10].

The Crowds protocol allows Internet users to perform anonymous web transactions
by sending their messages through a random chain of users participating in the proto-
col. Each user in the ‘crowd’ must establish a path between her and a set of servers
by selecting randomly some users to act as routers (or forwarders). The formation of
such routing paths is performed so as to guarantee that users do not know whether
their predecessors are message originators or just forwarders. Each user only has ac-
cess to messages routed through her. It is well known that Crowds cannot ensure strong
anonymity in presence of corrupt participants [5, 28], yet when the number of corrupt
users is sufficiently small, it provides a weaker notion of anonymity known as probable
innocence. Informally, a sender is probably innocent if to an attacker she is no more
likely to be the message originator than not to be.

Networks based on Onion Routing are distributed anonymising networks that use
onion routing [32] to provide anonymity to their users. Similarly to Crowds, users
choose randomly a path through the network in which each node knows its predecessor
and successor, but no other node. The main difference with respect to Crowds is that
traffic flows through the path in cells, which are created by the initiator by successively
encrypting the message with the session keys of the nodes in the path, in reverse order.
Each node in the act of receiving the message peels the topmost layer, discovers who
the next node is, and then relays it forward. In particular, only the last node can see the
message in clear and learn its final destination.

In the paper we propose two variants of the congestion attacks in the literature, aimed
at deteriorating the trust level of target users in different extension of the Crowds proto-
col. More specifically, we first extend the protocol so that trust is used to inform the se-
lection of forwarding users. Our analysis of this extension shows that a DoS type attack
targeting a user who initially enjoys satisfactory anonymity protection, may threaten
her privacy, as her trust level quickly decreases over the time. We then extend the proto-
col further with a more advanced message forwarding technique, namely onion routing.
While this extension offers much better protection than the previous one, our analysis
ultimately shows that it suffers from similar DoS attacks as the others.

Related work. Anonymity networks date back thirty years, to when Chaum introduced
the concept of Mix-net [6] for anonymous communications, where different sources
send encrypted messages to a mix which forwards them to their respective destinations.
Various designs [1, 10, 15, 24–26, 28, 29, 32] have since been proposed to improve
Chaum’s mixes, e.g., by combinations of artificial delays, variation in message ordering,
encrypted message formats, message batching, and random chaining of multiple mixes.

A variety of attacks [2, 4, 10, 14, 18, 21–23, 27] have since been discovered against
such anonymity systems. Those most related to the present work are the so-called con-
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gestion or clogging attacks. In an congestion attack, the adversary monitors the flow
through a node, builds paths through other nodes, and tries to use all of their available
capacity [2]. The idea is that if the congested node belongs to the monitored path, the
variation in the messages’ arrival times will reflect at the monitored node. In [23], Mur-
doch and Danezis describe a congestion attack that may allow them to reveal all Tor’s
routers (cf. [10]) involved in a path. However, although their attack works well against
a Tor network of a relatively small size, it fails against networks of typical sizes, count-
ing nodes in the thousands. More recently, Evans et al. [14] improved Murdoch and
Danezis’s attack so as to practically de-anonymise Tor’s users in currently deployed
system. A similar attack against MorphMix [29] was recently described by Mclach-
lan and Hopper [21], proving wrong the previously held view that MorphMix is robust
against such attacks [34]. Finally, a congestion attack is used by Hopper et al. [18] to
estimate the latency between the source of a message and its first relay in Tor. In loc. cit.
the authors first use a congestion attack to identify the path, and then create a parallel
circuit throughout the same path to make their measurements.

Numerous denial of service (DoS) attacks have been reported in the literature. In
particular, the ‘packet spinning’ attack of [27] tries to lure users into selecting mali-
cious relays by targeting honest users by DoS attacks. The attacker creates long circular
paths involving honest users and sends large amount of data through the paths, forcing
the users to employ all their bandwidth and then timing out. These attacks motivate
the demand for mechanisms to enhance the reliability of anonymity networks. In recent
years, a considerable amount of research has been focusing on defining such mecha-
nisms. In particular, trust-and-reputation-based metrics are quite popular in this domain
[3, 7–9, 11, 31, 33]. Enhancing the reliability by trust, not only does improve the sys-
tem’s usability, but may also increase its anonymity guarantee. Indeed, a trust-based
selection of relays improves both the reliability and the anonymity of the network, by
delivering messages through ‘trusted’ routers. Moreover, the more reliable the system,
the more it may attract users and hence improve the anonymity guarantee by grow-
ing the anonymity set. Introducing trust in anonymity networks does however open the
flank to novel security attacks, as we prove in this paper.

In a recent paper of ours [30] we have analysed the anonymity provided by Crowds
extended with some trust information, yet against a completely different threat model.
The two papers differ in several ways. Firstly, [30] considers a global and ‘credential-
based’ trust notion, unlike the individual-and-reputation-based trust considered here.
Secondly, in [30] we considered an attack scenario where all protocol members are
honest but vulnerable to being corrupted by an external attacker. The global and fixed
trust in a user contrasts with the local and dynamic trust of this paper, as is meant
to reflect the user’s degree of resistance against corruption, that is the probability that
the external attacker will fail to corrupt her. The paper derives necessary and sufficient
conditions to define a ‘social’ policy of selecting relays nodes in order to achieve a
given level of anonymity protection to all members against such attackers, as well as a
‘rational’ policy maximise one’s own privacy.

