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Abstract The performance of collaborative filtering recommender systems can suf-
fer when data is sparse, for example in distributed situations. In addition popular
algorithms such as memory-based collaborative filtering are rather ad-hoc, making
principled improvements difficult. In this paper we focus ona simple recommender
based on näıve Bayesian techniques, and explore two different methodsof mod-
elling probabilities. We find that a Gaussian model for rating behaviour works well,
and with the addition of a Gaussian-Gamma prior it maintainsgood performance
even when data is sparse.
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1 Introduction

Recommender systems are information filtering systems thatare widely used on
the web to suggest items to users based on their preferences.Collaborative filtering
recommenders use item ratings to suggest items preferred bysimilar users, based on
the assumption that people who have agreed in the past will agree in the future[10].

Recommendation accuracy suffers in situations where information is limited[7],
such as in distributed[12] or context-aware[1] recommender systems. In addition,
some of the more widely used recommender system algorithms such as memory-
based collaborative filtering, are rather ad-hoc, and so it is difficult to make princi-
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pled improvements. Motivated by these challenges, in this paper we present a simple
recommender system based on probabilistic methods, which uses prior knowledge
to reduce the impact of data sparsity.

After looking at related work in Section 2, we look at making recommendations
using Bayes’ theorem in Section 4. We then present two modelsfor modelling user
ratings, the first based on a multinomial distribution in Section 5, and the second
based on a Gaussian distribution in Section 6. Finally we present the results of our
experiments in Section 7 before concluding in Section 8.

2 Related Work

Näıve Bayesian techniques have been used to produce recommendations before.
Breese et al.[2] present a cluster model using a naı̈ve Bayes classifier, which groups
users based on their rating habits, before predicting ratings given cluster member-
ship. Miyahara and Pazzani [9] present a recommender systembased on a naı̈ve
Bayes model that makes binary rating predictions (i.e. likeor dislike). This ap-
proach differs to Breese’s as they create a separate model for each user. Wang et
al.[13] present a probabilistic relevance ranking method that is similar to the item-
based collaborative filtering algorithm[11]. They use a Beta distribution to add prior
knowledge.

Our approach builds on the simple technique used by Miyaharaand Pazzani [9],
but we apply the technique to ratings on a numerical rather than binary scale. The
näıve Bayes approach is often overlooked in favour of more complex models. In
addition, we incorporate prior knowledge into our probability estimates, as Wang et
al.[13] do with binary ratings.

3 Notation

Before we present our recommender it is necessary to define the notation we will use
in the rest of this paper. We denote the set of all users in our recommender system
by U , and the set of all items byI. The rating made by useru on itemi is given by
ru,i = k, wherek ∈ K, the set of possible rating values.ru = k states that the useru
rates any item with valuek. The set of items for which useru has made a rating is
given byIu, and the set of users who have made a rating on itemi is given byUi.
Finally we define the set of items for which two usersu andu′ have both provided a
rating to beIu,u′ = Iu ∩ Iu′ .



Experiments in Bayesian Recommendation 3

4 Bayesian Recommendation

Bayes’ theorem is a simple probabilistic technique that allows us to update our be-
liefs about the likelihood of an event occurring given the evidence. These techniques
are said to be naı̈ve, in that strong independence assumptions are made aboutthe in-
dependence of features. Despite these assumptions naı̈ve Bayes models can achieve
good performance[4].

In the case of CF recommenders, our beliefs are the probability that a user will
make a rating of a given class on an item, and our features are the ratings made
by other users. To simplify calculations we consider priorsand likelihoods to be
independent of the item of interest, and incrementally update the posterior given
each feature,

P(ru,i = k|ru′,i = k′) =
P(ru = k)P(ru′ = k′|ru = k)

∑
k′′

P(ru = k′′)P(ru′ = k′|ru = k′′)
. (1)

Posterior probabilities are combined to find the expected value of the rating
E(ru,i) as in [2],

E(ru,i) = ∑
k∈K

P(ru,i = k)k . (2)

To estimate the priors and likelihoods we first take simple point estimates. Then
we use all of our data to create Bayesian priors we can update with more specific in-
formation. These priors can be learnt on a server with accessto large amounts of in-
formation before being passed to devices with more modest resources for distributed
recommendation. In the following sections we investigate two different distributions
for modelling probabilities using this method.

