Experimentsin Bayesian Recommendation

Thomas Barnard and AdamiRyel-Bennett

Abstract The performance of collaborative filtering recommendetesys can suf-
fer when data is sparse, for example in distributed sitaation addition popular
algorithms such as memory-based collaborative filterimgrather ad-hoc, making
principled improvements difficult. In this paper we focusabsimple recommender
based on ri@e Bayesian techniques, and explore two different mettoddraod-
elling probabilities. We find that a Gaussian model for taehaviour works well,
and with the addition of a Gaussian-Gamma prior it maintgiosd performance
even when data is sparse.
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1 Introduction

Recommender systems are information filtering systemsatetvidely used on
the web to suggest items to users based on their preferebokaborative filtering
recommenders use item ratings to suggest items preferrgidiiigr users, based on
the assumption that people who have agreed in the past waedg the future[10].
Recommendation accuracy suffers in situations wherernmdtion is limited[7],
such as in distributed[12] or context-aware[1] recommersystems. In addition,
some of the more widely used recommender system algorithucts & memory-
based collaborative filtering, are rather ad-hoc, and sodifficult to make princi-
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pled improvements. Motivated by these challenges, in thpepwe present a simple
recommender system based on probabilistic methods, wisies prior knowledge
to reduce the impact of data sparsity.

After looking at related work in Section 2, we look at makiegommendations
using Bayes’ theorem in Section 4. We then present two mdderodelling user
ratings, the first based on a multinomial distribution in t8et5, and the second
based on a Gaussian distribution in Section 6. Finally weenethe results of our
experiments in Section 7 before concluding in Section 8.

2 Related Work

Naive Bayesian techniques have been used to produce recorativersdbefore.
Breese et al.[2] present a cluster model usingigenBayes classifier, which groups
users based on their rating habits, before predictinggatgiven cluster member-
ship. Miyahara and Pazzani [9] present a recommender syisésed on a rnge
Bayes model that makes binary rating predictions (i.e. bkalislike). This ap-
proach differs to Breese’s as they create a separate madehét user. Wang et
al.[13] present a probabilistic relevance ranking methad is similar to the item-
based collaborative filtering algorithm[11]. They use asBdistribution to add prior
knowledge.

Our approach builds on the simple technique used by MiyadwadaPazzani [9],
but we apply the technique to ratings on a numerical ratrear inary scale. The
naive Bayes approach is often overlooked in favour of more demmodels. In
addition, we incorporate prior knowledge into our probipstimates, as Wang et
al.[13] do with binary ratings.

3 Notation

Before we present our recommender it is necessary to denetiation we will use
in the rest of this paper. We denote the set of all users inezommender system
by U, and the set of all items bly The rating made by useron itemi is given by
rui =k, wherek € K, the set of possible rating valugg.= k states that the user
rates any item with valuk. The set of items for which userhas made a rating is
given byly, and the set of users who have made a rating on itengiven byU;.
Finally we define the set of items for which two usarmsndu’ have both provided a
rating to bely y = luNly.
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4 Bayesian Recommendation

Bayes’ theorem is a simple probabilistic technique thatvedl us to update our be-
liefs about the likelihood of an event occurring given thilemce. These techniques
are said to be rige, in that strong independence assumptions are made thlednt
dependence of features. Despite these assumptiives Bayes models can achieve
good performance[4].

In the case of CF recommenders, our beliefs are the probyathifit a user will
make a rating of a given class on an item, and our featureshareatings made
by other users. To simplify calculations we consider priansl likelihoods to be
independent of the item of interest, and incrementally tpdae posterior given
each feature,

P(ry = K)P(ry = K|ry=k)
SP(re=K)P(ry =K|ra=K') °

k/ i

(1)

P(ru,i = k|ru’,i = k/) =

Posterior probabilities are combined to find the expectddevaf the rating
E(rui) asin [2],
Ke

To estimate the priors and likelihoods we first take simpliafpestimates. Then
we use all of our data to create Bayesian priors we can updttenere specific in-
formation. These priors can be learnt on a server with adodasge amounts of in-
formation before being passed to devices with more modsstirees for distributed
recommendation. In the following sections we investigatedifferent distributions
for modelling probabilities using this method.

5 Multinomial Moddl

The simplest method of obtaining estimates for our priotsléelihoods is by nor-
malising rating counts, which is equivalent to taking mamimlikelihood estimates
of the parameters of a multinomial distribution,

Nuk
Pru=k = ——, 3
! ) Znu,k/
k/
Nuu kK
Piry=kry =K) = ——— | 4
u u kZ// k;, nu_’u/7k//7k///

whereny is the number of times userhas given an item a ratirlg andn, v ¢ is
the number of times userhas rated, when uset/ ratedk’. Given these probabili-
ties calculating the likelihood is trivial.
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Where rating counts are zero, these probabilities will be,z to remove these
zeros we apply Laplace smoothing, adding one to each of tingreounts. This is
the model used by Miyahara and Pazzani[9].