Structure of the paper. The paper is organised as follows: in §2 we fix some basic
notations and recall the fundamental ideas of the Crowds protocol and its properties,
including the notion of probable innocence. In §3 we present our first contribution: the
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Crowds protocol extended with trust information in the form of a forwarding policy
of its participating members, and the privacy properties of the resulting protocol are
studied; §4 repeats the analysis for an extension of the protocol with a more advanced
forwarding technique inspired by onion routing. Finally, §5 introduces a new ‘adap-
tive’ attack scenario, and presents some preliminary results on its analysis, both for the
protocol with and without onion forwarding.

2 Crowds

In this section, we briefly revise the Crowds protocol and the notion of probable inno-
cence.

2.1 The Protocol

Crowds is a protocol proposed by Reiter and Rubin in [28] to allow Internet users
to perform anonymous web transactions by protecting their identities as originators
of messages. The central idea to ensure anonymity is that the originator forwards the
message to another, randomly-selected user, which in turn forwards the message to a
third user, and so on until the message reaches its destination (the end server). This
routing process ensures that, even when a user is detected sending a message, there is a
substantial probability that she is simply forwarding it on behalf of somebody else.

More specifically, a crowd consists of a fixed number of users participating in the
protocol. Some members (users) of the crowd may be corrupt (the attackers), and they
collaborate in order to discover the originator’s identity. The purpose of the protocol is
to protect the identity of the message originator from the attackers. When an originator
–also known as initiator– wants to communicate with a server, she creates a random
path between herself and the server through the crowd by the following process.

– Initial step: the initiator selects randomly a member of the crowd (possibly herself)
and forwards the request to her. We refer to the latter user as the forwarder.

– Forwarding steps: a forwarder, upon receiving a request, flips a biased coin. With
probability 1 − p f she delivers the request to the end server. With probability p f

she selects randomly a new forwarder (possibly herself) and forwards the request
to her. The new forwarder repeats the same forwarding process.

The response from the server to the originator follows the same path in the opposite
direction. Users (including corrupt users) are assumed to only have access to messages
routed through them, so that each user only knows the identities of her immediate pre-
decessor and successor in the path, as well as the server.

2.2 Probable Innocence

Reiter and Rubin have proposed in [28] a hierarchy of anonymity notions in the context
of Crowds. These range from ‘absolute privacy,’ where the attacker cannot perceive
the presence of an actual communication, to ‘provably exposed,’ where the attacker can
prove a sender-and-receiver relationship. Clearly, as most protocols used in practice,
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Crowds cannot ensure absolute privacy in presence of attackers or corrupted users, but
can only provide weaker notions of anonymity. In particular, in [28] the authors propose
an anonymity notion called probable innocence and prove that, under some conditions
on the protocol parameters, Crowds ensures the probable innocence property to the
originator. Informally, they define it as follows:

A sender is probably innocent if, from the attacker’s
point of view, she appears no more likely to be the
originator than to not be the originator.

(1)

In other words, the attacker may have reason to suspect the sender of being more likely
than any other potential sender to be the originator, but it still appears at least as likely
that she is not.

We use capital letters A, B to denote discrete random variables and the corresponding
small letters a, b and calligraphic lettersA, B for their values and set of values respec-
tively. We denote by P(a), P(b) the probabilities of a and b respectively and by P(a, b)
their joint probability. The conditional probability of a given b is defined as

P(a | b) =
P(a, b)
P(b)

.

Bayes Theorem relates the conditional probabilities P(a | b) and P(a | b) as follows

P(a | b) =
P(b | a) P(a)

P(b)
. (2)

Let n be the number of users participating in the protocol and let c and n − c be the
number of the corrupt and honest members, respectively. Since anonymity makes only
sense for honest users, we define the set of anonymous events asA = {a1, a2, . . . , an−c},
where ai indicates that user i is the initiator of the message.

As it is usually the case in the analysis of Crowds, we assume that attackers will
always deliver a request to forward immediately to the end server, since forwarding it
any further cannot help them learn anything more about the identity of the originator.
Thus in any given path, there is at most one detected user: the first honest member to
forward the message to a corrupt member. Therefore we define the set of observable
events as O = {o1, o2, . . . , on−c}, where o j indicates that user j forwarded a message to
a corrupted user. In this case we also say that user j is detected by the attacker.

Reiter and Rubin [28] formalise their notion of probable innocence via the condi-
tional probability that the initiator is detected given that any user is detected at all. This
property can be written in our setting as the probability that user i is detected given
that she is the initiator, that is the conditional probability P(oi | ai).1 Probable innocence
holds if

∀i. P(oi | ai) ≤ 1
2

(3)

1 We are only interested in the case in which a user is detected, although for the sake of sim-
plicity we shall not note that condition explicitly.
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Reiter and Rubin proved in [28] that, in Crowds, the following holds:

P(o j | ai) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − n − c − 1
n

p f i = j

1
n

p f i � j
(4)

Therefore, probable innocence (3) holds if and only if

n ≥ p f

p f − 1/2
(
c + 1

)
and p f ≥ 1

2

As previously noticed in several papers (e.g., [5]), there is a mismatch between the idea
of probable innocence expressed informally by (1), and the property actually proved
by Reiter and Rubin, viz. (3). The former seems indeed to correspond to the following
interpretation given by Halpern and O’Neill [16]:

∀i, j. P(ai | o j) ≤ 1
2
. (5)

In turn, this has been criticised for relying on the probability of users’ actions, which
the protocol is not really in control of, and for being too strong. However, both (3) and
(5) work satisfactorily for Crowds, thanks to its high symmetry: in fact, they coincide
under its standard assumption that the a priori distribution is uniform, i.e., that each
honest user has equal probability of being the initiator, which we follow in this paper
too.