5 Multinomial Model

The simplest method of obtaining estimates for our priors and likelihoods is by nor-
malising rating counts, which is equivalent to taking maximum likelihood estimates
of the parameters of a multinomial distribution,

P(ru = k) =
nu,k

∑
k′

nu,k′
, (3)

P(ru = k,ru′ = k′) =
nu,u′,k,k′

∑
k′′

∑
k′′′

nu,u′,k′′,k′′′
, (4)

wherenu,k is the number of times useru has given an item a ratingk, andnu,u′,k,k′ is
the number of times useru has ratedk, when useru′ ratedk′. Given these probabili-
ties calculating the likelihood is trivial.
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Where rating counts are zero, these probabilities will be zero, so to remove these
zeros we apply Laplace smoothing, adding one to each of our rating counts. This is
the model used by Miyahara and Pazzani[9].

5.1 Dirichlet Prior

Prior knowledge is incorporated into our multinomial modelusing a Dirichlet dis-
tribution, parameterised byα = αi, . . . ,αk > 0, which correspond to the number of
times a particular outcomek has been observed. Laplace smoothing is a simple case
of this where each parameter is set to one.

To obtain initial parameters we make use of a fixed-point iteration, described in
[8]. To update these parameters for each specific case, we simply add the rating
counts,

αu = α +nu . (5)

Parameters for our multinomial distribution, can then be obtained by taking the
mean of the Dirichlet distribution,

E(p) =
α

∑k αk
. (6)

Adding a Dirichlet prior seriously degraded the performance of the multinomial
model. We attempted to improve the model by taking into account variance in the
Dirichlet distribution by performing a stochastic expansion about the mean, but this
only slightly improved results, so the details are not givenhere.

6 Gaussian Model

For our next model we decided to look at the differences in user ratings. We model
these differencesru − ru′ as being drawn from a Gaussian distribution. Our model is
not strictly Gaussian, as we make some simplifications removing constants, and our
likelihoods are discrete, rather than continuous. The formula is

P(ru′ = k′|ru = k) =
exp(−τu,u′/2

(

k− k′−µu,u′
)2
)

∑k′′ exp(−τu,u′/2
(

k′′− k′−µu,u′
)2
)
, (7)

whereµu,u′ is the mean difference between the two user’s ratings, andτu,u′ is the
precision of the Gaussian distribution, orσ−2 the reciprocal of the variance. We
obtain values for the mean and precision through maximum likelihood estimates,

µ̂u,u′ =
1

|Iu,u′ |
∑

i

(

ru,i − ru′,i
)

, (8)
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σ̂u,u′ =
1

|Iu,u′ |
∑

i
(ru,i − ru′,i −µu,u′)

2 , (9)

τ̂u,u′ =
1

σ̂u,u′
. (10)

In cases where there are few ratings, such thatσ2 = 0, we set the precision to zero.
We can augment this model with a Gaussian-Gamma prior. Mean and variance

are treated as unknown, with mean modelled by a Gaussian, andvariance by a
Gamma distribution. It has the following probability density function,

GG(µ ,τ |µ ,κ ,a,b)∼ N(µ |µ ,κτ−1)Γ(τ |a,b) . (11)

We obtain formulae to calculate its parameters by looking atthe marginal distri-
butions ofµ andτ,

P(τ) = Γ(a,b) , (12)

P(µ) = T2α(µ ,
aκ
b
) , (13)

where T is a Student’s T distribution[3]. Note that we use theparameterisation of
the Gamma distribution wherea is the shape parameter, andb is the rate parameter.