5.1 Dirichlet Prior

Prior knowledge is incorporated into our multinomial modsing a Dirichlet dis-
tribution, parameterised by = ai, ..., ax > 0, which correspond to the number of
times a particular outcomniehas been observed. Laplace smoothing is a simple case
of this where each parameter is set to one.

To obtain initial parameters we make use of a fixed-poinatien, described in
[8]. To update these parameters for each specific case, waysadd the rating
counts,

ay=a+ny. (5)

Parameters for our multinomial distribution, can then bwied by taking the
mean of the Dirichlet distribution,
a
E(p)= ——. 6
(p) > ax (6)
Adding a Dirichlet prior seriously degraded the performanétthe multinomial
model. We attempted to improve the model by taking into antweariance in the
Dirichlet distribution by performing a stochastic expamsabout the mean, but this
only slightly improved results, so the details are not gikere.

6 Gaussian Mode€

For our next model we decided to look at the differences im tetégs. We model
these differences, — ry as being drawn from a Gaussian distribution. Our model is
not strictly Gaussian, as we make some simplifications rémgazonstants, and our
likelihoods are discrete, rather than continuous. The ttars

exp(— Ty /2 (K=K — puy)?
P(I‘U/ZKI‘I’UZK): p( u,u/ ( “u,u) )2
Zk” exp(*.l-u,u’/2 (k” -k - I-lu,u/) )
wherep, v is the mean difference between the two user’s ratings, rapdis the

precision of the Gaussian distribution, ar? the reciprocal of the variance. We
obtain values for the mean and precision through maximuetitikod estimates,

: ()

" 1
Hyw = m |Z (ru,i - ru/,i) ) (8)
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~ 1
Ouv =7 Z(rUJ —Tyi— /Ju,u’)2 ) (9)
]

|Iu,u"

A 1

Ty = = - (10)

wy Ouuw
In cases where there are few ratings, such d¢tfat 0, we set the precision to zero.

We can augment this model with a Gaussian-Gamma prior. Medrvariance

are treated as unknown, with mean modelled by a Gaussianyarahce by a
Gamma distribution. It has the following probability degdunction,

GG(H,T|H, K, a,b) ~ N(k|u, KT 1) (T[a,b) . (11)

We obtain formulae to calculate its parameters by lookirth@mmarginal distri-

butions ofu andr,
P(t)=T(ab), (12)

P(H) = Tza(u,%) : (13)

where T is a Student’s T distribution[3]. Note that we use ffheameterisation of
the Gamma distribution whegeis the shape parameter, an the rate parameter.

We have maximum likelihood estimates for the mean and vesiaf 1, and
using the properties of the gamma distribution, we can dehese estimates for its
parameters,

_ M
_ I
bo = 52 (15)

We use a similar procedure using the properties of Stud@ntgstribution to
obtain an estimate fatp,
b -1
% _ (16)
u
Finally we setup to zero as our matrix of differences contamg —r ; as well
asry j —ruj, these differences cancel out.
Once we have prior values for our parameters, we can perf@ayasian update
using the following equations, which can be found in [3],

Ko =

K”+nﬁu.u/ n
un Ko—i—l’] ’ n 0+ ) an a0+2?

KOn([:lu,u' - UO)Z

1n A2
bn = o + D) i;(ru — Ty — Hyw )+ 2(Ko+ 1)

We obtain parameters for our Gaussian by taking the expeatads of the mean
and precision from our posterior distributi®@G( L, T|Un, Kn, &, bn),
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E(u) = th, 17)
E(1) = % . (18)

7 Experiments

To compare the performance of the techniques describedsipéper, we imple-
mented several basic recommender system algorithms imfytWe implemented
simple recommenders based on using average user ratingsaradje item ratings
to make predictions. We also implemented memory-based]©B[2g Pearson cor-
relation as our similarity measure, and use a fixed neighiomd size of the 500
most similar users in making predictions, as in our expegdhis provides the best
results. Significance weighting, which weights the effdaigers with more items
in common, was used with a threshold of 50, as suggested.in [5]

The dataset used for our experiments is the Movief 49,000 rating dataset,
which contains a collection of ratings made by users on fiRatings are made on
a 5-star integer scale. We use this dataset for its popylahiich makes comparison
with existing methods easier. The dataset is 94 % sparse.

For each experiment we perform 5-fold cross-validatiofittepy the dataset ran-
domly by rating, to produce training sets containing 80 %hefriatings, and test sets
containing 20 % of the ratings. The same sets are used toaelstadggorithm. The
results of each evaluation are averaged across the five runs.

Our second experiment looks at how these techniques pedaodar different
levels of data sparsity. After splitting each dataset fdolkd- cross validation, a
varying proportion of the ratings are removed randomly. fidseilts are then tested
against the full dataset.

7.1 Evaluation Metrics

We use a small number of commonly used metrics to aid compakisth other
techniques, and to give an overall picture of recommendstesy performance.
Recommender system evaluation metrics fall into three roafegories: coverage,
statistical accuracy, and decision support[5]. In [6] diExi support metrics are di-
vided into classification-accuracy metrics, and rankinguaacy metrics.