We remark that the concept of probable innocence was recently generalised in [17].
Instead of just comparing the probability of being innocent with the probability of being
guilty, the paper focusses on the degree of innocence. Formally, given a real number
α ∈ [0, 1], a protocol satisfies α-probable innocence if and only if

∀i, j. P(ai | o j) ≤ α (6)

Clearly α-probable innocence coincides with standard probable innocence for α = 1/2.

3 Trust in Crowds

In the previous section, we have revised the fundamental ideas of the Crowds protocol
and its properties under the assumption that all members are deemed equal. However,
as observed in §1, this is clearly not a realistic assumption for today’s open and dy-
namic systems. Indeed, as shown by the so-called ‘packet spinning’ attack [27], mali-
cious users can attempt to make honest users select bogus routers by causing legitimate
routers time out. The use attributes relating to some level of trust is therefore pivotal to
enhance the reliability of the system. In this section, we firstly reformulate the Crowds
protocol under a novel scenario where the interaction between participating users is
governed by their level of mutual trust; we then evaluate its privacy guarantees using
property (6). We then focus on the analysis of attacks to the trust level of honest users
and their impact on the anonymity of the extended protocol. Finally, we investigate the
effect of a congestion attack [14] to the trust level of honest users.
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3.1 Crowds Extended

We now extend the Crowds protocol to factor in a notion of trust for its participating
members. To this end, we associate a trust level ti j to each pair of users i and j, which
represents user i’s trust in user j. Accordingly, each user i defines her policy of forward-
ing to other members (including herself) based on her trust in each of them. A policy
of forwarding for user i is a discrete probability distribution {qi1, qi2, · · · , qin}, where
qi j denotes the probability that i chooses j as the forwarder, once she has decided to
forward the message.

A natural extension of Crowds would obviously allow the initiator to select her first
forwarder according to her own policy, and then leave it to the forwarder to pick the next
relay, according to the forwarder’s policy. This would however have the counterintuitive
property that users may take part in the path which are not trusted by the initiator, just
because they are trusted by a subsequent forwarder. We rather take the same view as
most current systems, that the initiator is in charge of selecting the entire path which
will carry her transactions. When an initiator wants to communicate with a server, she
selects a random path through the crowd between herself and the server by the following
process.

– First forwarder: with probability qi j the initiator i selects a member j of the crowd
(possibly herself) according to her policy of forwarding {qi1, qi2, · · · , qin}.

– Subsequent forwarders: the initiator flips a biased coin; with probability 1− p f the
current forwarder will be the last on the path, referred to as the path’s exit user.
Otherwise, with probability p f × qik, she selects k (possibly herself) as the next
forwarder in the path; and so on until a path’s exit user is reached.

The initiator then creates the path iteratively as follows. She establishes a session key
by performing an authenticated key exchange protocol, such as Diffie-Hellman,2 with
the first forwarder F1. At each of subsequent iteration i ≥ 2, the initiator uses the
partially-formed path to send Fi−1 an encrypted key exchange message to be relayed to
Fi. In this way, the path is extended to Fi, and the use of session keys guarantees that
any intermediary router only knows her immediate predecessor and successor. Once the
path is formed, messages from the initiator to the server are sent in the same way as in
the normal Crowds. Thus, all the nodes in the path have access to the contain of the
message and, obviously, to the end server. In particular, this means that the notion of
detection remains the same in the extended protocol as in the original one.

Then we use our probabilistic framework to evaluate Crowds extended protocol. We
start by evaluating the conditional probability P(o j | ai). Let ηi (resp. ζi = 1 − ηi) be the
overall probability that user i chooses a honest (resp. corrupt) member as a forwarder.
Then we have the following result.

Proposition 1

P
(

o j | ai

)

= ζiεi j +
qi jζi p f

1 − ηi p f
,

where ηi =
∑

k≤(n−c) qik, ζi =
∑

k≤c qik and εi j =

{
1 i = j
0 i � j

2 We assume that public keys of participating users are known.
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Proof. Let k denote the position occupied by the first honest user preceding an attacker
on the path, with the initiator occupying position zero. Let P(o j | ai)(k) denote the prob-
ability that user j is detected exactly at position k. Only the initiator can be detected at
position zero, and the probability that this happens is equal to the overall probability
that the initiator chooses a corrupt member as a forwarder. Therefore

P
(

o j | ai

)

(0)
=

{
ζi i = j
0 i � j

Now the probability that j is detected at position k > 0 is given by

– the probability that she decides to forward k times and picks k − 1 honest users,
i.e.,pk−1

f η
k−1
i (recall that at the initial step she does not flip the coin),

– times the probability of choosing j as the kth forwarder, i.e., qi j,
– times the probability that she picks any attacker at stage k + 1, i.e., ζi p f .