We have maximum likelihood estimates for the mean and variance of τ, and
using the properties of the gamma distribution, we can derive these estimates for its
parameters,

a0 =
µ̂2

τ
σ̂2

τ
, (14)

b0 =
µ̂τ
σ̂2

τ
. (15)

We use a similar procedure using the properties of Student’sT distribution to
obtain an estimate forκ0,

κ0 =
b0(a0−1)

σ̂2
µ

. (16)

Finally we setµ0 to zero as our matrix of differences containsru,i − ru′,i as well
asru′,i − ru,i, these differences cancel out.

Once we have prior values for our parameters, we can perform aBayesian update
using the following equations, which can be found in [3],

µn =
κµ +nµ̂u,u′

κ0+n
, κn = κ0+n , an = a0+

n
2
,

bn = b0+
1
2

n

∑
i=1

(ru − ru′ − µ̂u,u′)
2+

κ0n(µ̂u,u′ −µ0)
2

2(κ0+n)
.

We obtain parameters for our Gaussian by taking the expectedvalues of the mean
and precision from our posterior distributionGG(µ ,τ |µn,κn,an,bn),
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E(µ) = µn , (17)

E(τ) =
an

bn
. (18)

7 Experiments

To compare the performance of the techniques described in this paper, we imple-
mented several basic recommender system algorithms in Python1. We implemented
simple recommenders based on using average user ratings andaverage item ratings
to make predictions. We also implemented memory-based CF[2] using Pearson cor-
relation as our similarity measure, and use a fixed neighbourhood size of the 500
most similar users in making predictions, as in our experience this provides the best
results. Significance weighting, which weights the effect of users with more items
in common, was used with a threshold of 50, as suggested in [5].

The dataset used for our experiments is the MovieLens2 100,000 rating dataset,
which contains a collection of ratings made by users on films.Ratings are made on
a 5-star integer scale. We use this dataset for its popularity which makes comparison
with existing methods easier. The dataset is 94 % sparse.

For each experiment we perform 5-fold cross-validation, splitting the dataset ran-
domly by rating, to produce training sets containing 80 % of the ratings, and test sets
containing 20 % of the ratings. The same sets are used to test each algorithm. The
results of each evaluation are averaged across the five runs.

Our second experiment looks at how these techniques performunder different
levels of data sparsity. After splitting each dataset for k-fold cross validation, a
varying proportion of the ratings are removed randomly. Theresults are then tested
against the full dataset.

7.1 Evaluation Metrics

We use a small number of commonly used metrics to aid comparison with other
techniques, and to give an overall picture of recommender system performance.
Recommender system evaluation metrics fall into three maincategories: coverage,
statistical accuracy, and decision support[5]. In [6] decision support metrics are di-
vided into classification-accuracy metrics, and ranking-accuracy metrics.

We use mean-absolute-error (MAE) to measure statistical accuracy, and the F1
measure to measure classification accuracy. As our ratings are not binary, we trans-
form them by considering ratings greater than or equal to four to be positive, or
relevant[5]. We do not use a coverage metric, because we find it does not give use-

1 http:://www.python.org
2 http://www.grouplens.org/
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ful results. We also do not use a ranking metric, because although the system will
return predictions with many different ranks, the ratings system only allows five.

7.2 Results

The results of this experiment are presented in descending order of MAE in Ta-
ble 1. MAE is presented along with its standard error, and F1 score. Lower values of
MAE are better, and higher F1 scores are better. We use a paired t-test at a level of
5 % to test the significance of MAE differences. Methods shownin bold are signif-
icantly different from the method below them. Most of the method names are self-
explanatory. The variants of the Dirichlet method are corrected and uncorrected,
PCC MBCF is memory-based CF using Pearson correlation, withand without sig-
nificance weighting.