We use mean-absolute-error (MAE) to measure statisti@lracy, and the F1
measure to measure classification accuracy. As our rathegsod binary, we trans-
form them by considering ratings greater than or equal to foe positive, or
relevant[5]. We do not use a coverage metric, because wetfitaes not give use-

1 http:://www.python.org
2 http://www.grouplens.org/
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ful results. We also do not use a ranking metric, becauseutin the system will
return predictions with many different ranks, the ratingstsm only allows five.

7.2 Results

The results of this experiment are presented in descenditgy of MAE in Ta-
ble 1. MAE is presented along with its standard error, anddétes Lower values of
MAE are better, and higher F1 scores are better. We use alfdiest at a level of
5% to test the significance of MAE differences. Methods showold are signif-
icantly different from the method below them. Most of the hoet names are self-
explanatory. The variants of the Dirichlet method are aug@ and uncorrected,
PCC MBCF is memory-based CF using Pearson correlation,amithwithout sig-
nificance weighting.

The Gaussian methods perform best on MAE, with the Dirichlegmented
multinomial models performing worst. On F1 score, the Gaussodels come out
on top, but in contrast to MAE, the Dirichlet models outpenidMBCF. In addition
to the Gaussian results shown below which use a Dirichleteinfad prior proba-
bilities we tried Gaussian and Gaussian-Gamma priors. Wedthat these models
did not produce significantly different results from theiblidet model, so they are
not shown here.

Table1l Results

Method MAE SE F1 Score
Gaussian 0.7054 0.0042 0.6931
Gaussian-Gamma 0.7059 0.0042 0.6932
PCC MBCF (Weighted) 0.7393 0.0039 0.5613
Laplace 0.7438 0.0043 0.6566
PCC MBCF 0.7438 0.0038 0.5481
Item Average 0.8183 0.0041 0.3938
User Average 0.8351 0.0042 0.2993
Dirichlet (Corrected) 0.8525 0.0041 0.5881
Dirichlet 0.8649 0.0045 0.6196
7.3 Sparsity

We looked at a subset of the techniques which performed welteé general ex-
periment for the sparsity experiment. We tested the averdgBCF with signifi-
cance weighting; Laplacian, Gaussian, and Gaussian-GardveBayes. We tried
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all variants for the Gaussian models, but found that thecbleit model for priors
worked best, and so those are the only results reported tiettesf sake of clarity.

Figure 1 shows MAE against the relative density of the datas®l Figure 2
shows F1 score against relative density. These graphs shgoadaal improvement
in performance as more of the original dataset is used. Eatimiques maintains its
relative performance compared with other techniques fostrnbthe MAE graph.
At conditions of extreme sparsity the simple multinomialeique slightly outper-
forms the others, it is not obvious why this should be so. klg interesting to
note that the Gaussian-Gamma technique, which showesl ilitphrovement over
the simple Gaussian technique in the general tests, ootpesfthe Gaussian tech-
nique as the data becomes more sparse. It is likely that tbetlps to fill in gaps
in its knowledge.

The picture is much the same for the F1 measure, althoughisnctdse the
Gaussian-Gamma technique retains excellent levels obqeaice even when us-
ing the most sparse dataset. It is interesting to note tlepérformance of the
Laplace smoothed algorithm suffers considerably when tatparse. It is also
interesting that increasing data density actually degrdde performance of the
average methods.
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Fig. 1 MAE under conditions of varying sparsity
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Sparsity
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8 Conclusions

In this paper we have shown that Bayesian recommenders gaisi@ of prior
knowledge can produce results which are better than thosg filem memory-
based collaborative filtering, and simple probabilistioo@menders not using prior
knowledge. We have shown that these techniques maintaia lgvels of perfor-
mance even when using sparse data. In particular we find tli@aussian model
produces the best results across most of our tests. AlththegBaussian-Gamma
prior was found to perform similarly to the Gaussian modelenconditions of rel-
ative data density, under sparser conditions it perfornggttb For our prior proba-
bilities however, we found that the Dirichlet model prodddetter results.

In the case of the multinomial model, the addition of a pr&oiound to be harm-
ful to the model. We believe this because we are trying to @itrt@any parameters
given the limited information. In addition the multinomiadodel makes assump-
tions about the independence of rating categories whichraileely to hold true. In
cases where the underlying model is a better fit to the dagaadkition of a prior
appears to help fill in gaps in information leading to betenfgrmance in situations
where data is sparse.
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8.1 Future Work

Our next task is to do a more thorough comparison of our methitiu existing
more complex methods of probabilistic, and sparse recordat&m techniques. We
also need to apply our technique to a wider range of data&stsne of our goals
is distributed recommendation, we also need to test our adeith a distributed
situation.

Although we found the Gaussian-Gamma model works well, Wleagsh to in-
vestigate other models. Multivariate Gaussian, or Ganssitures are the next
logical steps from this model, but they have more parametetdsso might suffer
from the same problems as the Dirichlet model. Another aggravould be to stay
with the Gaussian model, but learn clusters of users, applifferent prior knowl-
edge to different groups.
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