Therefore

∀k ≥ 1, P
(

o j | ai

)

(k)
= ηk−1

i pk
f qi jζi

and hence

P
(

o j | ai

)

=

∞∑

k=0

P
(

o j | ai

)

(k)

= ζiεi j +

∞∑

k=1

ηk−1
i pk

f qi jζi

= ζiεi j +

∞∑

k=0

ηk
i pk+1

f qi jζi

= ζiεi j + p f qi jζi

∞∑

k=0

ηk
i pk

f

= ζiεi j +
qi jζi p f

1 − ηi p f
.

An immediate consequence is that when user i initiates a transaction, user j is not
detectable if and only if the initiator’s policy of forwarding never chooses an attacker
or j as forwarder.

Corollary 1. P(o j | ai) = 0 if and only if one of the following holds:

1. ζi = 0 ;
2. qi j = 0 and i � j.

Now, let us compute the probability of detecting a user P(o j). We assume a uniform
distribution for anonymous events.
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Proposition 2. If the honest members are equally likely to initiate a transaction, then

P(o j) =
1

n − c

(

ζ j +
∑

i≤(n−c)

qi jζi p f

1 − ηi p f

)

,

where ζ j and ηi are defined as in Proposition 1.

Proof. Since the anonymous events are uniformly distributed then P(ai) = 1/(n − c) for
all i. Thus

P(o j) =
∑

i≤(n−c)

P
(

o j | ai

)

P(ai)

=
∑

i≤(n−c)

P
(

o j | ai

) 1
n − c

=
1

n − c

∑

i≤(n−c)

P
(

o j | ai

)

=
1

n − c

∑

i≤(n−c)

(

ζiεi j +
qi jζi p f

1 − ηi p f

)

=
1

n − c

(

ζ j +
∑

i≤(n−c)

qi jζi p f

1 − ηi p f

)

.

As one could expect, a user j is not detectable if both herself and any user i that
might include j in her path never choose a corrupted member as a forwarder. Formally:

Corollary 2. P(o j) = 0 if and only if

ζ j = 0 and ∀i. ( qi j = 0 or ζi = 0 ) .

Now from Propositions 1 and 2 and Bayes Theorem (2), we have the following expres-
sion for the degree of anonymity provided by the extended protocol, which holds when
P(o j) � 0.

Proposition 3. If the honest members are equally likely to initiate a transaction, then

P
(

ai | o j

)

=

ζiεi j +
qi jζi p f

1 − ηi p f

ζ j +
∑

k≤(n−c)

qk jζk p f

1 − ηk p f

,

where ζi and η j are defined as above.

It is now easy to see that if all honest users have uniform probability distributions as
forwarding policies, the extended protocol reduces to the original Crowds protocol.
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Corollary 3. If for all i and j, qi j = 1/n, then ηi = (n − c)/n and ζi = c/n. Therefore

P
(

ai | o j

)

=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − n − c − 1
n

p f i = j

1
n

p f i � j

3.2 On the Security of Extended Crowds

Here we show that the absence of a uniform forwarding policy makes it very hard to
achieve probable innocence as defined by Halpern and O’Neill (5). Indeed consider
the following instance of the protocol, where three honest users {1, 2, 3 } face a single
attacker {4}. Assume that the honest users are aware of the malicious behaviour of 4,
and choose their forwarding policies as follows: p f = 2/3, and q1 j = q2 j = 1/3, and
q3 j = 0.33 for all j ≤ 3. In other words, the first two choose uniformly any honest
users as a forwarder and never pick the attacker, whilst the third one may choose the
attacker, though with a small probability q34 = 0.01. Thus, ζ1 = ζ2 = q14 = q24 = 0
and ζ3 = q34 = 0.01. It follows that P(a3 | o j) = 1, for all j, and the instance does not
ensure probable innocence, even though the third user’s policy is after all very similar
to those of the other honest users. This is because if someone is detected, then user 3 is
necessarily the initiator, as she is the only one who might possibly pick the attacker in
her path.

Observe however that this instance of the protocol ensures probable innocence in
Reiter and Rubin’s formulation: indeed, for all honest users i and j, P(o j | ai) < 0.0165.
The key difference at play here is that Halpern and O’Neill’s definition is stronger,
as it focuses on the probability that a specific user is the initiator once somebody has
been detected, regardless of the probability of the detection event. On the other hand,
Reiter and Rubin’s formula measures exactly (the conditional probability of) the latter.
This means that if the probability of detection is small, as in this case, systems may
be classified as statistically secure even when one such detection event may lead to
complete exposure for some initiators, as in this case.

Attackings trust. As already observed by its authors, Crowds is vulnerable to denial of
service (DoS) attacks: it is enough that a single malicious router delays her forwarding
action to severely hinder the viability of an entire path. This kind of attack is in fact
hard for the initiator to respond to. Just because the creation of multiple paths by any
single user substantially increases their security risk, the initiator has a strong incentive
to keep using the degraded path. Indeed, it is advisable in Crowds to modify a path
only when it has collapsed irremediably, e.g. due to a system crash of a router, or their
quitting the crowd. In this case the path is re-routed from the node preceding the failed
router. As a consequence, recent research has been devoted to developing ‘trust metrics’
meant enhance the reliability of anonymity systems [7, 8, 31].