The Gaussian methods perform best on MAE, with the Dirichletaugmented
multinomial models performing worst. On F1 score, the Gaussian models come out
on top, but in contrast to MAE, the Dirichlet models outperform MBCF. In addition
to the Gaussian results shown below which use a Dirichlet model for prior proba-
bilities we tried Gaussian and Gaussian-Gamma priors. We found that these models
did not produce significantly different results from the Dirichlet model, so they are
not shown here.

Table 1 Results

Method MAE SE F1 Score

Gaussian 0.7054 0.0042 0.6931
Gaussian-Gamma 0.7059 0.0042 0.6932
PCC MBCF (Weighted) 0.7393 0.0039 0.5613
Laplace 0.7438 0.0043 0.6566
PCC MBCF 0.7438 0.0038 0.5481
Item Average 0.8183 0.0041 0.3938
User Average 0.8351 0.0042 0.2993
Dirichlet (Corrected) 0.8525 0.0041 0.5881
Dirichlet 0.8649 0.0045 0.6196

7.3 Sparsity

We looked at a subset of the techniques which performed well in the general ex-
periment for the sparsity experiment. We tested the averages, MBCF with signifi-
cance weighting; Laplacian, Gaussian, and Gaussian-Gammanäıve Bayes. We tried
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all variants for the Gaussian models, but found that the Dirichlet model for priors
worked best, and so those are the only results reported here for the sake of clarity.

Figure 1 shows MAE against the relative density of the dataset, and Figure 2
shows F1 score against relative density. These graphs show agradual improvement
in performance as more of the original dataset is used. Each techniques maintains its
relative performance compared with other techniques for most of the MAE graph.
At conditions of extreme sparsity the simple multinomial technique slightly outper-
forms the others, it is not obvious why this should be so. It isalso interesting to
note that the Gaussian-Gamma technique, which showed little improvement over
the simple Gaussian technique in the general tests, outperforms the Gaussian tech-
nique as the data becomes more sparse. It is likely that the prior helps to fill in gaps
in its knowledge.

The picture is much the same for the F1 measure, although in this case the
Gaussian-Gamma technique retains excellent levels of performance even when us-
ing the most sparse dataset. It is interesting to note that the performance of the
Laplace smoothed algorithm suffers considerably when datais sparse. It is also
interesting that increasing data density actually degrades the performance of the
average methods.

Fig. 1 MAE under conditions of varying sparsity
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Fig. 2 F1 score under conditions of varying sparsity

8 Conclusions

In this paper we have shown that Bayesian recommenders making use of prior
knowledge can produce results which are better than those used from memory-
based collaborative filtering, and simple probabilistic recommenders not using prior
knowledge. We have shown that these techniques maintain good levels of perfor-
mance even when using sparse data. In particular we find that our Gaussian model
produces the best results across most of our tests. Althoughthe Gaussian-Gamma
prior was found to perform similarly to the Gaussian model under conditions of rel-
ative data density, under sparser conditions it performed better. For our prior proba-
bilities however, we found that the Dirichlet model produced better results.

In the case of the multinomial model, the addition of a prior is found to be harm-
ful to the model. We believe this because we are trying to fit too many parameters
given the limited information. In addition the multinomialmodel makes assump-
tions about the independence of rating categories which areunlikely to hold true. In
cases where the underlying model is a better fit to the data, the addition of a prior
appears to help fill in gaps in information leading to better performance in situations
where data is sparse.
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8.1 Future Work

Our next task is to do a more thorough comparison of our methodwith existing
more complex methods of probabilistic, and sparse recommendation techniques. We
also need to apply our technique to a wider range of datasets.As one of our goals
is distributed recommendation, we also need to test our method in a distributed
situation.

Although we found the Gaussian-Gamma model works well, we still wish to in-
vestigate other models. Multivariate Gaussian, or Gaussian mixtures are the next
logical steps from this model, but they have more parametersand so might suffer
from the same problems as the Dirichlet model. Another approach would be to stay
with the Gaussian model, but learn clusters of users, applying different prior knowl-
edge to different groups.
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