Although the primary goal of incorporating trust in anonymity networks is to ‘en-
hance’ the privacy guarantees by routing messages through trusted relays, preventing
the presence of attackers in forwarding paths is in itself not sufficient. External attackers
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(a) i = j = 7 (b) i � j = 7

Fig. 2. Crowds extended

may in fact target honest users with DoS attacks independent of the protocol, to make
them look unreliable and/or unstable. In this way, the target users will gradually loose
others members’ trust, whilst internal attackers may keep accruing good reputations.
Thus, over the time the trust mechanisms may become counterproductive.

Let us illustrate an attack of this kind. Consider an instance of the protocol where
seven honest users {1, 2, · · · , 7} face a single attacker {8}, assume that 7 is the honest
user targeted by the attack, and that all users are equally likely to initiate a transaction.
Recall that a path in Crowds remains fixed for a certain amount of time –typically one
day– known as a session. In practice, all transactions initiated by a given user follow
the same path, regardless of their destination servers. At the end of the session then,
all existing paths are destroyed, new members can join the crowd, and each member
willing to initiate anonymous transactions creates a new path. Trust level updates play
therefore their role at the beginning of each session. For the purpose of this example, we
assume that the protocol is equipped with mechanisms to detect unstable routers (e.g.,
by monitoring loss of messages, timeouts, variations in response time and so on); upon
realising that her path is unstable, an initiator will notify all members of the identity
of the unstable node (in this case 7).3 When a node is reported as unstable, all other
honest nodes decrease their trust in her at the beginning of the following session. For
simplicity, we assume that all users start with the same trust level τ, and that the target
user remains fixed over time. The following policies of forwarding are therefore in place
for each session, with n = 8, c = 1 and τ = 50.

q(k)
i j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n

i = 7

τ − k
n × τ − k

i � 7 and j = 7

τ

n × τ − k
i � 7 and j � 7 .

In words, honest users other that the target decrease their trust in her by one and re-
distributed it uniformly to the remaining users. On the other hand, the target has no

3 This contrasts with the approach of [11], where the initiator would directly decrease her trust
in all users in the path.
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reason to change her trust, as there is no evidence to suspect anybody as the source of
the external attack. Thus, her policy remains the same over the time. Hence, we have

ζ(k)
i =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c
n

i = 7

τ

n × τ − k
otherwise.

Assuming that the forwarding probability is p f = 0.7, Figure 2 shows the probability
that the target will be identified over time. Clearly, the target’s privacy deteriorates
quickly, as it becomes increasingly unlikely that users other than herself pick her when
building a path. In particular, after seven sessions the protocol can no longer ensure
probable innocence as the probability P(a7 | o7) becomes greater than 0.5.

4 Onion Forwarding in Crowds

In the previous section we analysed the privacy protection afforded by Crowds extended
with a notion of trust. Following a similar pattern, in this section we focus on the privacy
guarantees offered by our protocol when equipped with ‘onion forwarding,’ a superior
forwarding technique used in systems actually deployed, such as Tor [10].

In Crowds, any user participating in a path has access to the cleartext messages
routed through it. In particular, as all relay requests expose the message’s final destina-
tion, a team of attackers will soon build up a host of observations suitable to classify the
behaviour of honest participants. We recently proved in [17] that such extra attackers’
knowledge makes it very difficult to achieve anonymity in Crowds. The most effec-
tive technique available against such a risk is onion forwarding, originally used in the
‘Onion Routing’ protocol [32], and currently implemented widely in real-world sys-
tems. The idea is roughly as follows. When forming a path, the initiator establishes a
set of session encryption keys, one for each user in it, which she then uses to repeat-
edly encrypt each message she routes through, starting with the last node on the path,
and ending with the first. Each intermediate user, in the act of receiving the message
decrypts it with her key. Doing so, she ‘peels’ away the outmost layer of encryption,
discovers who the next forwarder is, and relays the message as required. In particular,
only the last node sees the message in clear and learns its actual destination. Thus, a
transaction is detected only if the last user in the path, also known as the ‘exit node,’ is
an attacker, and the last honest user in the path is then detected.

4.1 Privacy Level of the Onion Forwarding

Next we study the privacy ensured to each member participating in the protocol under
the onion forwarding scheme. As we did earlier, we begin with computing the condi-
tional probability P(o j | ai).

Proposition 4

P
(

o j | ai

)

= (1 − p f ) ζiεi j +
qi j ζi p f

1 − ζi p f
.
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Proof. Let k denote the last position occupied by an honest user preceding an attacker
on the path, i.e., the position of the detected user. We denote by P(o j | ai)(k) the probabil-
ity that user j is detected exactly at position k. Again, only the initiator can be detected
at position zero, and the probability that this happens is equal to the overall probability
that the initiator chooses a corrupt member as a forwarder, multiplied by the probability
that the latter is the last node in the path. Therefore

P
(

o j | ai

)

(0)
=

{
(1 − p f ) ζi i = j
0 i � j

Now the probability that j is detected at position k > 0 is given by

– the probability that she decides to forward k times and picks k − 1 users (does not
matter whether honest or not, as non-exit attackers cannot see the messages), i.e.,
pk−1

f (recall that at the initial step she does not flip the coin),
– times the probability of choosing j as the kth forwarder, i.e. qi j,
– times the probability that she picks any number k′ of attackers at the end of the

path, i.e.
∑∞

k′=1 pk′
f ζ

k′
i (1 − p f ).

Therefore

∀k ≥ 1, P
(

o j | ai

)

(k)
=

∞∑

k=1

(

pk−1
f qi j

∞∑

k′=1

pk′
f ζ

k′
i (1 − p f )

)

,

and hence

P
(

o j | ai

)

=

∞∑

k=0

P
(

o j | ai

)

(k)

= (1 − p f )ζiεi j +

∞∑

k=1

(

pk−1
f qi j

∞∑

k′=1

pk′
f ζ

k′
i (1 − p f )

)

= (1 − p f )
[

ζiεi j + qi j

∞∑

k=1

(

pk−1
f

∞∑

k′=1

pk′
f ζ

k′
i

) ]

= (1 − p f )
[

ζiεi j + qi j

∞∑

k=1

pk−1
f

ζi p f

1 − ζi p f

]

= (1 − p f )
[

ζiεi j +
qi jζi p f

1 − ζi p f

1
1 − pk

]

= (1 − p f )
[

ζiεi j +
qi jζi p f

(1 − p f )(1 − ζi p f )

]

.

Corollary 4. P(o j | ai) = 0 if and only if one of the following holds:

1. ζi = 0 ;
2. qi j = 0 and i � j.
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Now on the probability of detecting a user P(o j). Assuming uniform distribution of
anonymous events we have the following result.

Proposition 5. If the honest member are equally likely to initiate a transaction then.

P(o j) =
1

n − c

(

(1 − p f ) ζ j +
∑

i≤(n−c)

qi j ζi p f

1 − ζi p f

)

.

Proof. Since the anonymous events are uniformly distributed then P(ai) = 1/(n − c) for
all i. Thus

P(o j) =
∑

i≤(n−c)

P
(

o j | ai

)

P(ai)

=
∑

i≤(n−c)

P
(

o j | ai

) 1
n − c

=
1

n − c

∑

i≤(n−c)

P
(

o j | ai

)

=
1

n − c

∑

i≤(n−c)

(

(1 − p f )ζiεi j +
qi jζi p f

1 − ζi p f

)

=
1

n − c

(

(1 − p f )ζ j +
∑

i≤(n−c)

qi jζi p f

1 − ζi p f

)

.

We then have the same conditions of non-detectability as in the previous section; that
is, the following result holds.

Corollary 5. P(o j) = 0 if and only if

ζ j = 0 and ∀i. ( qi j = 0 or ζi = 0 ) .

Now from Proposition 4 and 5 and the Bayes theorem, we have the following result.

Proposition 6. If the honest members are equally likely to initiate a transaction, then

P
(

ai | o j

)

=

ζiεi j +
qi j ζi p f

(1 − p f )(1 − ζi p f )

ζ j +
∑

k≤(n−c)

qk j ζk p f

(1 − p f )(1 − ζk p f )

.

Now from Propositions 3 and 6, we can prove effectively that the privacy level ensured
by the onion version is better than those offered by the versions where messages are
forwarded in cleartext. More formally, let

[

P(ai | o j)
]

CR
and
[

P(ai | o j)
]

OR
denote the

probability that i is the initiator given that j is detected under cleartext routing and
onion routing, respectively. Then the following holds.

Theorem 1.
[

P(ai | o j)
]

OR
≤
[

P(ai | o j)
]

CR
.
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4.2 On the Security of the Onion Forwarding Version

As mentioned before, onion forwarding is the forwarding technique of choice in several
real-world systems. Recent work [14, 18, 21–23] shows that such systems are vulnera-
ble to so-called congestion attacks, which intuitively work as follows. Assume that the
initiator selects a path which contains a corrupt user as the exit node. The attacker can
then observe the pattern of arrival times of the initiator’s requests, and tries to identify
the entire path by selectively congesting the nodes she suspect to belong to it. Precisely,
to determine whether or not a specific node occurs in the path, she asks a collaborat-
ing attacker to build a long path looping on the target node and ending with a corrupt
node. Using this, the attacker perturbs the flow through the target node, so that if the
latter belongs also to the path under observation, the perturbation will reflect at its exit
node.

Fig. 3. Congestion attack

Here we use a variant of the congestion attack which, similarly to the previous sec-
tion, allows internal attackers to deteriorate the reputation of a targeted honest user, and
does not require the attacker to belong to a path. Figure 3 illustrates the attack, where
a long path is built looping as many times as possible over the target, preferably using
different loops involving different users. Thank to such properties, the target user will be
significantly busy handling the same message again and again, whilst no other member
of the path will be congested.

Figure 4 illustrates the effect of this attack using the same example as in the cleartext
forwarding version in §3. The results are completely in tune with those presented by
Figure 2: even though the target node initially enjoys a better anonymity protection,
her anonymity will unequivocally fall, although more smoothly than in §3. In partic-
ular, after twenty sessions, the protocol no longer ensures probable innocence, as the
probability of identifying the target node becomes greater than 0.5.

5 Adaptive Attackers

We have worked so far under the assumption that protocol participants either behave
always honestly or always maliciously. Arguably, this is a rather unrealistic hypothesis
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(a) i = j = 7 (b) i � j = 7

Fig. 4. Onion forwarding

in open and dynamic systems, where honest nodes can become malicious upon being
successfully attacked. In this section we take the more realistic view that nodes may
become corrupt, and study a new kind of attackers, which we dub ‘adaptive,’ and the
relative attacks.

Adaptive attackers differ from those we considered so far in the paper –and indeed
from those considered so far in the literature on Crowds– in that when they intercept
a message, rather than just reporting its sender as the initiator, they attempt to travel
the path back in order to improve their chance to catch the actual originator. They
do so by trying to corrupt the sender of the message, say j1. If the attack succeeds,
then the attacker effectively learns from j1 all she needs to identify j1’s predecessor
on the path, say j2, and repeat the adaptive attack on j2, having moved a step closer to
the initiator. The process is repeated iteratively until the attacker either fails to
corrupt the current node (or timeouts whilst trying to) or reaches the beginning of the
path. When that happens, the attacker reports the current node, say jk, which is obvi-
ously a better candidate than j1 to have originated the transaction.

We regard this as a significant and realistic kind of attack, as there clearly are a multi-
tude of ways in which the adaptive attacker may attempt to corrupt a node. These range
from brute force attacks via virus and worms which gains the attacker complete control
over the node, to milder approaches based on luring the target to give away some bit of
information in exchange for some form of benefit, and in general are entirely indepen-
dent of the Crowds protocol. We therefore do not postulate here about the means which
may be available to the attacker to carry out her task, make no assumptions whatsoever
about her power, and take the simplified view that each node has at all time the same
probability π to become corrupted.

In the rest of the section we re-evaluate the privacy guarantees afforded by Crowds
extended –with and without onion forwarding– under this new adaptive attack scenario.
We shall however carry out the analysis under the unrealistic assumption that it is nec-
essary for attackers to corrupt a node each time they meet her on the path. Recall in fact
that a single node will typically appear several times in a path. Therefore, an adaptive
attacker in her attempt to travel the path backwards towards the initiator will in general
meet the each node several times. The reason why our assumption may be justified is
when the attacks only gain the attacker access to just enough data to get to the node’s
last predecessor on the path, rather than to the entire set of them. On the other hand, the
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reason why this assumption is ultimately unsatisfactory is that it is overly dangerous
to make limiting assumptions as to the degree of success of an attack, and assess spec-
ulatively the extent to which a node’s integrity is compromised, the methodologically
correct attitude being to assume that the attacker has gained total control over the target.
And when she has, by definition she simply has no need to corrupt the node again, and
no new knowledge may be acquired by doing so. In the concluding section, we discuss
a few preliminary ideas on how to remove this restriction in future work.

5.1 Crowds Extended

Our technical development proceeds mutatis mutandis as in §3 and §4. In particular,
as before we first evaluate the conditional probability P(o j | ai), then under the hy-
pothesis that all honest users are equally likely to initiate a transaction, we compute
P(o j), and finally, using Bayes Theorem, we obtain P(ai | o j). In this section we omit all
proofs.

The probabilities P(oi | ai)(0) and P(o j | ai)(1+) that node i is detected at the initiator
position or at any position after that can be expressed respectively as

P
(

oi | ai

)

(0)
= ζi +

p f ηi ζi π

1 − π
( 1
1 − p fηi

− π

1 − πp f ηi

)

,

P
(

o j | ai

)

(1+)
=

qi j ζi p f

1 − p f ηi
−

qi j ζi ηi p2
f π

2

(1 − π)(1 − p f ζi)
,

which gives the following result, where again εi j = 1 if i = j, and 0 otherwise.
The key to these formulae is to consider that when a user is detected at position h,

this is potentially due to a detection at position h+k, for any k ≥ 0, whereby the attacker
has successively travelled back k positions on the path, by either corrupting honest users
with probability π or by meeting other attackers. The situation would be quite different
were we to take into account that the attacker only needs to corrupt a honest user once,
as π would not anymore be a constant.

Proposition 7

P(o j | ai) = εi jP
(

oi | ai

)

(0)
+ P
(

o j | ai

)

(1+)
.

Under the hypothesis of a uniform distribution of anonymous events, it is easy to prove
the following.

Proposition 8. If the honest members are equally likely to initiate a transaction, then

P(o j) =
1

n − c

(

P
(

o j | a j

)

(0)
+
∑

k≤(n−c)

P
(

o j | ak

)

(1+)

)

.

Now from Proposition 7 and 8 and Bayes Theorem, we have the following.
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(a) i = j = 7, π = 0.02 (b) i � j = 7, π = 0.02

(c) i = j = 7, π = 0.5 (d) i � j = 7, π = 0.5

Fig. 5. Example in Crowds extended against adaptive attack

Proposition 9. If the honest members are equally likely to initiate a transaction, then

P
(

ai | o j

)

=
εi jP
(

oi | ai

)

(0)
+ P
(

o j | ai

)

(1+)

P
(

o j | a j

)

(0)
+
∑

k≤(n−c) P
(

o j | ak

)

(1+)

.

Of course, in case the attacker’s attempts to travel back the path never succeed, the
formula reduces to the one we found previously.

Corollary 6. If π = 0, that is the attacker is not adaptive, then

P
(

ai | o j

)

=

ζiεi j +
qi jζi p f

1 − ηi p f

ζ j +
∑

k≤(n−c)

qk jζk p f

1 − ηk p f

,

which is the same as Proposition 3.

Figure 5 illustrates the formulae P(a7 | o7) and P(ai | o7) for i � 7 on our running exam-
ple, where we add π = 0.02 and π = 0.5 to the existing parameters, viz., n = 8 , c = 1,
p f = 0.7, and τ = 50. It is interesting here to observe the effect of the attacker’s corrup-
tion power, insofar as that is represented by π: the larger π, the more lethal the attacker,
the farther away the protocol from the standard, and the more insecure. In particular, for
π = 0.5 the system fails by a large margin to guarantee probable innocence even before
the attack to 7’s trust level starts.
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5.2 Onion Forwarding

Under onion forwarding, the adaptive attackers must appear as the last node on the path,
and from there, starting with her predecessor, try to corrupt nodes back towards the
originator. Following the same proof strategy as before, we define obtain the following
formulae.

P
(

oi | ai

)

(0)
= (1 − p f )ζi +

p f ηi ζi π (1 − p f )

(1 − p f ζi)(1 − π)
( 1
1 − ηi p f

− π

1 − π ηi p f

)

,

P
(

o j | ai

)

(1+)
=

qi j ζi p f

1 − ζi p f
+

p2
f ηi ζi π qi j

(1 − p f ζi)(1 − π)
( 1
1 − ηi p f

− π

1 − π ηi p f

)

,

and therefore:

Proposition 10

P
(

o j | ai

)

= εi jP
(

oi | ai

)

(0)
+ P
(

o j | ai

)

(1+)
.

Now on the probability of detecting a user P(o j).

Proposition 11. If the honest members are equally likely to initiate a transaction, then

P(o j) =
1

n − c

(

P
(

o j | a j

)

(0)
+
∑

k≤(n−c)

P
(

o j | ak

)

(1+)

)

.

As before, the result below follows from Propositions 10 and 11 and Bayes Theorem.

Proposition 12. If the honest members are equally likely to initiate a transaction then.

P
(

ai | o j

)

=
εi jP
(

oi | ai

)

(0)
+ P
(

o j | ai

)

(1+)

P
(

o j | a j

)

(0)
+
∑

k≤(n−c) P
(

o j | ak

)

(1+)

.

Corollary 7. If π = 0, that is the attacker after all not adaptive, then

P(ai | o j) =

ζiεi j +
qi jζi p f

(1 − p f )(1 − ζi p f )

ζ j +
∑

k≤(n−c)

qk jζk p f

(1 − p f )(1 − ζk p f )

,

which coincides with Proposition 6.

Finally, Figure 6 illustrates P(a7 | o7) and P(ai | o7) for i � 7 on our running example,
for π = 0.5. Although the graphs are shaped as in the previous cases, it is possible to
notice the increase security afforded by the onion forwarding.
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(a) i = j = 7 (b) i � j = 7

Fig. 6. Onion forwarding against adaptive attacks

6 Conclusion

In this paper we have presented an enhancement of the Crowds anonymity protocol via
a notion of trust which allows crowd members to route their traffic according to their
perceived degree of trustworthiness of other members. We formalised the idea quite
simply by means of (variable) forwarding policies, with and without onion forwarding
techniques. Our protocol variation has the potential of improving the overall trustwor-
thiness of data exchanges in anonymity networks, which may naturally not be taken
for granted in a context where users are actively trying to conceal their identities. We
then analysed the privacy properties of the protocol quantitatively, both for Crowds and
onion forwarding, under standard and adaptive attacks.

Our analysis in the case of adaptive attacks is incomplete, in that it assumes that
attackers whilst attempting to travel back over a path towards its originator, need to
corrupt each honest node each time they meet her. Arguably, this is not so. Typically a
node j will act according to a routing table, say T j. This will contain for each path’s id
a translation id and a forwarding address (either another user, or the destination server)
and, in the case of onion forwarding, the relevant encryption key. (Observe that since
path’s id are translated at each step, j may not be able to tell whether or not two entries
in T j actually correspond to a same path and, therefore, may not know how many times
she occurs on each path.) It is reasonable to assume that upon corruption an attacker
c will seize T j, so that if she ever reaches j again, c will find all the information to
continue the attack just by inspecting T j.

Observe now that the exact sequence of users in the path is largely irrelevant to
compute P(o j | ai). It only matters how many times each of them appears in between the
attacker at the end of the path and the detected node. Using some combinatorics, it is
therefore relatively easy to write a series for P(o j | ai) based on summing up a weighted
probability for all possible occurrence patterns of n − c honest users and c attackers in
the path. Quite a different story is to simplify that series to distill a usable formula. That
is a significant task which we leave for future work.

Acknowledgements. We thank Ehab ElSalamouny and Catuscia Palamidessi for their
insights and for proofreading.
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